IRU3038CSTR [INFINEON]

暂无描述;
IRU3038CSTR
型号: IRU3038CSTR
厂家: Infineon    Infineon
描述:

暂无描述

控制器
文件: 总18页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD94250  
IRU3038  
SYNCHRONOUS PWM CONTROLLER  
FOR TERMINATION POWER SUPPLY APPLICATIONS  
PRELIMINARY DATA SHEET  
FEATURES  
DESCRIPTION  
Synchronous Controller in 14-Pin Package  
Operating with single 5V or 12V supply voltage  
200KHz to 400KHz operation set by an external  
resistor  
The IRU3038 controller IC is designed to provide a low  
cost synchronous Buck regulator for voltage tracking  
applications such DDR memory and general purpose  
on-board DC to DC converter. Modern micro processors  
combined with DDR memory, need high-speed bandwidth  
data bus which requires a particular bus termination volt-  
age. This voltage will be tightly regulated to track the  
half of chipset voltage for best performance. The IRU3038  
together with dual N-channel MOSFETs such as IRF7313,  
provide a low cost solution for such applications. This  
device features a programmable frequency set from  
200KHz to 400KHz, under-voltage lockout for both Vcc  
and Vc supplies, an external programmable soft-start  
function as well as output under-voltage detection that  
latches off the device when an output short is detected.  
Soft-Start Function  
Fixed Frequency Voltage Mode  
500mA Peak Output Drive Capability  
Uncommitted Error Amplifier available for DDR  
voltage tracking application  
1.25V Reference Voltage  
Protects the output when control FET is shorted  
APPLICATIONS  
DDR memory source sink Vtt application  
Low cost on-board DC to DC such as  
5V to 3.3V, 2.5V or 1.8V  
Graphic Card  
Hard Disk Drive  
TYPICAL APPLICATION  
5V  
12V  
L1  
VDDQ  
(2.5V)  
1uH  
C1  
0.1uF  
C2  
1uF  
C4  
47uF  
C3  
10TPB100M,  
100uF, 55m  
Vcc  
Vc  
R1  
1K  
DDR  
Memory  
VREF  
Q1  
1/2 of IRF7313  
HDrv  
VP  
D1  
BAT54  
or1N4148  
L2  
R2  
1K  
SS  
U1  
IRU3038  
Vtt  
1.25V @ 3A  
C6  
2x 6TPB150M,  
D03316P-103, 10uH, 3.9A  
1/2 of IRF7313  
C5  
Q2  
0.1uF  
LDrv  
PGnd  
150uF, 55m  
Rt  
Comp  
C7  
2200pF  
Fb  
Gnd  
R3  
33K  
Figure 1 - Typical application of IRU3038 when Vtt tracks the VDDQ.  
PACKAGE ORDER INFORMATION  
TA (°C)  
0 To 70  
0 To 70  
DEVICE  
IRU3038CF  
IRU3038CS  
PACKAGE  
14-Pin Plastic TSSOP (F)  
14-Pin Plastic SOIC NB (S)  
Rev. 2.0  
09/12/02  
www.irf.com  
1
IRU3038  
ABSOLUTE MAXIMUM RATINGS  
Vcc Supply Voltage .................................................. 25V  
Vc Supply Voltage ..................................................... 30V (not rated for inductive load)  
Storage Temperature Range ...................................... -65°C To 150°C  
Operating Junction Temperature Range .....................  
0°C To 125°C  
PACKAGE INFORMATION  
14-PIN PLASTIC TSSOP (F)  
14-PIN PLASTIC SOIC (S)  
Fb 1  
14 NC  
13 SS  
14  
13  
12  
11  
10  
9
Fb 1  
NC  
V
P
2
3
VP  
2
3
SS  
V
REF  
12 Comp  
11 Rt  
VREF  
Comp  
Rt  
Vcc 4  
NC 5  
Vcc 4  
10 Vc  
5
6
Vc  
NC  
LDrv 6  
Gnd 7  
9 HDrv  
8 PGnd  
LDrv  
HDrv  
PGnd  
7
8
Gnd  
θJA=888C/W  
θJA=1008C/W  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc=5V, Vc=12V and TA=0 to 70°C. Typical values refer  
to TA=25°C. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the ambient  
temperature.  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
Reference Voltage  
VREF Voltage  
VFB  
1.225  
1.250  
0.2  
1.275  
0.35  
V
LREG  
Fb Voltage Line Regulation  
UVLO  
5<Vcc<12  
%
UVLO Threshold - Vcc  
UVLO Hysteresis - Vcc  
UVLO Threshold - Vc  
UVLO Hysteresis - Vc  
UVLO Threshold - Fb  
UVLO Hysteresis - Fb  
Supply Current  
UVLO Vcc Supply Ramping Up  
UVLO Vc Supply Ramping Up  
4
4.2  
0.25  
3.3  
0.2  
0.6  
0.1  
4.4  
3.5  
0.8  
V
V
V
V
V
V
3.1  
0.4  
UVLO Fb  
Fb Ramping Down  
Dyn Icc  
Dyn Ic  
ICCQ  
Vcc Dynamic Supply Current  
Vc Dynamic Supply Current  
Vcc Static Supply Current  
Vc Static Supply Current  
Soft-Start Section  
Charge Current  
Freq=200KHz, CL=1500pF  
Freq=200KHz, CL=1500pF  
SS=0V  
2
2
1
5
7
3.5  
1
8
10  
6
mA  
mA  
mA  
mA  
ICQ  
SS=0V  
0.5  
4.5  
SSIB  
SS=0V  
-10  
-20  
-30  
µA  
Rev. 2.0  
09/12/02  
www.irf.com  
2
IRU3038  
PARAMETER  
SYM  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
Error Amp  
Fb Voltage Input Bias Current  
Fb Voltage Input Bias Current  
VP Voltage Range  
Transconductance  
Oscillator  
SS=3V, Fb=1V  
SS=0V, Fb=1V  
-0.1  
-64  
µA  
µA  
V
IFB1  
IFB2  
1.5  
0.8  
450  
600  
µmho  
gm  
750  
Frequency  
Freq Rt=Open  
Rt=Gnd  
200  
400  
1.25  
220  
440  
1.275  
KHz  
V
180  
360  
1.225  
Ramp Amplitude  
Output Drivers  
Rise Time  
VRAMP  
CLOAD=1500pF  
50  
