IRGP4066D-EPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR; 绝缘栅双极晶体管
IRGP4066D-EPBF
型号: IRGP4066D-EPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR
绝缘栅双极晶体管

晶体 晶体管 功率控制 栅 局域网
文件: 总11页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97576  
IRGP4066DPbF  
IRGP4066D-EPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
• Low VCE (ON) Trench IGBT Technology  
• Low Switching Losses  
C
VCES = 600V  
• Maximum Junction Temperature 175 °C  
• 5 μS short circuit SOA  
IC(Nominal) = 75A  
• SquareRBSOA  
G
tSC 5μs, TJ(max) = 175°C  
• 100% of The Parts Tested for ILM  
• Positive VCE (ON) Temperature Coefficient  
• TightParameterDistribution  
• LeadFreePackage  
E
VCE(on) typ. = 1.70V  
n-channel  
C
Benefits  
C
• High Efficiency in a Wide Range of Applications  
• Suitable for a Wide Range of Switching Frequencies due to  
Low VCE (ON) and Low Switching Losses  
• Rugged Transient Performance for Increased Reliability  
• Excellent Current Sharing in Parallel Operation  
E
E
C
C
G
G
TO-247AC  
TO-247AD  
IRGP4066DPbF  
IRGP4066D-EPbF  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
Nominal Current  
600  
140  
V
IC @ TC = 25°C  
IC @ TC = 100°C  
INOMINAL  
90  
75  
ICM  
Pulse Collector Current, VGE = 15V  
Clamped Inductive Load Current, VGE = 20V  
225  
A
ILM  
300  
IF @ TC = 25°C  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
140  
IF @ TC = 100°C  
90  
IFM  
300  
VGE  
±20  
V
±30  
PD @ TC = 25°C  
454  
W
PD @ TC = 100°C  
Maximum Power Dissipation  
227  
TJ  
Operating Junction and  
-55 to +175  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
Max.  
0.33  
1.0  
Units  
RθJC (IGBT)  
RθJC (Diode)  
RθCS  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
°C/W  
–––  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
0.24  
–––  
–––  
40  
RθJA  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
1
www.irf.com  
10/08/2010  
IRGP4066DPbF/IRGP4066D-EPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min.  
600  
Typ.  
Max. Units  
Conditions  
VGE = 0V, IC = 100μA  
V(BR)CES  
V
ΔV(BR)CES/ΔTJ  
VGE = 0V, IC = 2.0mA (25°C-175°C)  
IC = 75A, VGE = 15V, TJ = 25°C  
IC = 75A, VGE = 15V, TJ = 150°C  
IC = 75A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 2.1mA  
Temperature Coeff. of Breakdown Voltage  
0.30  
1.70  
2.0  
2.1  
V/°C  
2.10  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
V
VGE(th)  
Gate Threshold Voltage  
4.0  
6.5  
V
mV/°C  
S
ΔVGE(th)/ΔTJ  
VCE = VGE, IC = 2.1mA (25°C - 175°C)  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-21  
50  
V
CE = 50V, IC = 75A, PW = 60μs  
gfe  
ICES  
VGE = 0V, VCE = 600V  
VGE = 0V, VCE = 600V, TJ = 175°C  
IF = 75A  
Collector-to-Emitter Leakage Current  
1.0  
1040  
2.23  
1.8  
100  
μA  
VFM  
IGES  
Diode Forward Voltage Drop  
3.0  
V
IF = 75A, TJ = 175°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±200  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min.  
Typ.  
150  
40  
Max. Units  
225  
Conditions  
IC = 75A  
Qg  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
60  
90  
nC  
μJ  
ns  
VCC = 400V  
60  
IC = 75A, VCC = 400V, VGE = 15V  
RG = 10Ω, L = 200μH, TJ = 25°C  
2465  
2155  
4620  
50  
3360  
3040  
6400  
70  
Energy losses include tail & diode reverse recovery  
IC = 75A, VCC = 400V, VGE = 15V  
RG = 10Ω, L = 200μH, TJ = 25°C  
70  
90  
td(off)  
tf  
Turn-Off delay time  
Fall time  
200  
60  
225  
80  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 75A, VCC = 400V, VGE=15V  
RG=10Ω, L=200μH, TJ = 175°C  
Energy losses include tail & diode reverse recovery  
IC = 75A, VCC = 400V, VGE = 15V  
RG = 10Ω, L = 200μH  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
3870  
2815  
6685  
50  
μJ  
ns  
pF  
70  
td(off)  
tf  
TJ = 175°C  
Turn-Off delay time  
Fall time  
240  
70  
Cies  
Coes  
Cres  
VGE = 0V  
Input Capacitance  
4440  
245  
130  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 175°C, IC = 300A  
VCC = 480V, Vp 600V  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
Ω
Rg = 10 , VGE = +20V to 0V  
V
CC = 400V, Vp 600V  
5
μs  
Ω
Rg = 10 , VGE = +15V to 0V  
TJ = 175°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
470  
155  
27  
μJ  
ns  
A
VCC = 400V, IF = 75A  
Irr  
VGE = 15V, Rg = 10Ω, L = 60μH  
Peak Reverse Recovery Current  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 10μH, RG = 10Ω.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ Rθ is measured at TJ of approximately 90°C.  
2
www.irf.com  
IRGP4066DPbF/IRGP4066D-EPbF  
140  
120  
100  
80  
400  
300  
200  
100  
0
60  
40  
20  
0
25  
50  
75  
100  
(°C)  
125  
150  
175  
25  
50  
75  
100  
(°C)  
125  
150  
175  
T
C
T
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
1000  
10μsec  
100  
10  
1
100μsec  
100  
10  
1
1msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =20V  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
V
= 18V  
= 15V  
= 12V  
= 10V  
GE  
V
GE  
V
GE  
V
GE  
V
= 8.0V  
GE  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 60μs  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = 25°C; tp = 60μs  
www.irf.com  
3
IRGP4066DPbF/IRGP4066D-EPbF  
300  
300  
250  
200  
150  
100  
50  
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
250  
200  
150  
100  
50  
-40°C  
25°C  
175°C  
0
0
0
2
4
6
8
10  
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
V
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = 175°C; tp = 60μs  
Fig. 8 - Typ. Diode Forward Characteristics  
tp = 80μs  
20  
18  
16  
14  
12  
20  
18  
16  
14  
12  
I
I
I
= 38A  
= 75A  
= 150A  
CE  
CE  
CE  
I
I
I
= 38A  
= 75A  
= 150A  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
20  
18  
16  
14  
12  
10  
8
300  
250  
200  
150  
100  
50  
T
= 25°C  
J
T = 175°C  
J
I
I
I
= 38A  
= 75A  
= 150A  
CE  
CE  
CE  
6
4
2
0
0
4
6
8
10  
12  
14  
16  
18  
5
10  
15  
20  
V
Gate-to-Emitter Voltage (V)  
V
(V)  
GE,  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 60μs  
TJ = 175°C  
V
4
www.irf.com  
IRGP4066DPbF/IRGP4066D-EPbF  
12000  
10000  
8000  
6000  
4000  
2000  
0
1000  
td  
OFF  
E
ON  
t
F
100  
td  
E
ON  
OFF  
t
R
10  
0
25  
50  
75  
(A)  
100  
125  
150  
0
50  
100  
150  
I
(A)  
C
I
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V  
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V  
11000  
10000  
9000  
7000  
1000  
td  
OFF  
E
t
ON  
F
5000  
t
R
100  
E
OFF  
3000  
1000  
td  
ON  
10  
0
25  
50  
75  
100  
0
20  
40  
60  
(Ω)  
80  
100  
120  
R
G
Rg (Ω)  
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V  
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V  
35  
30  
R
5.0Ω  
