IRGP4062DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGP4062DPBF
型号: IRGP4062DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 双极性晶体管 栅 PC 局域网 超快软恢复二极管
文件: 总12页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97190  
IRGB4062DPbF  
IRGP4062DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
• Low VCE (ON) Trench IGBT Technology  
• Low switching losses  
C
VCES = 600V  
• Maximum Junction temperature 175 °C  
• 5 µS short circuit SOA  
IC = 24A, TC = 100°C  
• SquareRBSOA  
G
tSC 5µs, TJ(max) = 175°C  
• 100% of the parts tested for 4X rated current (ILM  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
)
E
VCE(on) typ. = 1.65V  
n-channel  
• LeadFreePackage  
C
C
Benefits  
• High Efficiency in a wide range of applications  
E
C
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
E
C
G
G
TO-220AB  
TO-247AC  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
48  
Units  
V
VCES  
Collector-to-Emitter Voltage  
IC @ TC = 25°C  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current  
IC @ TC = 100°C  
24  
ICM  
96  
Clamped Inductive Load Current  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
ILM  
96  
A
IF @ TC = 25°C  
48  
IF @ TC = 100°C  
24  
IFM  
96  
VGE  
±20  
±30  
250  
125  
V
PD @ TC = 25°C  
W
PD @ TC = 100°C  
TJ  
-55 to +175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
–––  
–––  
0.50  
80  
Max.  
0.60  
1.53  
0.65  
1.62  
–––  
Units  
RθJC (IGBT)  
RθJC (Diode)  
RθJC (IGBT)  
RθJC (Diode)  
RθCS  
Thermal Resistance Junction-to-Case-(each IGBT) TO-220AB  
Thermal Resistance Junction-to-Case-(each Diode) TO-220AB  
Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC  
Thermal Resistance Junction-to-Case-(each Diode) TO-247AC  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
°C/W  
RθJA  
–––  
1
www.irf.com  
02/24/06  
IRGB/P4062DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
GE = 0V, IC = 100µA  
V(BR)CES  
V
V
600  
4.0  
0.30  
1.60  
2.03  
2.04  
V
V(BR)CES/TJ  
GE = 0V, IC = 1mA (25°C-175°C)  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
IC = 24A, VGE = 15V, TJ = 25°C  
C = 24A, VGE = 15V, TJ = 150°C  
IC = 24A, VGE = 15V, TJ = 175°C  
5,6,7  
1.95  
VCE(on)  
VGE(th)  
I
Collector-to-Emitter Saturation Voltage  
V
9,10,11  
V
V
V
V
V
CE = VGE, IC = 700µA  
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
9, 10,  
VGE(th)/ TJ  
CE = VGE, IC = 1.0mA (25°C - 175°C)  
CE = 50V, IC = 24A, PW = 80µs  
GE = 0V, VCE = 600V  
11, 12  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-18  
17  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
2.0  
25  
µA  
GE = 0V, VCE = 600V, TJ = 175°C  
775  
1.80  
1.28  
VFM  
IGES  
IF = 24A  
8
Diode Forward Voltage Drop  
2.6  
V
IF = 24A, TJ = 175°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 24A  
GE = 15V  
VCC = 400V  
C = 24A, VCC = 400V, VGE = 15V  
50  
75  
20  
31  
201  
700  
901  
53  
31  
115  
41  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
V
CT1  
13  
nC  
µJ  
ns  
21  
I
CT4  
CT4  
115  
600  
715  
41  
RG = 10, L = 200µH, LS = 150nH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
IC = 24A, VCC = 400V, VGE = 15V  
G = 10 , L = 200µH, LS = 150nH, TJ = 25°C  
R
22  
td(off)  
tf  
Turn-Off delay time  
Fall time  
104  
29  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 24A, VCC = 400V, VGE=15V  
13, 15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
420  
840  
1260  
40  
RG=10 , L=100µH, LS=150nH, TJ = 175°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
WF1, WF2  
14, 16  
CT4  
I
C = 24A, VCC = 400V, VGE = 15V  
RG = 10, L = 200µH, LS = 150nH  
24  
td(off)  
tf  
TJ = 175°C  
WF1  
Turn-Off delay time  
Fall time  
125  
39  
WF2  
Cies  
Coes  
Cres  
V
GE = 0V  
23  
Input Capacitance  
1490  
129  
45  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 175°C, IC = 96A  
4
V
CC = 480V, Vp =600V  
Rg = 10, VGE = +15V to 0V  
CC = 400V, Vp =600V  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
CT2  
V
22, CT3  
WF4  
5
µs  
Rg = 10, VGE = +15V to 0V  
TJ = 175°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
621  
89  
µJ  
ns  
A
17, 18, 19  
20, 21  
WF3  
VCC = 400V, IF = 24A  
VGE = 15V, Rg = 10 , L =200µH, Ls = 150nH  
Irr  
Peak Reverse Recovery Current  
37  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10.  
‚ This is only applied to TO-220AB package.  
ƒ Pulse width limited by max. junction temperature.  
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
2
www.irf.com  
IRGB/P4062DPbF  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
0
0
0
20 40 60 80 100 120 140 160 180  
(°C)  
0
20 40 60 80 100 120 140 160 180  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
1000  
100  
100  
10  
1
10µsec  
10  
100µsec  
1
1msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
10  
100  
(V)  
1000  
10000  
10  
100  
(V)  
1000  
V
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =15V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 18V  
GE  
V
= 18V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGB/P4062DPbF  
90  
120  
100  
80  
60  
40  
20  
0
V
= 18V  
GE  
80  
70  
60  
50  
40  
30  
20  