50  
150  
90  
0
ns  
ns  
ns  
%
%
Tr  
Tf  
100  
100  
250  
95  
Fall Time  
CLOAD=1500pF  
Dead Band Time  
Max Duty Cycle  
Min Duty Cycle  
TDB  
TON  
50  
85  
0
Fb=1V, Freq=200KHz  
TOFF Fb=1.5V  
PIN DESCRIPTIONS  
PIN#  
PIN SYMBOL  
PIN DESCRIPTION  
1
Fb  
This pin is connected directly to the output of the switching regulator via resistor divider to  
provide feedback to the Error amplifier.  
2
3
4
VP  
VREF  
Vcc  
Non-inverting input of error amplifier.  
Reference Voltage.  
This pin provides biasing for the internal blocks of the IC as well as power for the low side  
driver. A minimum of 1µF, high frequency capacitor must be connected from this pin to  
ground to provide peak drive current capability.  
5
14  
6
NC  
No Connection.  
LDrv  
Gnd  
Output driver for the synchronous power MOSFET.  
Analog ground for internal reference and control circuitry. Connect to PGnd with a short  
trace.  
7
8
9
PGnd  
HDrv  
Vc  
This pin serves as the separate ground for MOSFET's drivers and should be connected to  
system's ground plane. A high frequency capacitor (0.1 to 1µF) must be connected from  
Vcc and Vc pins to this pin for noise free operation.  
Output driver for the high side power MOSFET. Connect a diode, such as BAT54 or 1N4148,  
from this pin to ground for the application when the inductor current goes negative (Source/  
Sink), soft-start at no load and for the fast load transient from full load to no load.  
This pin is connected to a voltage that must be at least 4V higher than the bus voltage of  
the switcher (assuming 5V threshold MOSFET) and powers the high side output driver. A  
minimum of 1µF, high frequency capacitor must be connected from this pin to ground to  
provide peak drive current capability.  
10  
11  
Rt  
The switching frequency can be Programmed between 200KHz and 400KHz by connect-  
ing a resistor between Rt and Gnd. Floating the pin set the switching frequency to 200KHz  
and grounding the pin set the switching frequency to 400KHz.  
12  
13  
Comp  
SS  
Compensation pin of the error amplifier. An external resistor and capacitor network is  
typically connected from this pin to ground to provide loop compensation.  
This pin provides soft-start for the switching regulator. An internal current source charges  
an external capacitor that is connected from this pin to ground which ramps up the output  
of the switching regulator, preventing it from overshooting as well as limiting the input  
current. The converter can be shutdown by pulling this pin below 0.5V.  
Rev. 2.0  
09/12/02  
www.irf.com  
3
IRU3038  
BLOCK DIAGRAM  
Vcc  
3V  
Bias  
Generator  
1.25V  
0.25V  
V
REF 3  
1.25V  
P O R  
4V  
Vc  
3V  
0.2V  
11 Rt  
10 Vc  
20uA  
3.5V  
SS 13  
64uA Max  
Rt  
Ct  
Oscillator  
9
HDrv  
S
R
P O R  
Q
Error Comp  
Error Amp  
25K  
25K  
4
6
Vcc  
V
P
2
1
Reset Dom  
LDrv  
Fb  
FbLo Comp  
0.6V  
Comp 12  
8
7
PGnd  
Gnd  
P O R  
Figure 2 - Simplified block diagram of the IRU3038.  
THEORY OF OPERATION  
Introduction  
threshold (3.3V and 4.2V respectively) and generates  
The IRU3038 is a fixed frequency, voltage mode syn- the Power On Reset (POR) signal. Soft-start function  
chronous controller and consists of a precision refer- operates by sourcing an internal current to charge an  
ence voltage, an uncommitted error amplifier, an internal external capacitor to about 3V. Initially, the soft-start func-  
oscillator, a PWM comparator, 0.5A peak gate driver, tion clamps the E/A’s output of the PWM converter. As  
soft-start and shutdown circuits (see Block Diagram).  
the charging voltage of the external capacitor ramps up,  
the PWM signals increase from zero to the point the  
The output voltage of the synchronous converter is set feedback loop takes control.  
and controlled by the output of the error amplifier; this is  
the amplified error signal from the sensed output voltage Short-Circuit Protection  
and the voltage on non-inverting input of error amplifier(VP). The outputs are protected against the short-circuit. The  
This voltage is compared to a fixed frequency linear IRU3038 protects the circuit for shorted output by sens-  
sawtooth ramp and generates fixed frequency pulses of ing the output voltage (through the external resistor di-  
variable duty-cycle, which drives the two N-channel ex- vider). The IRU3038 shuts down the PWM signals, when  
ternal MOSFETs.  
the output voltage drops below 0.6V.  
The timing of the IC is provided through an internal oscil- The IRU3038 also protects the output from over-voltaging  
lator circuit which uses on-chip capacitor. The oscilla- when the control FET is shorted. This is done by turning  
tion frequency is programmable between 200 to 400KHz on the sync FET with the maximum duty cycle.  
by using an external resistor. Figure 12 shows switch-  
ing frequency vs. external resistor (Rt).  
Under-Voltage Lockout  
The under-voltage lockout circuit assures that the  
MOSFET driver outputs remain in the off state whenever  
Soft-Start  
The IRU3038 has a programmable soft-start to control the supply voltage drops below set parameters. Lockout  
the output voltage rise and limit the current surge at the occurs if Vc and Vcc fall below 3.3V and 4.2V respec-  
start-up. To ensure correct start-up, the soft-start se- tively. Normal operation resumes once Vc and Vcc rise  
quence initiates when the Vc and Vcc rise above their above the set values.  
Rev. 2.0  
09/12/02  
www.irf.com  
4
IRU3038  
APPLICATION INFORMATION  
Design Example:  
Soft-Start Programming  
The following example is a typical application for IRU3038, The soft-start timing can be programmed by selecting  
the schematic is Figure 11 on page 12.  
the soft-start capacitance value. The start-up time of the  
converter can be calculated by using:  
VIN = 5V  
VOUT = 2.5V  
IOUT = 8A  
VOUT = 100mV  
fS = 200KHz  
t
START = 75×Css (ms)  
---(2)  
Where CSS is the soft-start capacitor (µF)  
For a start-up time of 7.5ms, the soft-start capacitor will  
Output Voltage Programming  
be 0.1µF. Choose a ceramic capacitor at 0.1µF.  
Output voltage is programmed by reference voltage and  
external voltage divider. The Fb pin is the inverting input Shutdown  
of the error amplifier, which is referenced to the voltage The converter can be shutdown by pulling the soft-start  
on non-inverting pin of error amplifier. For this applica- pin below 0.5V. The control MOSFET turns off and the  
tion, this pin (VP) is connected to reference voltage (VREF). synchronous MOSFET turns on during shutdown.  
The output voltage is defined by using the following equa-  
tion:  
Boost Supply Vc  
R6  
R5  
To drive the high-side switch it is necessary to supply a  
gate voltage at least 4V greater than the bus voltage.  
This is achieved by using a charge pump configuration  
as shown in Figure 11. The capacitor is charged up to  
VOUT = VP × 1 +  
---(1)  
( )  
VP = VREF = 1.25V  
When an external resistor divider is connected to the approximately twice the bus voltage. A capacitor in the  
output as shown in Figure 3.  
range of 0.1µF to 1µF is generally adequate for most  
applications. In application, when a separate voltage  
source is available the boost circuit can be avoided as  
shown in Figure 1.  
V
OUT  
IRU3038  
R
6
Input Capacitor Selection  
VREF  
Fb  
The input filter capacitor should be based on how much  
ripple the supply can tolerate on the DC input line. The  
ripple current generated during the on time of control  
MOSFET should be provided by input capacitor. The RMS  
value of this ripple is expressed by:  
R
5
VP  
Figure 3 - Typical application of the IRU3038 for  
programming the output voltage.  
IRMS = IOUT  
D×(1-D)  
---(3)  
Equation (1) can be rewritten as:  
Where:  
D is the Duty Cycle, D=VOUT/VIN.  
IRMS is the RMS value of the input capacitor current.  
IOUT is the output current for each channel.  
VOUT  
R6 = R5 ×  
- 1  
( VP )  
Choose R5 = 1KΩ  
This will result toR6 = 1KΩ  
For VIN=5V, IOUT=8A and D=0.5, the IRMS=4A  
For higher efficiency, a low ESR capacitor is recom-  
If the high value feedback resistors are used, the input mended. Choose two Poscap from Sanyo 10TPB100ML  
bias current of the Fb pin could cause a slight increase (10V, 100µF, 55m) with a maximum allowable ripple  
in output voltage. The output voltage set point can be current of 1.9A.  
more accurate by using precision resistor.  
Rev. 2.0  
09/12/02  
www.irf.com  
5
IRU3038  
Output Capacitor Selection  
The criteria to select the output capacitor is normally  
based on the value of the Effective Series Resistance  
If i = 30%(IO), then the output inductor will be:  
L = 2.6µH  
(ESR). In general, the output capacitor must have low The Coilcraft DO5022HC series provides a range of in-  
enough ESR to meet output ripple and load transient ductors in different values, low profile suitable for large  
requirements, yet have high enough ESR to satisfy sta- currents, 3.3µH, 10A is a good choice for this applica-  
bility requirements. The ESR of the output capacitor is tion. This will result to a ripple approximately 26.5% of  
calculated by the following relationship:  
output current.  
VO  
IO  
ESR ≤  
---(4)  
Power MOSFET Selection  
The IRU3038 uses two N-Channel MOSFETs. The se-  
lections criteria to meet power transfer requirements is  
based on maximum drain-source voltage (VDSS), gate-  
source drive voltage (VGS), maximum output current, On-  
resistance RDS(ON) and thermal management.  
Where:  
VO = Output Voltage Ripple  
IO = Output Current  
VO=100mV and IO=4A  
This results to: ESR=25mΩ  
The Sanyo TPC series, Poscap capacitor is a good choice. The MOSFET must have a maximum operating voltage  
The 6TPC150M 150µF, 6.3V has an ESR 40m. Se- (VDSS) exceeding the maximum input voltage (VIN).  
lecting two of these capacitors in parallel, results to an  
ESR of @ 20mwhich achieves our low ESR goal.  
The gate drive requirement is almost the same for both  
MOSFETs. Logic-level transistor can be used and cau-  
The capacitor value must be high enough to absorb the tion should be taken with devices at very low VGS to pre-  
inductor's ripple current. The larger the value of capaci- vent undesired turn-on of the complementary MOSFET,  
tor, the lower will be the output ripple voltage.  
which results a shoot-through current.  
Inductor Selection  
The total power dissipation for MOSFETs includes con-  
The inductor is selected based on output power, operat- duction and switching losses. For the Buck converter,  
ing frequency and efficiency requirements. Low inductor the average inductor current is equal to the DC load cur-  
value causes large ripple current, resulting in the smaller rent. The conduction loss is defined as:  
size, but poor efficiency and high output noise. Gener-  
2
PCOND (Upper Switch) = ILOAD × RDS(ON) × D × ϑ  
ally, the selection of inductor value can be reduced to  
desired maximum ripple current in the inductor (Di). The  
optimum point is usually found between 20% and 50%  
ripple of the output current.  
2
PCOND (Lower Switch) = ILOAD × RDS(ON) × (1 - D) × ϑ  
ϑ = RDS(ON) Temperature Dependency  
For the buck converter, the inductor value for desired  
operating ripple current can be determined using the fol- The RDS(ON) temperature dependency should be consid-  
lowing relation:  
ered for the worst case operation. This is typically given  
in the MOSFET data sheet. Ensure that the conduction  
losses and switching losses do not exceed the package  
ratings or violate the overall thermal budget.  
i  
t  
1
fS  
VOUT  
VIN  
VIN - VOUT = L×  
; t = D×  
; D =  
VOUT  
L = (VIN - VOUT)×  
---(5)  
VIN×∆i×fS  
Choose IRF7460 for both control MOSFET and synchro-  
nous MOSFET. This device provides low on-resistance  
in a compact SOIC 8-Pin package.  
Where:  
VIN = Maximum Input Voltage  
VOUT = Output Voltage  
Di = Inductor Ripple Current  
fS = Switching Frequency  
Dt = Turn On Time  
D = Duty Cycle  
Rev. 2.0  
09/12/02  
www.irf.com  
6
IRU3038  
The MOSFET has the following data:  
Feedback Compensation  
The IRU3038 is a voltage mode controller; the control  
loop is a single voltage feedback path including error  
amplifier and error comparator. To achieve fast transient  
response and accurate output regulation, a compensa-  
tion circuit is necessary. The goal of the compensation  
network is to provide a closed loop transfer function with  
the highest 0dB crossing frequency and adequate phase  
margin (greater than 458).  
IRF7460  
VDSS = 20V  
ID = 10A @ 758C  
RDS(ON) = 10m@ VGS=10V  
ϑ = 1.8 for 1508C (Junction Temperature)  
The total conduction losses will be:  
PCON(TOTAL) = 1.152W  
The switching loss is more difficult to calculate, even The output LC filter introduces a double pole, –40dB/  
though the switching transition is well understood. The decade gain slope above its corner resonant frequency,  
reason is the effect of the parasitic components and and a total phase lag of 1808 (see Figure 5). The Reso-  
switching times during the switching procedures such nant frequency of the LC filter is expressed as follows:  
as turn-on / turnoff delays and rise and fall times. With a  
1
linear approximation, the total switching loss can be ex-  
pressed as:  
FLC =  
---(7)  
2π× LO×CO  
VDS(OFF)  
tr + tf  
PSW =  
×
× ILOAD  
---(6)  
Figure 5 shows gain and phase of the LC filter. Since we  
already have 1808 phase shift just from the output filter,  
the system risks being unstable.  
T
2
Where:  
VDS(OFF) = Drain to Source Voltage at off time  
tr = Rise Time  
tf = Fall Time  
Gain  
0dB  
Phase  
T = Switching Period  
08  
ILOAD = Load Current  
-40dB/decade  
The switching time waveform is shown in Figure 4.  
DS  
V
-180  
8
90%  
FLC Frequency  
FLC Frequency  
Figure 5 - Gain and phase of LC filter.  
The IRU3038’s error amplifier is a differential-input  
transconductance amplifier. The output is available for  
DC gain control or AC phase compensation.  
10%  
VGS  
t
d
(ON)  
td(OFF)  
tr  
tf  
The E/A can be compensated with or without the use of  
local feedback. When operated without local feedback,  
the transconductance properties of the E/A become evi-  
dent and can be used to cancel one of the output filter  
poles. This will be accomplished with a series RC circuit  
from Comp pin to ground as shown in Figure 6.  
Figure 4 - Switching time waveforms.  
From IRF7460 data sheet we obtain:  
tr = 6.9ns  
tf = 4.3ns  
These values are taken under a certain condition test.  
For more detail please refer to the IRF7460 data sheet.  
By using equation (6), we can calculate the total switch-  
ing losses.  
PSW(TOTAL) = 44.8mW  
Rev. 2.0  
09/12/02  
www.irf.com  
7
IRU3038  
Note that this method requires that the output capacitor  
should have enough ESR to satisfy stability requirements.  
In general, the output capacitor’s ESR generates a zero  
typically at 5KHz to 50KHz which is essential for an  
acceptable phase margin.  
Where:  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Fo = Crossover Frequency  
FESR = Zero Frequency of the Output Capacitor  
FLC = Resonant Frequency of the Output Filter  
R5 and R6 = Resistor Dividers for Output Voltage  
Programming  
The ESR zero of the output capacitor expressed as fol-  
lows:  
gm = Error Amplifier Transconductance  
1
FESR =  
---(8)  
2π×ESR×Co  
For:  
VIN = 5V  
VOUT  
VOSC = 1.25V  
Fo = 30KHz  
FESR = 26.5KHz  
FLC = 5KHz  
R5 = 1K  
R6 = 1K  
gm = 600µmho  
R
6
Fb  
Comp  
Ve  
E/A  
R5  
C9  
Vp=VREF  
R4  
This results to R4=26.52K. Choose R4=26.1KΩ  
Gain(dB)  
To cancel one of the LC filter poles, place the zero be-  
fore the LC filter resonant frequency pole:  
H(s) dB  
FZ @ 75%FLC  
Frequency  
F
Z
1
FZ @ 0.75 ×  
---(13)  
Figure 6 - Compensation network without local  
feedback and its asymptotic gain plot.  
2π LO × CO  
For:  
Lo = 10µH  
Co = 300µF  
FZ = 3.8KHz  
R4 = 26.1KΩ  
The transfer function (Ve / VOUT) is given by:  
R5  
1 + sR4C9  
sC9  
H(s) = gm×  
×
---(9)  
(
)
R6 + R5  
Using equations (11) and (13) to calculate C9, we get:  
The (s) indicates that the transfer function varies as a  
function of frequency. This configuration introduces a gain  
and zero, expressed by:  
C9 @ 1800pF  
One more capacitor is sometimes added in parallel with  
C9 and R4. This introduces one more pole which is mainly  
used to suppress the switching noise. The additional  
pole is given by:  
R5  
R6 × R5  
|H(s)| = gm ×  
× R4  
---(10)  
1
FZ =  
---(11)  
1
2π × R4 × C9  
FP =  
C9 × CPOLE  
2π × R4 ×  
The gain is determined by the voltage divider and E/A's  
transconductance gain.  
C9 + CPOLE  
The pole sets to one half of switching frequency which  
results in the capacitor CPOLE:  
First select the desired zero-crossover frequency (Fo):  
Fo > FESR and FO (1/5 ~ 1/10)× fS  
1
1
CPOLE =  
@
π × R4 × fS  
1
C9  
Use the following equation to calculate R4:  
π × R4 × fS -  
1
VOSC  
VIN  
Fo×FESR  
R5 + R6  
R5  
fS  
2
R4 =  
×
×
×
---(12)  
for FP <<  
2
FLC  
gm  
Rev. 2.0  
09/12/02  
www.irf.com  
8
IRU3038  
For a general solution for unconditionally stability for  
ceramic capacitor with very low ESR and any type of  
output capacitors, in a wide range of ESR values we  
should implement local feedback with a compensation  
network. The typically used compensation network for  
voltage-mode controller is shown in Figure 7.  
FP1 = 0  
FP2 =  
1
2π×R8×C10  
1
1
FP3 =  
@
2π×R7×C12  
C12×C11  
(C12+C11 )  
2π×R7×  
VOUT  
ZIN  
C12  
1
FZ1 =  
FZ2 =  
2π×R7×C11  
C10  
R7  
C11  
1
1
@
R8  
R6  
Zf  
2π×C10×(R6 + R8)  
2π×C10×R6  
Cross Over Frequency:  
Fb  
Ve  
E/A  
VIN  
FO = R7×C10×  
VOSC  
1
Comp  
R5  
---(15)  
×
2π×Lo×Co  
Vp=VREF  
Where:  
Gain(dB)  
VIN = Maximum Input Voltage  
VOSC = Oscillator Ramp Voltage  
Lo = Output Inductor  
H(s) dB  
Co = Total Output Capacitors  
The stability requirement will be satisfied by placing the  
poles and zeros of the compensation network according  
to following design rules. The consideration has been  
taken to satisfy condition (14) regarding transconduc-  
tance error amplifier.  
Frequency  
F
Z
1
F
Z
2
F
P
2
FP3  
Figure 7 - Compensation network with local  
feedback and its asymptotic gain plot.  
In such configuration, the transfer function is given by:  
1) Select the crossover frequency:  
1 - gmZf  
1 + gmZIN  
Ve  
VOUT  
=
Fo < FESR and Fo (1/10 ~ 1/6)× fS  
2
The error amplifier gain is independent of the transcon- 2) Select R7, so that R7 >>  
ductance under the following condition:  
gm  
3) Place first zero before LC’s resonant frequency pole.  
gmZf >> 1  
and  
gmZIN >>1  
---(14)  
FZ1 @ 75% FLC  
By replacing ZIN and Zf according to Figure 7, the trans-  
former function can be expressed as:  
1
C11 =  
2π × FZ1 × R7  
(1+sR7C11)×[1+sC10(R6+R8)]  
1
4) Place third pole at the half of the switching frequency.  
×
H(s) =  
sR6(C12+C11)  
C12C11  
[ (C12+C11)]  
fS  
FP3 =  
2
1+sR7  
×(1+sR8C10)  
1
C12 =  
As known, transconductance amplifier has high imped-  
ance (current source) output, therefore, consider should  
be taken when loading the E/A output. It may exceed its  
source/sink output current capability, so that the ampli-  
fier will not be able to swing its output voltage over the  
necessary range.  
2π × R7 × FP3  
C12 > 50pF  
If not, change R7 selection.  
5) Place R7 in equation (15) and calculate C10:  
2π × Lo × FO × Co  
VOSC  
VIN  
The compensation network has three poles and two ze-  
ros and they are expressed as follows:  
C10 ≤  
×
R7  
Rev. 2.0  
09/12/02  
www.irf.com  
9
IRU3038  
6) Place second pole at the ESR zero.  
Layout Consideration  
The layout is very important when designing high fre-  
quency switching converters. Layout will affect noise  
pickup and can cause a good design to perform with  
less than expected results.  
FP2 = FESR  
1
R8 =  
2π × C10 × FP2  
1
Check if R8 >  
gm  
Start to place the power components. Make all the con-  
If R8 is too small, increase R7 and start from step 2. nections in the top layer with wide, copper filled areas.  
The inductor, output capacitor and the MOSFET should  
7) Place second zero around the resonant frequency. be close to each other as possible. This helps to reduce  
the EMI radiated by the power traces due to the high  
FZ2 = FLC  
switching currents through them. Place input capacitor  
1
directly to the drain of the high-side MOSFET. To reduce  
the ESR, replace the single input capacitor with two par-  
allel units. The feedback part of the system should be  
kept away from the inductor and other noise sources  
and be placed close to the IC. In multilayer PCB, use  
one layer as power ground plane and have a separate  
R6 =  
- R8  
2π × C10 × FZ2  
8) Use equation (1) to calculate R5:  
VREF  
R5 =  
× R6  
VOUT - VREF  
These design rules will give a crossover frequency ap- control circuit ground (analog ground), to which all sig-  
proximately one-tenth of the switching frequency. The nals are referenced. The goal is to localize the high cur-  
higher the band width, the potentially faster the load tran- rent path to a separate loop that does not interfere with  
sient speed. The gain margin will be large enough to the more sensitive analog control function. These two  
provide high DC-regulation accuracy (typically -5dB to - grounds must be connected together on the PC board  
12dB). The phase margin should be greater than 458 for layout at a single point.  
overall stability.  
IC Quiescent Power Dissipation  
Power dissipation for IC controller is a function of ap-  
plied voltage, gate driver loads and switching frequency.  
The IC's maximum power dissipation occurs when the  
IC operating with single 12V supply voltage (Vcc=12V  
and Vc@24V) at 400KHz switching frequency and maxi-  
mum gate loads.  
This IC's power dissipation results to an excessive tem-  
perature rise and should be considered when using  
IRU3038 for such an application.  
Rev. 2.0  
09/12/02  
www.irf.com  
10  
IRU3038  
TYPICAL PERFORMANCE CHARACTERISTICS  
IRU3038  
IRU3038  
Output Voltage  
Transconductance (GM)  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
900  
800  
700  
600  
500  
400  
300  
200  
100  
Max  
Min  
0
-40°C -25°C  
0°C  
+25°C +50°C +75°C +100°C +125°C +150°C  
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C  
+100°C  
Output Voltage  
Spec Max.  
Spec Min.  
Transconductance (GM)  
Figure 8 - Output voltage of IRU3038.  
Figure 9 - Transconductance of IRU3038.  
IRU3038  
Rise Time / Fall Time  
CL = 1500pF  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-40°C  
-25°C  
0°C  
+25°C  
+50°C  
+75°C  
+100°C  
Rise Time  
Fall time  
Figure 10 - Rise and fall time of IRU3038.  
www.irf.com  
Rev. 2.0  
09/12/02  
11  
IRU3038  
TYPICAL APPLICATION  
Single Supply 5V Input  
5V  
D1  
BAT54S  
L1  
1uH  
C2  
2x 10TPB100ML,  
100uF, 55m  
C1  
33uF  
Tantalum  
C5  
0.1uF  
C4  
1uF  
C3  
0.1uF  
Vcc  
REF  
Vc  
HDrv  
V
Q1  
IRF7460  
V
P
L2  
D05022P-103, 3.3uH, 10A  
U1  
2.5V  
@ 8A  
SS  
IRU3038  
C8  
0.1uF  
Q2  
IRF7460  
C7  
2x 6TPC150M,  
150uF, 40m  
LDrv  
PGnd  
Rt  
R6  
1K, 1%  
Fb  
Comp  
C9  
1800pF  
Gnd  
R5  
1K, 1%  
R4  
26.1K  
Figure 11 - Typical application of IRU3038 in an on-board DC-DC converter  
using a single 5V supply.  
450  
400  
350  
300  
250  
200  
150  
0
50  
100  
150  
200  
250  
Rt (K)  
Figure 12 - Switching frequency vs. Rt.  
Rev. 2.0  
09/12/02  
www.irf.com  
12  
IRU3038  
TYPICAL APPLICATION  
5V  
12V  
L1  
5V  
1uH  
C1  
0.1uF  
C2  
1uF  
C3  
C4  
47uF  
10TPB100M,  
100uF, 55m  
Vcc  
Vc  
Q1  
1/2 of IRF7313  
HDrv  
LDrv  
Fb  
SS  
C6  
0.1uF  
L2  
U1  
IRU3037  
VDDQ  
2.5V @ 3A  
D03316P-103, 10uH, 3.9A  
Q1  
C7  
1/2 of IRF7313  
2x 6TPC150M,  
150uF, 40m  
Comp  
R1  
1K  
C8  
2200pF  
Gnd  
R2  
33K  
R3  
1K  
5V  
12V  
C9  
0.1uF  
C10  
1uF  
C11  
10TPB100M,  
100uF, 55m  
Vcc  
Vc  
R4  
1K  
VREF  
Q2  
HDrv  
1/2 of IRF7313  
VP  
D1  
BAT54  
L3  
R5  
1K  
SS  
U2  
IRU3038  
Vtt  
or 1N4148  
D03316P-103, 10uH, 3.9A  
Q2  
1/2 of IRF7313  
(1.25V @ 3A)  
C12  
0.15uF  
LDrv  
C13  
2x 6TPC150M  
150uF, 40m  
PGnd  
Fb  
Rt  
Comp  
C14  
2200pF  
Gnd  
R6  
33K  
Figure 13 - Typical application of IRU3038 for DDR memory when the termination voltage  
tracks the core voltage generated by IRU3037.  
Rev. 2.0  
09/12/02  
www.irf.com  
13  
IRU3038  
DEMO-BOARD APPLICATION  
5V to 2.5V @ 8A  
5V  
D1  
L1  
1uH  
C18  
C2  
C1  
47uF  
47uF  
33uF  
70m  
70mΩ  
VREF  
C4  
1uF  
C6  
1uF  
C3  
1uF  
C5  
0.1uF  
R12  
Short  
Vcc  
VREF  
Vc  
HDrv  
Q1  
Q2  
R13  
Open  
R2  
L2  
3.3uH  
Short  
U1  
IRU3038  
VDDQ  
VP  
2.5V  
@ 8A  
R1  
Open  
C9  
470pF  
SS  
C8  
0.1uF  
LDrv  
R6  
4.7  
C12  
1uF  
C11  
150uF  
40mΩ  
C10  
150uF  
40m  
PGnd  
Fb  
Rt  
R8  
Comp  
Gnd  
C15  
1K, 1%  
Gnd  
1800pF  
R11  
1K, 1%  
R9  
26.1K  
Figure 14 - Demo-board application of IRU3038.  
Application Parts List  
Ref Desig Description  
Value  
20V, 10m, 12A  
Synchronous PWM  
Fast Switching,  
Schottky  
Qty  
2
1
Part#  
IRF7460  
IRU3038  
BAT54S  
Manuf  
Web site (www.)  
irf.com  
Q1, Q2  
U1  
MOSFET  
Controller  
Diode  
IR  
IR  
IR  
D1  
1
L1  
Inductor  
Inductor  
Cap, Tantalum 33µF, 16V  
Cap, Poscap  
Cap, Poscap  
Cap, Ceramic 0.1µF, Y5V, 25V  
Cap, Ceramic 1µF, X7R, 25V  
Cap, Ceramic 1800pF, X7R, 50V  
Cap, Ceramic 470pF, X7R  
1µH, 10A  
1
1
1
2
2
2
1
1
1
3
1
1
2
D03316P-102HC  
D05022P-332HC  
ECS-T1CD336R  
16TPB47M  
Coilcraft  
Coilcraft  
coilcraft.com  
L2  
C1  
C2,C18  
C10,C11  
C5,C8  
C4  
3.3µH, 12A  
Panasonic maco.panasonic.co.jp  
Sanyo  
Sanyo  
Panasonic maco.panasonic.co.jp  
Panasonic  
47µF, 16V, 70mΩ  
150µF, 6.3V, 40mΩ  
sanyo.com/industrial  
6TPC150M  
ECJ-2VF1E104Z  
ECJ-3YB1E105K  
ECJ-2VB1H182K  
ECJ-2VB2D471K  
ECJ-2VF1C105Z  
C15  
C9  
Panasonic  
Panasonic  
Panasonic  
C3,C6,C12 Cap, Ceramic 1µF, Y5V, 16V  
R9  
R6  
R8,R11  
Resistor  
Resistor  
Resistor  
26.1K, 5%  
4.7, 5%  
1K, 1%  
Rev. 2.0  
09/12/02  
www.irf.com  
14  
IRU3038  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN  
94  
92  
90  
88  
86  
84  
82  
80  
Vss  
VOUT  
0
1
2
3
4
5
6
7
8
9
Output Current (A)  
Figure 15 - Efficiency for IRU3038 Evaluation Board.  
VIN=5V, VOUT=2.5V  
Figure 16 - Start-up time @ IOUT=5A.  
Vss  
VOUT  
IOUT  
Figure 17 - Shutdoown the output by  
pulling down the soft-start.  
Figure 18 - 3.3V output voltage ripple @ IOUT=5A.  
2A  
4A  
0A  
0A  
Figure 20 - Transient response @ IOUT=0 to 4A.  
Figure 19 - Transient response @ IOUT=0 to 2A.  
Rev. 2.0  
09/12/02  
www.irf.com  
15  
IRU3038  
(F) TSSOP Package  
14-Pin  
A
L
Q
R1  
C
B
1.0 DIA  
R
E
N
M
P
O
PIN NUMBER 1  
F
D
DETAIL A  
DETAIL A  
G
J
H
K
SYMBOL  
14-PIN  
DESIG  
A
MIN  
NOM  
0.65 BSC  
MAX  
4.50  
0.30  
B
4.30  
0.19  
4.40  
6.40 BSC  
---  
C
D
E
1.00  
1.00  
5.00  
---  
F
G
H
4.90  
---  
5.10  
1.10  
0.95  
0.15  
J
0.85  
0.05  
0.90  
---  
K
L
128 REF  
128 REF  
---  
M
N
08  
88  
O
P
1.00 REF  
0.60  
0.20  
---  
0.50  
0.75  
Q
R
0.09  
0.09  
---  
---  
R1  
---  
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 2.0  
09/12/02  
www.irf.com  
16  
IRU3038  
(S) SOIC Package  
14-Pin Surface Mount, Narrow Body  
H
A
B
C
E
DETAIL-A  
L
D
PIN NO. 1  
DETAIL-A  
I
0.38± 0.015 x 458  
K
T
F
J
G
14-PIN  
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
G
H
I
8.56  
8.74  
1.27 BSC  
0.51 REF  
0.36  
0.46  
3.99  
1.72  
0.25  
3.81  
1.52  
0.10  
78 BSC  
0.19  
5.80  
08  
0.25  
6.20  
88  
J
K
L
0.41  
1.37  
1.27  
1.57  
T
NOTE: ALL MEASUREMENTS ARE IN MILLIMETERS.  
Rev. 2.0  
09/12/02  
www.irf.com  
17  
IRU3038  
PACKAGE SHIPMENT METHOD  
PKG  
PACKAGE  
PIN  
PARTS  
PARTS  
T & R  
DESIG  
DESCRIPTION  
COUNT  
PER TUBE  
PER REEL  
Orientation  
F
S
TSSOP Plastic  
SOIC, Narrow Body  
14  
14  
100  
55  
2500  
2500  
Fig A  
Fig B  
1
1
1
1
1
1
Feed Direction  
Figure A  
Feed Direction  
Figure B  
IR WORLD HEADQUARTERS:233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 02/01  
Rev. 2.0  
09/12/02  
www.irf.com  
18  