G =  
30  
25  
20  
15  
10  
R
10Ω  
G =  
25  
20  
15  
R
47Ω  
G =  
R
100Ω  
G =  
60  
20  
40  
80 100 120 140 160  
(A)  
0
20  
40  
60  
(Ω)  
80  
100  
I
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C  
www.irf.com  
5
IRGP4066DPbF/IRGP4066D-EPbF  
30  
3000  
2500  
2000  
1500  
5.0Ω  
10Ω  
150A  
Ω
47  
25  
20  
15  
100Ω  
75A  
38A  
200  
300  
400  
500  
600  
700  
200  
300  
400  
500  
600  
700  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
V
CC = 400V; VGE = 15V; TJ = 175°C  
VCC = 400V; VGE = 15V; IF = 75A; TJ = 175°C  
400  
800  
20  
15  
10  
5
Ω
= 10  
R
G
350  
300  
250  
200  
150  
100  
T
sc  
600  
400  
200  
0
R
= 22Ω  
G
I
sc  
R
R
= 47Ω  
G
= 100Ω  
G
0
10  
20  
30  
40  
(A)  
50  
60  
70  
8
10  
12  
14  
(V)  
16  
18  
I
V
F
GE  
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 175°C  
10000  
1000  
100  
16  
14  
12  
10  
8
Cies  
V
= 400V  
= 300V  
CES  
V
CES  
Coes  
Cres  
6
4
2
10  
0
0
100  
200  
V
300  
(V)  
400  
500  
0
20 40 60 80 100 120 140 160  
, Total Gate Charge (nC)  
Q
CE  
G
Fig. 24 - Typical Gate Charge vs. VGE  
ICE = 75A; L = 485μH  
Fig. 23 - Typ. Capacitance vs. VCE  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGP4066DPbF/IRGP4066D-EPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.01  
0.02  
0.01  
τ
0.00738 0.000009  
τ
J τJ  
τ
Cτ  
0.09441 0.000179  
0.13424 0.002834  
0.09294 0.0182  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
0.001  
0.0001  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
τ
0.02738 0.000053  
τ
J τJ  
τ
Cτ  
0.02  
0.01  
0.34077 0.000485  
0.41380 0.005203  
0.22819 0.034407  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGP4066DPbF/IRGP4066D-EPbF  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4X  
-5V  
Rg  
DC  
DUT  
VCC  
DUT /  
DRIVER  
VCC  
SCSOA  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
C force  
R = VCC  
ICM  
100K  
D1 22K  
C sense  
VCC  
DUT  
DUT  
G force  
Rg  
0.0075μF  
E sense  
E force  
Fig.C.T.6 - BVCES Filter Circuit  
Fig.C.T.5 - Resistive Load Circuit  
8
www.irf.com  
IRGP4066DPbF/IRGP4066D-EPbF  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
60  
40  
20  
0
tf  
tr  
TEST  
CURRENT  
90% ICE  
90%  
ICE  
60  
40  
5% VCE  
5% ICE  
10%  
ICE  
5% VCE  
20  
0
Eon  
Eof f Los s  
Loss  
-100  
-20  
-100  
-20  
7.6  
7.8  
8.0  
8.2  
-0.4 -0.2 0.0 0.2 0.4 0.6  
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
90  
80  
700  
600  
500  
400  
300  
200  
100  
0
700  
Q
RR  
600  
500  
400  
300  
200  
100  
0
70  
60  
50  
VCE  
ICE  
tRR  
40  
30  
20  
10  
0
-10  
Peak IRR  
-20  
-30  
-40  
-50  
-100  
-100  
-0.20 -0.10 0.00 0.10 0.20 0.30 0.40  
-3  
0
3
6
9
12  
time (µS)  
Time (uS)  
Fig. WF4 - Typ. S.C. Waveform  
Fig. WF3 - Typ. Diode Recovery Waveform  
@ TJ = 25°C using Fig. CT.3  
@ TJ = 175°C using Fig. CT.4  
www.irf.com  
9
IRGP4066DPbF/IRGP4066D-EPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRGP4066DPbF/IRGP4066D-EPbF  
TO-247AD Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AD Part Marking Information  
TO-247AD package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/2010  
www.irf.com  
11  

相关型号:

IRGP4066DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGP4066PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4068D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4068DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4069D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4072DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4078D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4078DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4078DPBF_15

Low Switching Losses
INFINEON