ITS4040D-EP-D [INFINEON]

The ITS4040D-EP-D is a 40mΩ Dual Channel Smart High-Side Power Switch providing integrated protection functions and a diagnosis feedback. With two channels capable of currents of more than 2 A each, very low typical RDS(ON) values of 60 mΩ at Tj = 125°C and the small PG-TSDSO-14 exposed pad package it combines high current capability with minimum space requirements. The exposed pad of the thermally enhanced PG-TSDSO-14 package allows a very efficient heat transfer from the device to inner layers of the PCB by means of thermal vias. The power transistors are built by N-channel vertical power MOSFETs (DMOS) with charge pump.;
ITS4040D-EP-D
型号: ITS4040D-EP-D
厂家: Infineon    Infineon
描述:

The ITS4040D-EP-D is a 40mΩ Dual Channel Smart High-Side Power Switch providing integrated protection functions and a diagnosis feedback. With two channels capable of currents of more than 2 A each, very low typical RDS(ON) values of 60 mΩ at Tj = 125°C and the small PG-TSDSO-14 exposed pad package it combines high current capability with minimum space requirements. The exposed pad of the thermally enhanced PG-TSDSO-14 package allows a very efficient heat transfer from the device to inner layers of the PCB by means of thermal vias. The power transistors are built by N-channel vertical power MOSFETs (DMOS) with charge pump.