10  
0
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
-40°c  
25°C  
175°C  
0
1
2
3
4
5
6
7
8
0.0  
1.0  
2.0  
3.0  
V
(V)  
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 175°C; tp = 80µs  
tp = 80µs  
20  
18  
16  
14  
12  
20  
18  
16  
14  
12  
I
I
I
= 12A  
= 24A  
= 48A  
I
I
I
= 12A  
= 24A  
= 48A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
120  
100  
80  
60  
40  
20  
0
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
J
T = 175°C  
J
I
I
I
= 12A  
CE  
CE  
CE  
= 24A  
= 48A  
6
4
2
0
0
5
10  
15  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
TJ = 175°C  
V
4
www.irf.com  
IRGB/P4062DPbF  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1000  
100  
10  
td  
OFF  
E
OFF  
td  
ON  
t
F
E
ON  
t
R
1
0
10  
20  
30  
(A)  
40  
50  
60  
10  
20  
30  
(A)  
40  
50  
I
C
I
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
1600  
1000  
1400  
E
OFF  
1200  
1000  
td  
OFF  
E
ON  
800  
100  
td  
ON  
600  
400  
200  
0
t
F
t
R
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
()  
100  
125  
R
G
Rg ()  
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V  
40  
45  
R
10Ω  
G =  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
R
22  
G =  
G =  
R
R
47Ω  
100Ω  
G =  
0
10  
20  
30  
40  
50  
60  
0
25  
50  
75  
(Ω)  
100  
125  
I
(A)  
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C  
www.irf.com  
5
IRGB/P4062DPbF  
45  
40  
35  
30  
25  
20  
15  
10  
5
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
24A  
10  
22  
47  
12A  
100  
6.0A  
0
500  
1000  
1500  
0
500  
1000  
1500  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
CC = 400V; VGE = 15V; TJ = 175°C  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C  
V
280  
16  
14  
12  
10  
8
1000  
800  
240  
200  
160  
120  
80  
R
= 47Ω  
G
R
= 10Ω  
G
600  
400  
200  
0
R
= 22Ω  
G
R
= 100Ω  
G
6
40  
4
0
10  
20  
30  
(A)  
40  
50  
60  
8
10  
12  
14  
(V)  
16  
18  
I
V
GE  
F
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 175°C  
10000  
1000  
100  
16  
14  
12  
10  
8
V
V
= 300V  
= 400V  
CES  
CES  
Cies  
6
Coes  
Cres  
4
2
10  
0
0
20  
40  
60  
(V)  
80  
100  
0
5
10 15 20 25 30 35 40 45 50 55  
, Total Gate Charge (nC)  
V
Q
CE  
G
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 24A; L = 600µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGB/P4062DPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2329 0.000234  
τ
0.02  
0.01  
J τJ  
τ
τ
Cτ  
0.01  
τ
1 τ1  
Ci= τi/Ri  
2τ2  
0.3631 0.007009  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-220AB  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.476  
0.647  
0.406  
0.000763  
0.003028  
0.023686  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
/
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-220AB  
www.irf.com  
7
IRGB/P4062DPbF  
1
D = 0.50  
0.20  
0.1  
0.10  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2782 0.000311  
0.3715 0.006347  
0.05  
τ
J τJ  
τ
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.693  
0.621  
0.307  
0.001222  
0.005254  
0.038140  
0.01  
0.001  
0.0001  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-247AC  
8
www.irf.com  
IRGB/P4062DPbF  
L
L
80 V  
VCC  
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4x  
- 5V  
DC  
360V  
DUT /  
DRIVER  
VCC  
DUT  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
C force  
400µH  
R =  
ICM  
D1  
10K  
C sense  
DUT  
VCC  
G force  
DUT  
0.0075µ  
Rg  
E sense  
E force  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
www.irf.com  
9
IRGB/P4062DPbF  
500  
400  
25  
20  
15  
10  
5
500  
400  
300  
200  
100  
0
50  
40  
30  
20  
10  
0
tr  
300  
tf  
TEST  
90% ICE  
200  
90% test  
5% ICE  
100  
10% test  
5% VCE  
5% VCE  
0
0
EOFF Loss  
EON  
-100  
-5  
-100  
-10  
-0.50 0.00 0.50 1.00 1.50 2.00  
Time(µs)  
11.70 11.80 11.90 12.00 12.10  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
25  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
20  
QRR  
15  
tRR  
10  
VCE  
5
0
ICE  
-5  
-10  
-15  
-20  
-25  
10%  
Peak  
IRR  
Peak  
IRR  
0
-100  
-50  
-0.05  
0.05  
0.15  
-5.00  
0.00  
5.00  
10.00  
time (µS)  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 175°C using Fig. CT.4  
10  
www.irf.com  
IRGB/P4062DPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB package is not recommended for Surface Mount Application.  
www.irf.com  
11  
IRGB/P4062DPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 02/06  
12  
www.irf.com  

相关型号:

IRGP4063-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4063D1-EPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP4063D1PBF

Insulated Gate Bipolar Transistor, 100A I(C), 600V V(BR)CES, N-Channel,
INFINEON

IRGP4063D1PBF_15

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRGP4063DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4063PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4063PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4065DPBF

PDP TRENCH IGBT
INFINEON

IRGP4065PBF

PDP TRENCH IGBT
INFINEON

IRGP4066-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON