IRFSL4229PBF [INFINEON]

High Repetitive Peak Current Capability for Reliable Operation; 高重复峰值电流能力可靠运行
IRFSL4229PBF
型号: IRFSL4229PBF
厂家: Infineon    Infineon
描述:

High Repetitive Peak Current Capability for Reliable Operation
高重复峰值电流能力可靠运行

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总8页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96285  
IRFSL4229PbF  
Features  
Key Parameters  
l
l
l
Advanced Process Technology  
Low QG for Fast Response  
High Repetitive Peak Current Capability for  
Reliable Operation  
VDS min  
250  
300  
42  
V
V
m
VDS (Avalanche) typ.  
RDS(ON) typ. @ 10V  
IRP max @ TC= 100°C  
TJ max  
l
Short Fall & Rise Times for Fast Switching  
91  
A
l175°C Operating Junction Temperature for  
175  
°C  
Improved Ruggedness  
l
Repetitive Avalanche Capability for Robustness  
D
D
and Reliability  
S
D
G
G
TO-262  
IRFSL4229PbF  
S
G
D
S
Gate  
Drain  
Source  
Description  
This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve low on-resistance  
per silicon area. Additional features of this MOSFET are 175°C operating juntion temperature and high  
repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust  
and reliable device.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGS  
±30  
Gate-to-Source Voltage  
V
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
45  
A
32  
180  
IRP @ TC = 100°C  
PD @TC = 25°C  
PD @TC = 100°C  
91  
Repetitive Peak Current  
330  
Power Dissipation  
W
190  
Power Dissipation  
2.2  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
Max.  
0.45*  
62  
Units  
Junction-to-Case  
Rθ  
Rθ  
–––  
–––  
JC  
Junction-to-Ambient  
JA  
* RθJC (end of life) for TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature  
cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium.  
Notes  through are on page 8  
www.irf.com  
1
01/04/10  
IRFSL4229PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, ID = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
250  
–––  
–––  
3.0  
–––  
210  
42  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
V
GS = 10V, ID = 26A  
48  
m
VDS = VGS, ID = 250µA  
VGS(th)  
–––  
-14  
–––  
–––  
–––  
–––  
–––  
72  
5.0  
V
V
/ T  
J
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
83  
––– mV/°C  
GS(th)  
VDS = 250V, VGS = 0V  
IDSS  
20  
µA  
VDS = 250V, VGS = 0V, TJ = 125°C  
200  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
nA  
V
V
V
GS = -20V  
-100  
DS = 25V, ID = 26A  
DD = 125V, ID = 26A, VGS = 10V  
gfs  
Qg  
Qgd  
td(on)  
tr  
–––  
110  
–––  
–––  
–––  
–––  
–––  
–––  
S
–––  
–––  
–––  
–––  
–––  
–––  
100  
nC  
Gate-to-Drain Charge  
Turn-On Delay Time  
26  
VDD = 125V, VGS = 10V  
18  
ID = 26A  
Rise Time  
31  
ns  
ns  
µJ  
R = 2.4  
td(off)  
tf  
Turn-Off Delay Time  
30  
G
See Fig. 22  
Fall Time  
21  
VDD = 200V, VGS = 15V, R = 4.7  
tst  
Shoot Through Blocking Time  
–––  
G
L = 220nH, C= 0.3µF, VGS = 15V  
VDS = 200V, R = 4.7 TJ = 25°C  
–––  
790  
–––  
EPULSE  
Ω,  
L = 220nH, C= 0.3µF, VGS = 15V  
Energy per Pulse  
G
––– 1390 –––  
––– 4560 –––  
VDS = 200V, R = 4.7  
TJ = 100°C  
Ω,  
G
VGS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
VDS = 25V  
Output Capacitance  
–––  
–––  
–––  
390  
100  
290  
–––  
–––  
–––  
pF  
nH  
ƒ = 1.0MHz,  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
VGS = 0V, VDS = 0V to 200V  
Coss eff.  
LD  
Between lead,  
D
S
–––  
–––  
4.5  
7.5  
–––  
–––  
and center of die contact  
G
LS  
Internal Source Inductance  
Avalanche Characteristics  
Typ.  
–––  
–––  
300  
–––  
Max.  
130  
33  
Parameter  
Units  
mJ  
mJ  
V
EAS  
Single Pulse Avalanche Energy  
Repetitive Avalanche Energy  
Repetitive Avalanche Voltage  
Avalanche Current  
EAR  
VDS(Avalanche)  
IAS  
–––  
26  
A
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS @ TC = 25°C  
ISM  
MOSFET symbol  
Continuous Source Current  
–––  
–––  
45  
showing the  
(Body Diode)  
A
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
180  
TJ = 25°C, IS = 26A, VGS = 0V  
TJ = 25°C, IF = 26A, VDD = 50V  
di/dt = 100A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
190  
1.3  
V
290  
ns  
nC  
Qrr  
840 1260  
2
www.irf.com  
IRFSL4229PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
8.0V  
7.0V  
6.5V  
6.0V  
BOTTOM  
BOTTOM  
5.5V  
5.5V  
5.5V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
I
= 26A  
D
V
= 10V  
GS  
100  
10  
T
= 175°C  
J
1
T
= 25°C  
J
0.1  
0.01  
V
= 25V  
DS  
60µs PULSE WIDTH  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
1600  
1400  
L = 220nH  
C = Variable  
L = 220nH  
C = 0.3µF  
100°C  
1200  
100°C  
25°C  
25°C  
1200  
800  
400  
0
1000  
800  
600  
400  
200  
0
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
V
Drain-to -Source Voltage (V)  
I
Peak Drain Current (A)  
DS,  
D,  
Fig 6. Typical EPULSE vs. Drain Current  
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage  
www.irf.com  
3
IRFSL4229PbF  
2000  
1000  
100  
10  
L = 220nH  
C= 0.3µF  
1600  
C= 0.2µF  
C= 0.1µF  
T
= 175°C  
J
1200  
800  
400  
0
1
T
= 25°C  
0.8  
J
V
= 0V  
GS  
0.1  
25  
50  
75  
100  
125  
150  
0.2  
0.4  
0.6  
1.0  
1.2  
Temperature (°C)  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 7. Typical EPULSE vs.Temperature  
Fig 8. Typical Source-Drain Diode Forward Voltage  
20  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
V
C
= 0V,  
f = 1 MHZ  
I = 26A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
V
V
= 160V  
= 100V  
= 40V  
DS  
DS  
DS  
C
C
= C  
rss  
oss  
gd  
16  
12  
8
= C + C  
ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1000  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage  
50  
40  
30  
20  
10  
0
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1µsec  
100  
10  
1
100µsec  
10µsec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
25  
50  
75  
100  
125  
150  
175  
1
10  
100  
1000  
T , Junction Temperature (°C)  
V
, Drain-to-Source Voltage (V)  
J
DS  
Fig 12. Maximum Safe Operating Area  
Fig 11. Maximum Drain Current vs. Case Temperature  
4
www.irf.com  
IRFSL4229PbF  
600  
500  
400  
300  
200  
100  
0
0.40  
0.30  
0.20  
0.10  
0.00  
I
I
= 26A  
D
D
TOP  
7.4A  
13A  
26A  
BOTTOM  
T
= 125°C  
= 25°C  
J
T
J
5
6
7
8
9
10  
25  
50  
75  
100  
125  
150  
175  
V
, Gate-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
GS  
J
Fig 13. On-Resistance Vs. Gate Voltage  
Fig 14. Maximum Avalanche Energy Vs. Temperature  
5.0  
140  
ton= 1µs  
Duty cycle = 0.25  
4.5  
4.0  
120  
Half Sine Wave  
Square Pulse  
100  
I
= 250µA  
D
3.5  
3.0  
2.5  
2.0  
1.5  
80  
60  
40  
20  
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
Case Temperature (°C)  
T
Fig 16. Typical Repetitive peak Current vs.  
Fig 15. Threshold Voltage vs. Temperature  
Case temperature  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
τι  
Ri (°C/W)  
(sec)  
τ
J τJ  
τ
τ
Cτ  
0.080717 0.000052  
0.209555 0.001021  
0.159883 0.007276  
τ
1 τ1  
τ
2 τ2  
3τ3  
0.02  
0.01  
Ci= τi/Ri  
Ci= τi/Ri  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFSL4229PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
***  
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
1K  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 20a. Gate Charge Test Circuit  
Fig 20b. Gate Charge Waveform  
6
www.irf.com  
IRFSL4229PbF  
PULSE A  
PULSE B  
A
RG  
C
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
tST  
Fig 21b. tst Test Waveforms  
Fig 21a. tst and EPULSE Test Circuit  
Fig 21c. EPULSE Test Waveforms  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
10%  
VGS  
V
GS  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
www.irf.com  
7
IRFSL4229PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.37mH, RG = 25, IAS = 26A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
θ
Half sine wave with duty cycle = 0.25, ton=1µsec.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/2010  
8
www.irf.com  

相关型号:

IRFSL42N20D

High frequency DC-DC converters
INFINEON

IRFSL4310

HEXFET Power MOSFET
INFINEON

IRFSL4310

HEXFET Power MOSFET
FREESCALE

IRFSL4310PBF

HEXFET㈢Power MOSFET
INFINEON

IRFSL4310TRRZPBF

暂无描述
INFINEON

IRFSL4310ZPBF

HEXFET Power MOSFET
INFINEON

IRFSL4310ZTRRPBF

暂无描述
INFINEON

IRFSL4321PBF

HEXFET Power MOSFET
INFINEON

IRFSL4410

HEXFET Power MOSFET
INFINEON

IRFSL4410PBF

HEXFET Power MOSFET
INFINEON

IRFSL4410Z

暂无描述
INFINEON

IRFSL4410ZPBF

HEXFET Power MOSFET
INFINEON