PC 驱动 接口集成电路
文件: 总44页 (文件大小:1361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ITS4040D-EP-D  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
1
Overview  
Features  
Dual channel Smart High-Side Power Switch with integrated protection  
and diagnosis  
Maximum RDS(ON) 40 mper channel at Tj = 25°C  
High output current capability: nominal current up to 2.6 A  
Low and accurate current limitation: 4.1 A (± 20 %)  
Extended supply voltage range up to 45 V  
All control inputs 24 V capable and support direct interface to optocouplers  
All control inputs 3.3 V and 5 V logic level compatible  
4 kV electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Very small, thermally enhanced TSDSO-14 package  
Device robustness validated by extended qualification according to JEDEC standard “JESD47J”  
Green product (RoHS compliant)  
Applications  
Digital output modules (PLC applications, factory automation)  
Industrial peripheral switches and power distribution  
Switching resistive, inductive and capacitive loads in harsh industrial environments  
Replacement for electromechanical relays, fuses and discrete circuits  
Most suitable for loads that require a precise current limit  
Description  
The ITS4040D-EP-D is a 40 mDual Channel Smart High-Side Power Switch providing integrated protection  
functions and a diagnosis feedback. With two channels capable of currents of more than 2 A each, very low  
typical RDS(ON) values of 60 mat Tj = 125°C and the small PG-TSDSO-14 exposed pad package it combines high  
current capability with minimum space requirements. The exposed pad of the thermally enhanced PG-  
TSDSO-14 package allows a very efficient heat transfer from the device to inner layers of the PCB by means of  
thermal vias. The power transistors are built by N-channel vertical power MOSFETs (DMOS) with charge pump.  
Data Sheet  
1
Rev. 1.0  
2018-06-14  
www.infineon.com/industrial-profet  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Overview  
The ITS4040D-EP-D is specifically designed to switch resistive, inductive or capacitive loads in harsh industrial  
environments. The ITS4040D-EP-D is equipped with essential protection features that make it extremely  
robust. Diagnostic information can be read out via the STATUS output (ST). The two channel device can be  
controlled with two separate input pins. Due to their high voltage capability the input pins can be directly  
interfaced to optocouplers without additional external components.  
Diagnostic Functions  
Short circuit to ground (overload) indication  
Overtemperature switch off indication  
Stable diagnostic signal during short circuit and overtemperature shutdown  
Intelligent channel fault detection system  
Protection Functions  
Stable behavior during undervoltage  
Overtemperature protection with restart after cooling down phase  
Overload- and short circuit protection  
Reverse polarity / inverse current protection with external components  
Overvoltage protection with external components  
Loss of ground protection  
The qualification of this product is based on JEDEC JESD47J and may reference existing qualification results  
of similar products. Such referring is justified by the structural similarity of the products. The product is not  
qualified and manufactured according to the requirements of Infineon Technologies with regard to  
automotive and/or transportation applications. Infineon Technologies administrates a comprehensive  
quality management system according to the latest version of the ISO9001 and IATF 16949.  
The most updated certificates of the ISO9001 and IATF 16949 are available at  
www.infineon.com/cms/en/product/technology/quality/  
Type  
Package  
Marking  
ITS4040D-EP-D  
PG-TSDSO-14  
ITS4040D  
Data Sheet  
2
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment PG-TSDSO-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions PG-TSDSO-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and Current Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics Operating Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics: Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Performance Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
5.6  
6
6.1  
6.2  
6.2.1  
6.3  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics: Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical Performance Characteristics Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.4  
6.4.1  
6.4.2  
6.5  
6.6  
7
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Channel Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical Performance Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1  
7.2  
7.3  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics: Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical Performance Characteristics Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1  
8.2  
8.3  
8.4  
9
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.1  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Data Sheet  
3
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
11  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Data Sheet  
4
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Block Diagram  
2
Block Diagram  
ITS4040D-EP-D  
VS  
Voltage Sensor  
Bias  
Over  
Temperature  
Gate control  
Driver  
Logic  
&
Charge Pump  
IN1  
3
ESD  
Protection  
Over Current  
Switch Limit  
Clamp for  
Inductive Loads  
12  
OUT1  
Channel 1  
5
ST  
VS  
Voltage Sensor  
Bias  
Over  
Temperature  
Gate control  
&
Charge Pump  
Driver  
Logic  
7
IN2  
ESD  
Protection  
Over Current  
Switch Limit  
Clamp for  
Inductive Loads  
10  
OUT2  
Channel 2  
PG-TSDSO-14  
2
GND  
Figure 1  
Block Diagram: ITS4040D-EP-D  
Data Sheet  
5
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment PG-TSDSO-14  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
TM  
GND  
IN1  
OUT1  
N.C.  
OUT1  
N.C.  
N.C.  
ST  
OUT2  
N.C.  
N.C.  
IN2  
8
OUT2  
Figure 2  
Pin Configuration PG-TSDSO-14  
3.2  
Pin Definitions and Functions PG-TSDSO-14  
Pin  
1
Symbol Function  
TM  
Test Mode Entry; must be connected to device GND (pin 2) via resistor 1)  
2
GND  
IN1  
ST  
Ground  
3
INput channel 1; Input signal for channel 1 activation, Active “High”  
5
STatus feedback; Active “Low”; connect with external pull-up resistor to  
“High”  
7
IN2  
INput channel 2; Input signal for channel 2 activation, Active “High”  
OUTput 2; Protected high-side power output channel 2  
OUTput 1; Protected high -side power output channel 1  
Not Connected  
8,10  
OUT2  
OUT1  
N.C.  
VS  
12, 14  
4, 6, 9, 11,13  
Exposed Pad  
Voltage Supply  
1) to ensure proper functionality of the device the TM pin must be connected to device ground. In order to protect the  
pin furthermore in case of reverse polarity conditions or ground shifts the TM pin needs to be connected with a serial  
resistor to device ground. The recommended value for this resistor is 2.2 k.  
Data Sheet  
6
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Pin Configuration  
3.3  
Voltage and Current Definitions  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IS  
VS  
IOUT1  
IIN1  
IN1  
ST  
OUT1  
OUT2  
IST  
ITS4040D-EP-D  
IOUT2  
IIN2  
IN2  
GND  
IGND  
Figure 3  
Voltage and Current Definitions  
Data Sheet  
7
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings 1)  
Tj = -40°C to 150°C, positive current flowing into pin; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
45  
28  
V
V
P_4.1.1  
P_4.1.3  
Reverse polarity voltage  
-VS(REV)  
2) t < 2 min  
TA = 25°C  
RL 25 Ω  
ZGND = 150 Power Resistor  
Supply voltage for short  
circuit protection  
VS(SC)  
0
36  
V
P_4.1.4  
Input Pins  
Voltage at INPUT pins  
Current through INPUT pins  
STATUS Pin  
VIN  
IIN  
-0.3  
-2  
45  
2
V
VS > VIN  
P_4.1.5  
P_4.1.6  
mA  
Voltage at ST pin  
VST  
IST  
-0.3  
-2  
45  
2
V
VS > VST  
P_4.1.7  
P_4.1.8  
Current through ST pin  
Power Stage  
mA  
Power dissipation (DC)  
PTOT  
1.9  
W
3) TA = 85°C  
Tj < 150°C  
P_4.1.10  
P_4.1.11  
Maximum energy dissipation EAS  
single pulse (one channel)  
185 mJ IL = 2 A  
Tj = 150°C  
VS = 28 V  
Voltage at power transistor  
Currents  
VDS  
65  
V
P_4.1.12  
Current through ground pin  
I GND  
I GND  
-20  
20  
mA  
P_4.1.13  
P_4.1.21  
Temporary reverse current  
through ground pin to VS  
-200 –  
mA t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
ESD susceptibility (all pins)  
Tj  
-40  
-55  
150 °C  
150 °C  
P_4.1.14  
P_4.1.15  
TSTG  
VESD_HBM -2  
2
4
kV HBM4)  
kV HBM4)  
P_4.1.16  
P_4.1.17  
ESD susceptibility OUT Pin vs. VESD_HBM -4  
GND and VS connected  
Data Sheet  
8
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
Table 1  
Tj = -40°C to 150°C, positive current flowing into pin; (unless otherwise specified)  
Absolute Maximum Ratings 1) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
ESD susceptibility  
VESD_CDM -500 –  
VESD_CDM -750 –  
500  
750  
V
V
CDM5)  
CDM5)  
P_4.1.18  
P_4.1.19  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test; specified by design.  
2) Reverse polarity protection can only be achieved in combination with external components: to limit the current  
through the GND-path a 150 power resistor needs to be placed between GND-pin and ground. An alternative  
solution is to use a reverse current diode in the GND-path to realize reverse polarity protection. In this case placing a  
resistor in the range of 27 in series to the diode is recommended to improve at the same time the overvoltage  
capability in case of overvoltage pulses on VS.  
3) This parameter serves as reference for the thermal budget: it illustrates the power dissipation that can be handled by  
the device in an application under the given boundary conditions before exceeding the maximum rating of Tj when  
assuming a RthJA value for a thermally well dimensioned PCB connection like given in the JEDEC case P_4.3.3 in  
Chapter 4.4. As RthJA depends strongly on the applied PCB and layout of any individual application the actual  
achievable values of PTOT can either be lower or higher depending on the given application.  
4) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001(1.5 k, 100 pF).  
5) ESD susceptibility, Charged Device Model “CDM” JEDEC JESD22-C101.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
Data Sheet  
9
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Tj = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Nominal operating voltage  
Extended operating voltage  
VS(NOM)  
VS(EOP)  
8
5
24  
36  
45  
V
V
VS > VIN  
P_4.2.1  
P_4.2.2  
1) VS > VIN  
IOUT = 2 A  
VDS < 0.5 V  
Minimum functional supply voltage  
during power-up  
VS(OP)_MIN  
3
4.3  
5
V
V
VS > VIN  
P_4.2.3  
P_4.2.4  
IOUT = 0 A to  
VDS < 0.5 V  
(VS rising;  
powering up)  
Undervoltage shutdown  
VS(UV)  
3.5 4.1  
VS > VIN  
from VDS < 0.5 V  
to IOUT = 0 A  
(VS dropping  
from functional  
range)  
1)  
Undervoltage shutdown hysteresis  
VS(UV)_HYS  
IGND_1  
850  
3
mV  
P_4.2.5  
P_4.2.6  
Operating current  
One channel active  
4.1 mA VS = VIN = 24 V  
Device in RDS(ON)  
Operating current  
Both channels active (Tj 25°C)  
IGND_2  
IGND_2_150  
Tj  
5.2 6.8 mA VS = VIN = 24 V  
Device in RDS(ON)  
P_4.2.7  
P_4.2.9  
P_4.2.8  
Tj 25°C  
Operating current  
Both channels active (Tj = 150°C)  
4.8 6.0 mA VS = VIN = 24 V  
Device in RDS(ON)  
Tj = 150°C  
Junction Temperature  
-40  
150 °C  
1) Not subject to production test; specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Data Sheet  
10  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
4.3  
Typical Performance Characteristics Operating Current  
Typical Performance Characteristics  
Operating Current IGND versus  
Junction Temperature Tj  
Operating Current IGND versus  
Supply VoltageVS  
7
7
1 channel active  
2 channels active  
1 channel active  
2 channels active  
VS = 24 V  
Tj = 25 °C  
6
5
4
3
2
1
6
5
4
3
2
1
0
0
−50  
0
50  
100  
150  
0
10  
20  
30  
40  
Tj [°C]  
VS [V]  
Data Sheet  
11  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
4.4  
Thermal Resistance  
Table 3  
Thermal Resistance1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Junction to exposed pad soldering point RthJC  
1
K/W –  
P_4.3.1  
P_4.3.3  
2)  
Junction to ambient  
All channels active  
RthJA_2s2pvia  
34  
K/W  
3)  
Junction to ambient  
All channels active  
RthJA_1s0p  
109  
51  
K/W  
P_4.3.4  
P_4.3.5  
P_4.3.6  
4)  
Junction to ambient  
All channels active  
RthJA_1s0p_300mm  
RthJA_1s0p_600mm  
K/W  
5)  
Junction to ambient  
All channels active  
42  
K/W  
1) Not subject to production test; specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the product (chip  
+ package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, footprint;  
The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 x 70 µm Cu.  
4) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, 300 mm;  
The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 x 70 µm Cu.  
5) Specified RthJA value is according to JEDEC JESD51-3 at natural convection on FR4 1s0p board, 600 mm;  
The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 x 70 µm Cu.  
1000,00  
Thermal Impedance (one channel active; PDISSIPATION = 0.46W)  
100,00  
10,00  
1,00  
0,10  
0,01  
0,00  
0,00  
0,00  
0,00  
Rth-JA (footprint only)  
Rth-JA (1s0p_300mm)  
Rth-JA (1s0p_600mm)  
Rth-JA (2s2p-via)  
1,00E-09  
1,00E-07  
1,00E-05  
time [s]  
1,00E-03  
1,00E-01  
Figure 4  
Thermal Impedance (short time scale; one channel active)  
Data Sheet  
12  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
General Product Characteristics  
140,00  
Thermal Impedance (one channel active; PDISSIPATION = 0.46W)  
120,00  
100,00  
80,00  
60,00  
40,00  
20,00  
0,00  
Rth-JA (footprint only)  
Rth-JA (1s0p_300mm)  
Rth-JA (1s0p_600mm)  
Rth-JA (2s2p-via)  
1,00E-05  
1,00E-03  
1,00E-01  
time [s]  
1,00E+01  
1,00E+03  
Figure 5  
Thermal Impedance (long time scale; one channel active)  
Data Sheet  
13  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-state Resistance  
The ON-state resistance RDS(ON) of the power stage depends on supply voltage as well as on junction  
temperature Tj. Figure 6 shows the influence of temperature on the typical ON-state resistance. The behavior  
of the power stage in reverse polarity condition is described in Chapter 6.3.  
80  
70  
60  
50  
40  
30  
20  
10  
0
−50  
0
50  
100  
150  
T [°C]  
j
Figure 6  
Typical ON-state Resistance  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
A “High” signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission. Figure 7 shows the typical timing when switching a resistive  
load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
70% VS  
tOFF_delay  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switching times.vsd  
Figure 7  
Switching a Resistive Load Timing  
Data Sheet  
14  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltage drop over the power stage a voltage clamp mechanism ZDS(AZ) is implemented  
that limits negative output voltage to a certain level (VS - VDS(AZ)). The clamping mechanism allows in addition  
a fast demagnetization of inductive loads because during the phase of active clamping the power is dissipated  
to a great extent rapidly inside the switch. On the other hand the power dissipated inside the switch while  
switching off inductive loads can cause considerable stress to the device. Therefore the maximum allowed  
energy at a given current (and by this also the inductance) is limited. In Figure 8 and Figure 9 the basic  
principle of active clamping as well as simplified waveforms when switching off inductive loads are illustrated.  
ITS4040D-EP-D  
VS  
VS  
VDS  
Bias  
ZDS(AZ)  
Driver  
Logic  
INx  
OUTx  
IL  
L, RL  
VÎN  
GND  
VOUT  
ZGND  
Figure 8  
Output Clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 9  
Switching an Inductive Load Timing  
Data Sheet  
15  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, the following energy must be dissipated in the ITS4040D-EP-D:  
VS VDS(AZ)  
--------------------------------  
RL  
RL × IL  
L
RL  
------  
E = VDS(AZ)  
×
×
× ln 1 –  
+ IL  
(5.1)  
--------------------------------  
VS VDS(AZ)  
Assuming RL = 0 simplifies the calculation:  
VS  
1
2
2
--  
E = × L × I × 1 –  
(5.2)  
--------------------------------  
VS VDS(AZ)  
The energy, which may be converted into heat, is limited by the thermal design of the component. Figure 10  
shows the maximum allowed energy dissipation as a function of the load current for a singular pulse event on  
one channel.  
600  
Single Channel Pulse @ 150°C  
Single Channel Pulse @ 125°C  
500  
400  
300  
200  
100  
0
1
1.5  
2
2.5  
3
3.5  
4
ILoad [A]  
Figure 10 Maximum Energy Dissipation Single Pulse for a Single Channel, Tj_START = 150 °C; VS = 28 V  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 11).  
Channels that are active (ON-state) by the time when the inverse current condition appears will remain active  
and their output stage will follow the state of the corresponding IN pin, which means that the channel can be  
switched off during inverse current condition. Channels that are inactive (OFF-state) by the time when the  
inverse current condition appears will remain inactive regardless of the state of the corresponding IN pin. If  
during an inverse current condition the IN-pin of a channel is set from “Low” to “High” in order to activate the  
channel, the output stage of the channel is kept OFF until the inverse current disappears. For all cases the  
current IINV should not be higher than IL(INV). Please note that during inverse current condition the protection  
functions of concerned channels are not available.  
Data Sheet  
16  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
ITS4040D-EP-D  
Bias  
Gate  
INx  
Driver  
VINV  
Device  
Logic  
Inv.  
Comp  
OUTx  
IL(INV)  
GND  
ZGND  
Figure 11 Inverse Current Circuitry  
IL(INV)  
Inverse Current Event  
t
VIN  
t
Channel  
State  
„ON“  
„OFF“  
ON“  
„OFF“  
t
Figure 12 Inverse Current event: channel in OFF-state (channel remains off for duration of inverse  
current event)  
Data Sheet  
17  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
IL(INV)  
Inverse Current Event  
t
t
VIN  
Channel  
State  
„ON“  
OFF“  
ON“  
OFF“  
„OFF“  
t
Figure 13 Inverse Current event: channel in ON-state (output not influenced but can be switched off)  
5.5  
Electrical Characteristics: Power Stage  
Table 4  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ON-state resistance per  
channel (Tj = 25°C)  
RDS(ON)  
40  
mΩ  
mΩ  
mΩ  
ILx = 2 A  
P_5.5.18  
VIN = 4.5 V  
Tj = 25°C  
1)  
ON-state resistance per  
channel (Tj = 125°C)  
RDS(ON)_125  
60  
I = 2 A  
P_5.5.19  
P_5.5.1  
Lx  
VIN = 4.5 V  
Tj = 125°C  
ON-state resistance per  
channel (Tj = 150°C)  
RDS(ON)_150  
80  
ILx= 2 A  
VIN = 4.5 V  
Tj = 150°C  
Nominal load current  
per channel  
IL(NOM)1  
VDS(AZ)  
2.6  
75  
A
V
1) 2) Tj < 150°C  
P_5.5.2  
P_5.5.5  
Drain to source clamping  
voltage  
65  
70  
IDS = 5 mA  
VDS(AZ) = [VS - VOUT]  
1)  
Output leakage current per IL(OFF)  
channel  
0.1  
1
0.5  
5
µA  
µA  
V
floating  
P_5.5.6  
P_5.5.4  
IN  
VOUT = 0 V  
Tj 85°C  
Output leakage current per IL(OFF)_150  
channel  
VIN floating  
VOUT = 0 V  
Tj = 150°C  
Data Sheet  
18  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
Table 4  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
2.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Inverse current capability  
IL(INV)  
A
1) 3) VS < VOUTX  
t < 2 min  
P_5.5.7  
Slew rate (switch on)  
30% to 70% of VS  
ΔV/ΔtON  
-ΔV/ΔtOFF  
0.3  
0.3  
20  
20  
-50  
0.75  
0.75  
55  
1.9  
1.9  
100  
100  
50  
V/µs RL = 12 Ω  
P_5.5.8  
VS = 24 V  
Slew rate (switch off)  
70% to 30% of VS  
V/µs RL = 12 Ω  
P_5.5.9  
VS = 24 V  
Turn-ON time to VOUT = 90% tON  
VS  
µs  
µs  
µs  
µs  
µs  
RL = 12 Ω  
VS = 24 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
P_5.5.14  
P_5.5.15  
Turn-OFF time to VOUT =  
10% VS  
tOFF  
55  
RL = 12 Ω  
VS = 24 V  
Turn-ON / OFF matching  
tOFF - tON  
ΔtSW  
0
RL = 12 Ω  
VS = 24 V  
Turn-ON time to VOUT = 10% tON_delay  
VS  
25  
50  
RL = 12 Ω  
VS = 24 V  
Turn-OFF time to VOUT =  
90% VS  
tOFF_delay  
25  
50  
RL = 12 Ω  
VS = 24 V  
1) Not subject to production test; specified by design.  
2) This parameter describes the nominal load capability per channel from an electrical point of view respecting a  
maximum Tj 150°C. Please note that depending on the individual thermal design of a real application (and a  
potentially insufficient thermal budget resulting hereof) additional restrictions for IL(NOM) may occur for pure thermal  
reasons in order not to exceed the maximum allowed junction temperature Tj = 150°C. The latter needs to be  
considered especially for cases where both channels are operating simultaneously under high load conditions and at  
high ambient temperature TAMB. For further details about potential derating of the nominal load current due to  
thermal restrictions please refer to “Thermal Considerations” on Page 38.  
3) Please note that during inverse current condition the protection features are not operational.  
Data Sheet  
19  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
5.6  
Typical Performance Characteristics Power Stage  
Typical Performance Characteristics  
ON-State Resistance RDSON versus  
Junction Temperature Tj  
Leakage Current per channel IL(OFF) versus  
Junction Temperature Tj  
80  
2
VS = 24 V; ILoad = 2A  
VS = 24 V  
1.8  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Output Clamp Voltage VDS(AZ) versus  
Junction Temperature Tj  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
CH 1  
CH 2  
−50  
0
50  
100  
150  
Tj [°C]  
Data Sheet  
20  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
Turn-ON time tON to VOUT = 90% versus  
Junction Temperature Tj  
Turn-OFF time tOFF to VOUT = 90% versus  
Junction Temperature Tj  
100  
100  
VS = 24V  
VS = 24V  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ILoad = 0.5A  
ILoad = 0.5A  
ILoad = 1.0A  
ILoad = 2.0A  
ILoad = 2.5A  
20  
10  
0
ILoad = 1.0A  
ILoad = 2.0A  
ILoad = 2.5A  
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Turn-ON delay time tON_delay to VOUT = 10% versus  
Junction Temperature Tj  
Turn-OFF delay time tOFF_delay to VOUT = 10% versus  
Junction Temperature Tj  
50  
50  
VS = 24V  
VS = 24V  
45  
40  
35  
30  
25  
20  
15  
45  
40  
35  
30  
25  
20  
15  
ILoad = 0.5A  
ILoad = 0.5A  
10  
10  
ILoad = 1.0A  
ILoad = 1.0A  
ILoad = 2.0A  
ILoad = 2.5A  
ILoad = 2.0A  
ILoad = 2.5A  
5
5
0
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
21  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Power Stage  
Turn-ON time tON to VOUT = 90% versus  
Load Current I Load  
Turn-OFF time tOFF to VOUT = 90% versus  
Load Current I Load  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = 25 °C  
Tj = 150 °C  
10  
VS = 24 V  
0.5  
VS = 24 V  
0
0
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
ILoad [A]  
ILoad [A]  
Turn-ON delay time tON_delay to VOUT = 10% versus  
Load Current I Load  
Turn-OFF delay time tOFF_delay to VOUT = 10% versus  
Load Current I Load  
50  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
45  
Tj = 25 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = 150 °C  
40  
40  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
5
5
VS = 24 V  
VS = 24 V  
0
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
ILoad [A]  
ILoad [A]  
Data Sheet  
22  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Protection functions are designed to prevent the destruction of  
the ITS4040D-EP-D due to fault conditions described in the data sheet. Please note that fault conditions are  
not considered as normal operation conditions and the protection functions are neither designed for  
continuous operation nor for repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of module ground when the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied at the  
input pins.  
In an application where the inputs are directly controlled by logic levels < VS (e.g. by a microcontroller without  
galvanic isolation), it is recommended to use input resistors 1) between the external control circuit  
(microcontroller) and the ITS4040D-EP-D to protect also the external control circuit in case of loss of device  
ground.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches  
the situation.  
ZGND is recommended to be a resistor in series to a diode.  
ITS4040D-EP-D  
VS  
+
-
ZDS(AZ)  
ZD(AZ)  
ST  
RST  
Logic  
INx  
RIN  
IOUT(GND)  
OUTx  
GND  
ZGND  
Figure 14 Loss of Ground Protection with External Components  
1) Recommended value is 10 k  
Data Sheet  
23  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6.2  
Undervoltage Protection  
If the supply voltage falls below VS(UV) the undervoltage protection of the device is triggered. VS(UV) represents  
hence the minimum voltage for which the switch still can hold ON. Once the device is off VS(OP)_MIN represents  
the lowest voltage where the device is turning on again (and thus the channels can be switched again). If the  
supply voltage is below the undervoltage threshold VS(UV), the channels of the device are OFF (or turning OFF).  
As soon as the supply voltage is recovering and exceeding the threshold of the functional supply voltage  
VS(OP)_MIN, the device is re-powering and its channels can be switched again. In addition the protection  
functions as well as diagnosis become operational once VS(OP)_MIN is reached. Figure 15 sketches the  
undervoltage mechanism.  
VOUT  
VS  
VS(UV)  
VS(OP)_MIN  
Figure 15 Undervoltage Behavior  
6.2.1  
Overvoltage Protection  
There is an integrated clamping mechanism for overvoltage protection (ZD(AZ)). To ensure this mechanism  
operates properly in the application, the current in the Zener diode ZD(AZ) must be limited by a ground resistor.  
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the voltage across supply to ground path is clamped. As a result, the internal ground potential rises to  
VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx rises almost to that potential, depending on  
the impedance of the connected circuitry 1). In the case the device was ON, prior to overvoltage, the ITS4040D-  
EP-D remains ON. In case the ITS4040D-EP-D was OFF, prior to overvoltage, the power transistor can be  
activated. In case the supply voltage is above VS(SC) and below VDS(AZ), the output transistor is still operational  
and follows the input. If at least one channel is in ON-state, parameters are no longer within specified range  
and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short  
circuit robustness, as well as the maximum energy EAS capability. ZGND is recommended to be either a resistor  
(27 ) in series to a diode or alternatively a 150 power resistor.  
1) Hence, the usage of external input resistors needs to be considered.  
Data Sheet  
24  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
ISOV  
VS  
+
-
ZDS(AZ)  
ZD(AZ)  
ST  
RST  
Logic  
INx  
RIN  
IOUT  
OUTx  
ITS4040D-EP-D  
GND  
ZGND  
Figure 16 Overvoltage Protection with External Components  
Data Sheet  
25  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6.3  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the affected power DMOS-channels will dissipate  
power. The current flowing through the intrinsic body diode is limited externally by the load itself. But in  
addition the current into the ground path and the logic pins must be limited by an external resistor to the  
maximum allowed current described in Chapter 4.1. Figure 17 shows a typical application. ZGND resistor is  
used to limit the current through the Zener protection of the device. ZGND is recommended to be either a  
resistor (~ 27 ) in series to a diode or alternatively a power resistor (~ 150 ).  
During reverse polarity no protection functions are available.  
VS  
Microcontroller  
ITS4040D-EP-D  
VDS(REV)  
Protection  
diodes  
-
+
-VS(REV)  
ZDS(AZ)  
ZD(AZ)  
ST  
INx  
RST  
Logic  
RIN  
OUTx  
GND  
ZGND  
Figure 17 Reverse Polarity Protection with External Components  
Data Sheet  
26  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6.4  
Overload Protection  
In case of overload, such as high inrush current of a cold lamp filament, or short circuit to ground, the  
ITS4040D-EP-D offers a set of protection mechanisms which is illustrated in Figure 18.  
6.4.1  
Current Limitation  
As a first step, the instantaneous power in the switch is contained within a safe range by limiting the current  
to the maximum current allowed in the switch IL(LIM). During this time, where the current is limited to IL(LIM) the  
DMOS temperature is increasing caused by the voltage drop VDS over the DMOS.  
Overtemperature concept:  
Overtemperature behavior:  
VIN  
H
L
tON  
Tj(SC)  
t
tOFF  
VOUT  
ON  
heating  
up  
0
t
Tj  
Tj(SC)  
OFF  
cooling  
down  
Tj  
Tj(SC)  
Device  
Status  
Tj(SC)  
Normal  
Toggling  
Overtemperature  
t
t
VST  
H
L
OFF  
ON  
OFF  
ON  
OFF  
Waveforms turn on into a short circuit:  
Waveforms short circuit during on state:  
VIN  
H
VIN  
H
L
L
tON  
tON  
t
t
tOFF  
tOFF  
VOUT  
VOUT  
0
0
t
t
IL(LIM)  
IL(LIM)  
0
0
t
t
tST(FAULT)  
tST(FAULT)_SC1  
VST  
H
VST  
H
L
L
t
t
Normal  
operation  
OFF  
OFF  
OUT shorted to GND  
Overloaded  
OFF  
OFF  
Shut down by overtemperature and restart after  
cooling down (thermal toggling) once the device  
exceeds thermal threshold after being heated up  
during current limitation state  
Shut down by overtemperature and restart after  
cooling down (thermal toggling) once the device  
exceeds thermal threshold after being heated up  
during current limitation state  
Figure 18 Protection behavior of the ITS4040D-EP-D  
Data Sheet  
27  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6.4.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates one temperature sensor. Activation of this temperature sensor will cause an  
overheated channel to switch OFF to prevent destruction. Any protective overtemperature shutdown event  
triggered within a channel is switching OFF the output of the corresponding channel until the temperature  
reaches an acceptable value again.  
A restart functionality is implemented that is switching the channel ON again after the DMOS temperature has  
sufficiently cooled down.  
6.5  
Electrical Characteristics: Protection Functions  
Table 5  
Electrical Characteristics: Protection Functions1)  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
Output leakage current  
while GND disconnected  
IOUT(GND)  
0.1  
mA  
mV  
2) 3) VS = 24 V  
P_6.5.1  
P_6.5.2  
Reverse Polarity  
Drain source diode voltage VDS(REV)  
during reverse polarity  
650  
700  
IL = -2 A  
Tj = 150°C  
Overvoltage  
4)  
Overvoltage protection  
Overload Condition  
Load current limitation  
VS(AZ)  
65  
70  
75  
V
I
= 5 mA  
P_6.5.3  
SOV  
IL(LIM)  
Tj(SC)  
3.3  
4.1  
4.9  
A
3)  
P_6.5.4  
P_6.5.6  
Thermal shutdown  
temperature  
150  
175  
200  
°C  
3)  
Thermal shutdown  
hysteresis  
ΔTj(SC)  
30  
K
P_6.5.7  
1) Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC from destruction under fault conditions described in the data sheet.  
Fault conditions are considered as “outside” normal operating range. Protection functions are designed neither for  
continuous nor repetitive operation.  
2) All pins are disconnected except VS and OUT.  
3) Not subject to production test; specified by design.  
4) For practical cases it is recommended to place a resistor in the range of 27 into the GND path to limit the GND  
current associated with overvoltage events.  
Data Sheet  
28  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Protection Functions  
6.6  
Typical Performance Characteristics Protection Functions  
Typical Performance Characteristics  
Current Limit IL(LIM) versus  
Junction Temperature Tj  
Clamping Voltage VS(AZ) versus  
Voltage Tj  
6
5
4
3
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
1
VDS = 12V  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
29  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purpose, the ITS4040D-EP-D provides a digital signal at pin ST. This signal is called STATUS. The  
STATUS pin is realized as open drain output and must be connected to an external pull-up resistor. During  
normal operation the STATUS signal is logic “High” (H). During short circuit to ground or overtemperature  
condition the STATUS signal is logic “Low” (L). Table 6 shows the corresponding truth table.  
Table 6  
Diagnostic Truth Table 1) 2)  
Device Operation  
IN1  
L
IN2  
L
OUT1 OUT2 ST  
Comment  
Normal Operation  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
H
H
H
H
L
External pull up at ST pin  
H
H
L
H
L
H
H
L
3)  
Short Circuit to GND on CH1  
Short Circuit to GND on CH2  
H
H
H
L
L
H
H
H
L
L
Short Circuit to GND on  
CH 1 + 2  
H
L
Overtemperature on CH1  
Overtemperature on CH2  
Overtemperature on CH 1 + 2  
H
H
H
L
H
L
OFF 4) ON  
OFF 4) OFF  
L
L
L
L
L
H
H
H
ON  
OFF 4)  
OFF 4)  
OFF  
H
OFF 4) OFF 4)  
1) Please refer to Table 7 for more details.  
2) Not subject to production test; specified by design.  
3) Device not in specified RDS(ON)  
4) Channel remains OFF during cooling-down phase of power stage; then channel tries to re-start.  
.
Data Sheet  
30  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Diagnostic Functions  
7.1  
Electrical Characteristics Diagnostic Function  
Table 7  
Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Timing in Overload Condition  
STATUS settling time for  
overload detection  
tST(FAULT)  
25  
35  
µs  
1) VS = 24 V  
P_7.1.1  
load jump of RL:  
12 -> 3.3 Ω  
Please refer to  
Figure 18 for more  
details  
STATUS settling time for  
channel start-up into existing  
overload 2)  
tST(FAULT)_SC1  
-
90  
µs  
VDS 8 V;  
P_7.1.9  
Please refer to  
Figure 18 for more  
details  
3)  
“Low” level STATUS voltage VST(L)  
“High” level STATUS voltage VST(H)  
2
0.5  
V
V
I
= 1.6 mA  
P_7.1.3  
P_7.1.4  
P_7.1.5  
ST  
4)  
VS > VST  
Current through STATUS pin IST  
(Operating Range)  
1.6  
6
mA VST < 0.5 V  
Channel fault detection  
interrogation time  
Tx  
3
µs  
µs  
µs  
µs  
VST < 0.5 V 5)  
P_7.1.2  
P_7.1.6  
P_7.1.8  
P_7.1.7  
(Sequential Pulse Width)  
5)  
STATUS signal “High” valid  
window after Tx on fault  
affected channel  
Tm  
40  
200  
80  
150  
1)  
Minimum delay between  
subsequent Tx interrogation  
windows  
TX-2-X  
1)  
Maximum delay time  
TD  
8
between Tx (“High” to “Low”)  
on fault affected channel and  
STATUS “High” signal Tm  
1) Not subject to production test, specified by design  
2) This parameter describes the status settling time when a channel is switched on into an already existing overload  
condition. This parameter is referenced to the edge of the input pin IN that switches the channel into overload.  
3) Levels referenced to device ground.  
4) Depends on pull-up circuit that is used within application; maximum ratings of STATUS pin need to be respected.  
5) Please refer to “Channel Fault Detection” on Page 31 for more details.  
7.2  
Channel Fault Detection  
The ITS4040D-EP-D is equipped with an intelligent channel fault detection system, which allows with the aid  
of a microcontroller to identify and communicate the channel on which the fault occurs.  
Data Sheet  
31  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Diagnostic Functions  
During normal operation the STATUS pin is kept “High” by the external pull-up resistor as shown in Table 6. If  
- in case of a fault - the application requires the information on which of the channels the fault occurs when a  
“Low” STATUS is flagged, then the microcontroller can be programmed according to the sequence depicted  
as an example in Figure 19. The figure shows a case where both channels are active. During normal operation  
of channels 1 and 2 the status signal is “High”. Let us now assume that a fault occurs on channel 2. The status  
signal goes low to flag an error to the microcontroller. In order to distinguish whether the fault occurs on  
channel 1 or channel 2 the microcontroller must send a low pulse TX sequentially to each input pin of the  
activated channels. The pulses TX versus time are shown in Figure 19. Time Tx should be between 3 µs up to  
6 µs in order to ensure that the output does not react to this “Low” pulse at the input. The status signal goes  
“High” for a short period of time Tm only after the channel on which the fault occurs gets a “Low” pulse from  
the microcontroller, which in this case is after channel 2 receives a low pulse for a time Tx. By this means, the  
microcontroller is able to detect on which channel the fault occurs. Once the microcontroller receives this  
information, it can switch OFF the channel on which the fault occurs (channel 2 in this case) via the input pin  
IN2. For the maximum delay time TD between Tx going “Low” and Tm going “High” a value of 8 µs needs to be  
taken into account.  
Normal Operation  
Fault at channel 2  
Normal Operation  
Tm  
Tm  
Fault  
?
Channel  
STATUS  
IN1  
TD  
TD  
TX  
TX  
IN2  
TX-2-X  
t
A flipped ST-pin signal following a TX interrogation pulse within a time window TM on a given channel confirms a fault channel.  
A non-flipped ST-pin signal after a TX pulse (dashed lines) indicate that corresponding channel is not in fault condition.  
Figure 19 Channel Fault Detection Timing Diagram  
Data Sheet  
32  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Diagnostic Functions  
7.3  
Typical Performance Characteristics Diagnostic Functions  
Typical Performance Characteristics  
Status Settling Time tST(FAULT) versus  
Status Settling Time tST(Fault)_SC1 versus  
Junction Temperature Tj (overload during ON)  
Junction Temperature Tj (switch on into overload)  
50  
80  
tST(Fault)_SC1  
typ. tST(Fault) for RL: 12 Ω −> 3.3Ω  
45  
typ. tST(Fault) for RL: 12 Ω −> 0 Ω  
70  
60  
50  
40  
30  
20  
VS = 24V  
40  
35  
30  
25  
20  
15  
10  
5
10  
VS = 24V  
VDS = 8V  
0
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Maximum Delay Time TD (TX ‘H->L’ to ST ‘L->H’) vs ST “HIGH” Valid window (after TX) TM versus  
Junction Temperature Tj  
Junction Temperature Tj  
10  
TD  
9
100  
TM  
90  
8
7
6
5
4
3
2
80  
70  
60  
50  
40  
30  
20  
1
10  
VS = 24V  
VS = 24V  
0
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
33  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 V and 5 V microcontrollers as well as input levels up to VS 1). The  
concept of the input pin is to react to voltage thresholds which are referenced to device ground. An  
implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly increasing or  
decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. Figure 20 shows the  
electrical equivalent input circuitry. In case a channel is permanently not needed, the corresponding input pin  
shall not be left floating but tied with a serial resistor to device ground (not module ground). The  
recommended value for the serial resistor is 2.2 k.  
VS  
ITS4040Q-EP-D  
Bias  
Gate  
Driver  
INx  
VIH  
Inv.  
Comp  
Device  
Logic  
OUTx  
GND  
ZGND  
Figure 20 Input Pin Circuitry  
8.2  
Input Pin Voltage  
The input pin IN uses a comparator with hysteresis. Switching “ON / OFF” of the channels takes place in a  
defined region, set by the thresholds VIN(L),max and VIN(H),min. The exact values where the “ON” and “OFF” take  
1) VIN must not exceed VS. The relation VIN VS must always be fulfilled.  
Data Sheet  
34  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Input Pins  
place depend on the process, as well as the temperature. To avoid cross talk and parasitic turn-ON or turn-  
OFF, a hysteresis is implemented. This ensures an improved immunity to noise.  
8.3  
Electrical Characteristics: Input Pins  
Table 8  
Electrical Characteristics: Input Pins  
8VS = 8 V to 36 V, Tj = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 24 V, Tj = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
INput Pins Characteristics  
1)  
“Low” level input voltage  
range  
VIN(L)  
VIN(H)  
VIN(HYS)  
IIN(L)  
-0.3  
2
0.8  
36  
V
P_8.3.1  
P_8.3.2  
P_8.3.3  
P_8.3.4  
P_8.3.5  
1)  
“High” level input voltage  
range  
V
VS > VIN  
2)  
Input voltage hysteresis  
“Low” level input current  
“High” level input current  
450  
37  
44  
mV  
µA  
µA  
70  
70  
VIN = 0.8 V  
VIN = 24 V  
IIN(H)  
1) Levels referenced to device ground.  
2) Not subject to production test; specified by design.  
Data Sheet  
35  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Input Pins  
8.4  
Typical Performance Characteristics Input Pins  
Typical Performance Characteristics  
Input Voltage thresholds VIN(L) VIN(H) versus  
Junction Temperature Tj  
Input Voltage hysteresis VIN(HYS) versus  
Junction Temperature Tj  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
VIN(HYS)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
VIN(H)  
VIN(L)  
0.2  
0
VS = 24V  
VS = 24V  
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Input Pin Current IIN(H) versus  
Supply Voltage V S  
Input Pin Current IIN(H) versus  
Junction Temperature Tj  
70  
70  
VIN = 24V  
Tj −40°C  
Tj 25°C  
60  
60  
50  
40  
30  
20  
10  
0
Tj 150°C  
50  
40  
30  
20  
10  
VS = 28.8V  
0
0
5
10  
15  
20  
25  
0
50  
100  
150  
VIN [V]  
Tj [°C]  
Data Sheet  
36  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Application Information  
9
Application Information  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
External  
components for  
Surge Immunity  
VOUT  
Linear  
Voltage Regulator  
e.g. IFX1763  
VIN  
COUT  
VS  
VDD  
VS  
Microcontroller  
e.g. XMC4xxx  
I/O  
IN1  
ST  
OUT1  
VDD  
ITS4040D-EP-D  
I/O  
I/O  
OUT2  
IN2  
TM  
GND  
GND  
ZGND  
External components for reverse polarity protection and overvoltage  
pulses. Recommended setup for ZGND is a diode for reverse polarity in  
series with a resistor of ~27Ω to limit GND current during overvoltage  
spikes.  
Figure 21 Application Diagram with ITS4040D-EP-D  
In Figure 21 above a simplified application diagram is shown where the inputs are galvanically isolated from  
VS with optocouplers. Thanks to the fact that the input pins are 24 V capable they can be directly connected to  
the optocouplers. Reverse polarity protection can be achieved with external components. In this context it  
should be noted that input pins of channels which are permanently unused have to be tied with 2.2 kΩ  
resistance to device ground. In addition the TM-pin must be always tied with a serial resistor to device ground  
in order to protect the pin in case of reverse polarity. The recommended value for this serial resistor is also  
2.2 k. For applications where no galvanic isolation is present between the external control circuitry (e.g  
microcontroller) and the input pins of the ITS4040D-EP-D serial input resistors need to be placed in order to  
protect the external control circuitry and the input structures of the ITS4040D-EP-D under fault conditions  
(like e.g. reverse polarity, loss of ground or overvoltage). For further details please also refer to the  
corresponding sections in Chapter 6. The recommended value for such serial input resistors is 10 khowever  
Data Sheet  
37  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Application Information  
application specific optimized values may also depend on the individual application conditions as well as the  
applied external control circuitry / microcontroller.  
9.1  
Thermal Considerations  
If the cooling possibilities within the application are not sufficient to sink the heat of the dissipated power the  
junction temperature Tj of the device may exceed its maximum specified rating of 150°C and eventually trigger  
a thermal shutdown of the overheated channels to protect the device from destruction. Such thermal  
shutdown events may occur e.g. if one or more channels are operated in overload conditions that are causing  
the current limitation functionality to become active. If the current limitation of a channel becomes active the  
power dissipation will rise rapidly and in many cases lead to thermal shutdown events of the corresponding  
channels within short periods of time.  
But also under nominal load conditions the power dissipation can become too high inside an application if it  
is applied at high environmental temperature TAMB and if at the same time the cooling capability of the PCB is  
not sufficient. In general the cooling capability of an IC on a PCB within an application can be described for  
static cases by its thermal resistance from junction-to-ambient RthJA. The thermal resistance RthJA can be  
improved by adding cooling area on top- or bottom layer of the PCB or by adding inner layers that are  
connected to the VS layer with thermal vias. Thermal vias show the best efficiency for heat distribution if  
directly placed underneath the exposed pad of the ITS4040D. The achievable values for RthJA will differ from  
application to application. As reference simulation results for a set of standardized JEDEC cases are provided  
in Chapter 4.4 “Thermal Resistance” on Page 12. Actual values in real applications naturally can be lower  
or higher.  
For cases where the achievable thermal resistance RthJA and the hereof resulting thermal budget within an  
application is not sufficient for a given ambient temperature TAMB there is no other choice than to lower the  
load current to smaller numbers than the electrically allowed maximum nominal current of 2.6 A. Figure 22  
illustrates how the derating of the nominal current as a function of achievable RthJA at a given TAMB can look  
like. The graphs show how the thermal budget with its limiting condition Tj = 150°C can be shared between the  
influencing parameters TAMB, RthJA, ILoad depending on the number of active channels nCH. One can see that  
thanks to the excellent RDSON values of the ITS4040D a derating needs to be applied only in cases with PCB’s  
showing extremely poor thermal performance.  
The calculation of the thermal budget follows simple rules as given in the equations below. It should be noted  
that the calculation is restricted to static cases where the resulting TAMB and Tj have reached a stable  
equilibrium.  
(9.1)  
Tj = TAMB + RthJA × PDISS  
(9.2)  
PDISS = I2Load × RDS(ON) × nCH + VS × IGND  
Data Sheet  
38  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Application Information  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
R
= 40 K/W  
= 48 K/W  
=102 K/W  
R
= 40 K/W  
= 48 K/W  
=102 K/W  
thJA  
thJA  
1 channel active  
2 channels active  
R
R
thJA  
thJA  
(V = 28V)  
(V = 28V)  
S
S
R
R
thJA  
thJA  
0
0
20  
30  
40  
50  
60  
[°C]  
70  
80  
90  
100  
20  
30  
40  
50  
60  
T [°C]  
AMB  
70  
80  
90  
100  
T
AMB  
Figure 22 Thermal derating of nominal current due to insufficient cooling performance of PCB  
Data Sheet  
39  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Package Outlines  
10  
Package Outlines  
ꢀꢁ  
ꢀꢁ  
ꢆꢃꢊsꢂꢃꢀ  
ꢌꢃꢊsꢂꢃꢀ  
'
ꢂꢃꢀ  
ꢂꢃꢀ  
ꢅ[  
ꢅ[  
&
ꢂꢃꢂꢈ &  
ꢂꢃꢉꢇsꢂꢃꢅꢄ  
ꢀꢆ[  
6($7,1* &23/$1$5,7<  
3/$1(  
sꢂꢃꢅ  
ꢂꢃꢅ '  
ꢀꢆ[  
ꢅꢁ  
ꢂꢃꢅꢄsꢂꢃꢂꢄ  
ꢂꢃꢅꢄ  
$ꢋ% &  
ꢀꢆ[  
%27720 9,(:  
$
ꢀꢆ  
ꢀꢆ  
ꢂꢃꢀꢄ  
ꢂꢃꢀꢄ  
'
,1'(;  
0$5.,1*  
%
ꢂꢃꢉꢄ  
sꢂꢃꢀ  
$ꢋ%  
ꢀꢁ '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) ꢂꢃꢀꢄ 0$;ꢃ 3(5 6,'(  
ꢅꢁ '$0%$5 352786,21 6+$// %( 0$;,080 ꢂꢃꢀ00 727$/ ,1 (;&(66 2) /($' :,'7+  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢅꢈ ꢎ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 23 PG-TSDSO-14 (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
40  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Revision History  
11  
Revision History  
Revision Date  
Changes  
1.0  
2018-06-14 Data Sheet (Initial Release)  
Data Sheet  
41  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Revision History  
Data Sheet  
42  
Rev. 1.0  
2018-06-14  
ITS4040D-EP-D  
40 mDual Channel Smart High-Side Power Switch  
Revision History  
Data Sheet  
43  
Rev. 1.0  
2018-06-14  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-06-14  
Published by  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Infineon Technologies AG  
81726 Munich, Germany  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents of  
the Automotive Electronics Council.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

ITS4060S-SJ-N

高边功率开关,集成了垂直功率 FET,提供嵌入式保护和诊断功能。
INFINEON

ITS4060SSJNXUMA1

Buffer/Inverter Based Peripheral Driver, 3.1A, CMOS, PDSO8, SOP-8
INFINEON

ITS4075Q-EP-D

The ITS4075Q-EP-D is a 75mΩ Quad Channel Smart High-Side Power Switch providing integrated protection functions and a diagnosis feedback. With four channels capable of currents of more than 2 A each, very low typical RDS(ON) values of 120mΩ at Tj = 125°C and the small PG-TSDSO-14 exposed pad package it combines high current capability with minimum space requirements. The exposed pad of the thermally enhanced PG-TSDSO-14 package allows a very efficient heat transfer from the device to inner layers of the PCB by means of thermal vias. The power transistors are built by N-channel vertical power MOSFETs (DMOS) with charge pump.
INFINEON

ITS4090Q-EP-D

The ITS4090Q-EP-D is a 90mΩ Quad Channel Smart Hi
INFINEON

ITS40C06P

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 55A I(C) | TO-247AC
ETC

ITS40F06P

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 50A I(C) | TO-247AC
ETC

ITS40F2

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F6

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F7

Dummy Plug Stowage Receptacle
GLENAIR

ITS40F8

Dummy Plug Stowage Receptacle
GLENAIR

ITS40FR2ST

Vertical and right angle
CK-COMPONENTS

ITS40G3

Dummy Plug Stowage Receptacle
GLENAIR