IRGP4065PBF [INFINEON]

PDP TRENCH IGBT; PDP TRENCH IGBT
IRGP4065PBF
型号: IRGP4065PBF
厂家: Infineon    Infineon
描述:

PDP TRENCH IGBT
PDP TRENCH IGBT

光电二极管 双极性晶体管
文件: 总7页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97208  
IRGP4065PbF  
PDP TRENCH IGBT  
Key Parameters  
Features  
VCE min  
300  
V
V
A
l
Advanced Trench IGBT Technology  
VCE(ON) typ. @ IC = 70A  
IRP max @ TC= 25°C c  
TJ max  
1.75  
l
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
205  
150  
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
°C  
l
l
High repetitive peak current capability  
Lead Free package  
C
C
E
C
G
G
E
TO-247AC  
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on) andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
±30  
Gate-to-Emitter Voltage  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current c  
Power Dissipation  
70  
A
40  
205  
178  
W
71  
Power Dissipation  
1.4  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lbxin (1.1Nxm)  
N
Thermal Resistance  
Parameter  
d
Case-to-Sink (flat, greased surface)  
Junction-to-Ambient (typical socket mount)  
Typ.  
Max.  
0.80  
–––  
40  
Units  
RθJC  
RθCS  
Junction-to-Case  
–––  
0.24  
–––  
°C/W  
RθJA  
www.irf.com  
1
05/10/06  
IRGP4065PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 1 mA  
Reference to 25°C, ICE = 1mA  
Parameter  
Collector-to-Emitter Breakdown Voltage 300  
Min. Typ. Max. Units  
––– –––  
BVCES  
V
∆ΒVCES/TJ  
Breakdown Voltage Temp. Coefficient ––– 0.23 ––– V/°C  
e
e
e
V
GE = 15V, ICE = 25A  
VGE = 15V, ICE = 40A  
VGE = 15V, ICE = 70A  
––– 1.20 1.40  
––– 1.35 –––  
VCE(on)  
Static Collector-to-Emitter Voltage  
––– 1.75 2.10  
––– 2.35 –––  
––– 2.00 –––  
V
V
e
VGE = 15V, ICE = 120A  
VGE = 15V, ICE = 70A, TJ = 150°C  
V
CE = VGE, ICE = 500µA  
VGE(th)  
Gate Threshold Voltage  
2.6  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
100  
–––  
-11  
2.0  
50  
5.0  
VGE(th)/TJ  
ICES  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
––– mV/°C  
V
V
V
V
V
V
CE = 300V, VGE = 0V  
CE = 300V, VGE = 0V, TJ = 150°C  
GE = 30V  
25  
µA  
nA  
–––  
100  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
–––  
GE = -30V  
––– -100  
CE = 25V, ICE = 25A  
gfe  
Qg  
Qgc  
tst  
26  
62  
–––  
–––  
–––  
–––  
S
e
CE = 200V, IC = 25A, VGE = 15V  
nC  
Gate-to-Collector Charge  
20  
V
CC = 240V, VGE = 15V, RG= 5.1Ω  
Shoot Through Blocking Time  
–––  
ns  
µJ  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 25°C  
L = 220nH, C= 0.40µF, VGE = 15V  
VCC = 240V, RG= 5.1Ω, TJ = 100°C  
VGE = 0V  
–––  
–––  
875  
975  
–––  
–––  
EPULSE  
Energy per Pulse  
Ciss  
Coss  
Crss  
LC  
Input Capacitance  
––– 2200 –––  
VCE = 30V  
Output Capacitance  
–––  
–––  
–––  
110  
55  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
5.0  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
13  
–––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.25, ton=1µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRGP4065PbF  
200  
160  
120  
80  
200  
160  
120  
80  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
V
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
BOTTOM  
V
V
GE  
GE  
BOTTOM  
V
GE  
40  
40  
0
0
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
360  
280  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
TOP  
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
V
V
320  
280  
240  
200  
160  
120  
80  
GE  
GE  
240  
200  
160  
120  
80  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
BOTTOM  
V
BOTTOM  
V
GE  
GE  
40  
40  