相关型号:

IRU3039

SYNCHRONOUS PWM CONTROLLER WITH OVER CURRENT PROTECTION
INFINEON

IRU3039CH

SYNCHRONOUS PWM CONTROLLER WITH OVER CURRENT PROTECTION
INFINEON

IRU3039CHPBF

Switching Controller, Voltage-mode, 400kHz Switching Freq-Max, MOS, 5 X 5 MM, LEAD FREE, MLPQ-20
INFINEON

IRU3039CHTR

Switching Controller, Voltage-mode, 400kHz Switching Freq-Max, MOS, 5 X 5 MM, MLPQ-20
INFINEON

IRU3039CHTRPBF

Switching Controller, Voltage-mode, 400kHz Switching Freq-Max, MOS, 5 X 5 MM, LEAD FREE, MLPQ-20
INFINEON

IRU3046

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3046CF

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3046CFPBF

Dual Switching Controller, Voltage-mode, 0.5A, 450kHz Switching Freq-Max, PDSO24, PLASTIC, TSSOP-24
INFINEON

IRU3047

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3047CW

DUAL SYNCHRONOUS PWM CONTROLLER WITH CURRENT SHARING CIRCUITRY AND LDO CONTROLLER
INFINEON

IRU3047CWPBF

暂无描述
INFINEON

IRU3047CWTR

Dual Switching Controller, Voltage-mode, 0.5A, 220kHz Switching Freq-Max, PDSO20, PLASTIC, SOIC-20
INFINEON