0
0
0
2
4
6
8
10 12 14 16  
(V)  
0
2
4
6
8
10 12 14 16  
(V)  
V
V
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
600  
500  
20  
I
= 25A  
C
15  
10  
5
400  
300  
200  
100  
0
T
= 25°C  
J
T
T
= 25°C  
T
= 125°C  
J
J
J
= 150°C  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
, Gate-to-Emitter Voltage (V)  
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRGP4065PbF  
80  
70  
60  
50  
40  
30  
20  
10  
0
220  
200  
180  
160  
140  
120  
100  
80  
ton= 1µs  
Duty cycle = 0.25  
Half Sine Wave  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
Case Temperature (°C)  
T
, Case Temperature (°C)  
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
Fig 7. Maximum Collector Current vs. Case Temperature  
1000  
1000  
V
= 240V  
L = 220nH  
C = 0.4µF  
CC  
900  
800  
700  
600  
500  
400  
300  
200  
L = 220nH  
C = variable  
900  
800  
700  
600  
500  
400  
100°C  
100°C  
25°C  
25°C  
160 170 180 190 200 210 220 230  
150 160 170 180 190 200 210 220 230 240  
Collector-to-Emitter Voltage (V)  
I , Peak Collector Current (A)  
C
V
CE,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
1400  
1000  
OPERATION IN THIS AREA  
V
= 240V  
CC  
LIMITED BY V (on)  
CE  
L = 220nH  
t = 1µs half sine  
1200  
1000  
800  
C= 0.4µF  
10µsec  
100  
100µsec  
C= 0.3µF  
C= 0.2µF  
600  
10  
1msec  
400  
200  
1
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRGP4065PbF  
100000  
10000  
1000  
100  
25  
20  
15  
10  
5
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C  
GS  
I
= 25A  
C
C
C
C
SHORTED  
ies  
res  
oes  
ge  
gd  
ce  
= C  
gc  
= C + C  
ce  
gc  
V
V
V
= 240V  
CE  
CE  
CE  
= 200V  
= 150V  
Cies  
Coes  
Cres  
0
10  
0
10 20 30 40 50 60 70 80  
, Total Gate Charge (nC)  
0
50  
100  
150  
200  
250  
300  
Q
G
V
, Collector-toEmitter-Voltage(V)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
1
D = 0.50  
0.20  
0.1  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
0.05  
Ri (°C/W) τi (sec)  
τ
JτJ  
τ
τ
Cτ  
0.146  
0.382  
0.271  
0.000131  
0.001707  
0.014532  
0.02  
0.01  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRGP4065PbF  
A
RG  
C
PULSEA  
PULSEB  
DRIVER  
L
VCC  
B
Ipulse  
RG  
DUT  
tST  
Fig 16a. tst and EPULSE Test Circuit  
Fig 16b. tst Test Waveforms  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig. 17 - Gate Charge Circuit (turn-off)  
Fig 16c. EPULSE Test Waveforms  
6
www.irf.com  
IRGP4065PbF  
TO-247AC Package Outline Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
(;$03/(ꢈ 7+,6ꢀ,6ꢀ$1ꢀ,5)3(ꢅꢃꢀ  
:,7+ꢀ$66(0%/<ꢀ  
3$57ꢀ180%(5  
,17(51$7,21$/  
5(&7,),(5  
/2*2  
/27ꢀ&2'(ꢀꢆꢉꢆꢊ  
$66(0%/('ꢀ21ꢀ::ꢀꢅꢆꢇꢀꢂꢃꢃꢁ  
,1ꢀ7+(ꢀ$66(0%/<ꢀ/,1(ꢀ!+!  
'$7(ꢀ&2'(  
<($5ꢀꢁꢀ ꢀꢂꢃꢃꢁ  
:((.ꢀꢅꢆ  
$66(0%/<  
/27ꢀ&2'(  
1RWHꢈꢀ!3!ꢀLQꢀDVVHPEO\ꢀOLQHꢀSRVLWLRQ  
LQGLFDWHVꢀ!/HDGꢄ)UHH!  
/,1(ꢀ+  
TO-247AC package is not recommended for Surface Mount Application.  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational performance  
or safety. Please contact your IR representative if you have  
specific design or use requirements or for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/06  
www.irf.com  
7

相关型号:

IRGP4066-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGP4066PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4068D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4068DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4069D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4072DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4078D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON