Q67007-A9466 [INFINEON]

Multi-Voltage Processor Power Supply; 多电压处理器供电
Q67007-A9466
型号: Q67007-A9466
厂家: Infineon    Infineon
描述:

Multi-Voltage Processor Power Supply
多电压处理器供电

文件: 总57页 (文件大小:698K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE 6361 G  
Multi-Voltage Processor Power Supply  
Data Sheet  
1
Overview  
Features  
1.1  
• High efficiency regulator system  
• Wide input voltage range, up to 60V  
• Stand-by mode with low current consumption  
• Suitable for standard 12V, 24V and 42V PowerNets  
• Step down converter as pre-regulator:  
5.5V / 1.5A  
P-DSO-36-12  
• Step down slope control for lowest EME  
• Switching loss minimization  
• Three high current linear post-regulators with  
selectable output voltages:  
5V / 800mA  
3.3V or 2.6V / 500mA  
5V or 3.3V / 350mA  
• Six independent voltage trackers (followers):  
5V / 17mA each  
• Stand-by regulator with 1mA current capability  
• Three independent undervoltage detection circuits  
(e.g. reset, early warning) for each linear post-regulator  
• Power on reset functionality  
• Window watchdog triggered by SPI  
• Tracker control and diagnosis by SPI  
• All outputs protected against short-circuit  
• Power-DSO-36 package  
Type  
Ordering Code Package  
Q 67007-A9466 P-DSO-36-12  
TLE 6361 G  
SMD = Surface Mounted Device  
Data Sheet, Rev. 1.31  
1
2004-10-12  
TLE 6361 G  
1.2  
Short functional description  
The TLE 6361 G is a multi voltage power supply system especially designed for  
automotive applications using a standard 12V or 24V battery as well as the new 42V  
powernet. The device is intended to supply 32 bit micro-controller systems which require  
different supply voltage rails such as 5V, 3.3V and 2.6V. The regulators for external  
sensors are also provided.  
The TLE 6361 G cascades a Buck converter block with a linear regulator and tracker  
block on a single chip to achieve lowest power dissipation thus being able to power the  
application even at very high ambient temperatures.  
The step-down converter delivers a pre-regulated voltage of 5.5V with a minimum  
current capability of 1.5A.  
Supplied by this step down converter three low drop linear post-regulators offer 5V, 3.3V,  
or 2.6V of output voltages depending on the configuration of the device with current  
capabilities of 800mA, 500mA and 350mA.  
In addition the inputs of six voltage trackers are connected to the 5.5V bus voltage. Their  
outputs follow the main 5V linear regulator (Q_LDO1) with high accuracy and are able to  
drive a current of 17mA each. The trackers can be turned on and off individually by a 16  
bit serial peripheral interface (SPI). Through this interface also the status information of  
each tracker (i.e. short circuit) can be read out.  
To monitor the output voltage levels of each of the linear regulators three independent  
undervoltage detection circuits are available which can be used to implement the reset  
or an early warning function. The supervision of the µC is managed by the SPI-triggered  
window watchdog.  
For energy saving reasons while the motor is turned off, the TLE 6361 G offers a stand-  
by mode, where the quiescent current does not exceed 30µA typically. In this stand-by  
mode just the stand-by regulator remains active.  
The TLE 6361 G is based on Infineon Power technology SPT which allows bipolar ,  
CMOS and Power DMOS circuitry to be integrated on the same monolithic circuitry.  
Data Sheet, Rev. 1.31  
2
2004-10-12  
TLE 6361 G  
1.3  
Pin configuration  
P-DSO-36-12  
GND  
CLK  
CS  
GND  
1
2
3
4
5
6
7
36  
35  
34  
33  
32  
31  
30  
29  
SLEW  
WAKE  
BOOST  
DI  
DO  
IN  
ERR  
SW  
IN  
Q_STB  
SW  
Q_T1  
Q_T2  
Q_T3  
8
28  
27  
Bootstrap  
9
10  
11  
12  
13  
14  
15  
16  
Q_LDO1  
FB/L_IN  
FB/L_IN  
Q_LDO2  
SEL  
Q_T4  
Q_T5  
26  
25  
24  
23  
22  
21  
20  
19  
Q_T6  
Q_LDO3  
CCP  
R3  
R2  
C+  
C-  
R1  
17  
18  
GND  
GND  
Figure 1 Pin Configuration (Top View),  
bottom heatslug and GND corner pins are connected  
Data Sheet, Rev. 1.31  
3
2004-10-12  
TLE 6361 G  
1.4  
Pin definitions and functions  
Pin No. Symbol  
Function  
1,18,19, GND  
36  
Ground; to reduce thermal resistance place cooling areas on  
PCB close to this pins. Those pins are connected internally to the  
heatslug at the bottom.  
2
3
CLK  
CS  
SPI Interface Clock input; clocks the shiftregister; CLK has an  
internal active pull down and requires CMOS logic level  
inputs;see also chapter SPI  
SPI Interface chip select input; CS is an active low input; serial  
communication is enabled by pulling the CS terminal low; CS  
input should only be switched when CLK is low; CS has an  
internal active pull up and requires CMOS logic level inputs ;see  
also chapter SPI  
4
5
DI  
SPI Interface Date input; receives serial data from the control  
device; serial data transmitted to DI is a 16 bit control word with  
the Least Significant Bit (LSB) being transferred first; the input  
has an active pull down and requires CMOS logic level inputs; DI  
will accept data on the falling edge of CLK-signal; see also  
chapter SPI  
SPI Interface Data output; this tristate output transfers  
diagnosis data to the controlling device; the output will remain 3-  
stated unless the device is selected by a low on Chip-Select CS;  
see also the chapter SPI  
DO  
6
7
8
ERR  
Error output; push-pull output. Monitors failures in parallel to the  
SPI diagnosis word, reset via SPI. ERR is a latched output.  
Q_STB  
Q_T1  
Standby Regulator Output; the output is active even when the  
buck regulator and all other circuitry is in off mode  
Voltage Tracker Output T1 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
9
Q_T2  
Q_T3  
Voltage Tracker Output T2 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
Voltage Tracker Output T3 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
10  
Data Sheet, Rev. 1.31  
4
2004-10-12  
TLE 6361 G  
1.4  
Pin definitions and functions (cont’d)  
Function  
Pin No. Symbol  
11  
12  
13  
14  
15  
16  
17  
Q_T4  
Q_T5  
Q_T6  
Voltage Tracker Output T4 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
Voltage Tracker Output T5 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
Voltage Tracker Output T6 tracked to Q_LDO1; bypass with a  
1µF ceramic capacitor for stability. It is switched on and off by  
SPI command. Keep open, if not needed.  
Q_LDO3 Voltage Regulator Output 3; 5V or 3.3V output; ouput voltage  
is selected by pin SEL (see also 3.4.2); For stability a ceramic  
capacitor of 470nF to GND is sufficient.  
R3  
R2  
R1  
Reset output 3, undervoltage detection for output Q_LDO3;  
open collector output; an external pullup resistor of 10kis  
required  
Reset output 2, undervoltage detection for output Q_LDO2;  
open collector output; an external pullup resistor of 10kis  
required  
Reset output 1, undervoltage detection for output Q_LDO1 and  
watchdog failure reset; open collector output ; an external pullup  
resistor of 10kis required  
20  
21  
22  
23  
24  
C-  
Charge pump capacitor connection; Add the fly-capacitor of  
100nF between C+ and C-  
C+  
Charge pump capacitor connection; Add the fly-capacitor of  
100nF between C+ and C-  
CCP  
SEL  
Charge Pump Storage Capacitor Output; Add the storage  
capacitor of 220nF between pin CCP and GND.  
Select Pin for output voltage adjust of Q_LDO2 and Q_LDO3  
(see also 2.2.2)  
Q_LDO2 Voltage Regulator Output 2; 3.3V or 2.6V output; output  
voltage is selected by pin SEL (see also 3.4.2); For stability a  
ceramic capacitor of 470nF to GND is sufficient.  
25, 26  
FB/L_IN  
Feedback and Linear Regulator Input; input connection for  
the Buck converter output  
Data Sheet, Rev. 1.31  
5
2004-10-12  
TLE 6361 G  
1.4  
Pin definitions and functions (cont’d)  
Function  
Pin No. Symbol  
27  
Q_LDO1 Voltage Regulator Output 1; 5V output; acts as the reference  
for the voltage trackers.The SPI and window watchdog logic is  
supplied from this voltage. For stability a ceramic capacitor of  
470nF to GND is sufficient.  
28  
Bootstrap Bootstrap Input; add the bootstrap capacitor between pin SW  
and pin Bootstrap, the capcitance value should be not lower  
than 2% of the Buck converter output capacitance  
29, 31  
SW  
Switch Output; connect both pins externally through short lines  
directly to the cathode of the catch diode and the Buck circuit  
inductance.  
30, 32  
33  
IN  
Supply Voltage Input; connect both pins externally through  
short lines to the input filter/the input capacitors.  
BOOST  
Boost Input; for switching loss minimization connect a diode  
(cathode directly to boost pin) in series with a 100nF ceramic  
capacitor to the IN pin and from the anode of the diode to the  
buck converter output a 22resistor. Recommended for 42V  
applications, in 12/24V applications connect boost directly to IN  
34  
35  
WAKE  
SLEW  
Wake Up Input; a positive voltage applied to this pin turns on  
the device  
Slew control Input; a resistor to GND defines the current slope  
in the buck switch for reduced EME  
Data Sheet, Rev. 1.31  
6
2004-10-12  
TLE 6361 G  
1.5  
Basic block diagram  
TLE 6361  
Standby  
Regulator  
2.5V  
Q_STB  
Boost  
SW  
2*  
IN  
2*  
BUCK  
REGULATOR  
Slew  
Bootstrap  
Driver  
PWM  
Internal  
Error-  
Amplifier  
Reference  
OSZ  
feedback  
FB/L_IN  
2*  
C+  
C-  
Charge  
Pump  
CCP  
Protection  
Power  
Down  
Logic  
Wake  
R1  
SEL  
Q_LDO1  
Linear  
Reg. 1  
µ-controller /  
memory  
Reset  
Logic  
R2  
R3  
Q_LDO2  
Q_LDO3  
Linear  
Reg. 2  
supply  
Linear  
Reg. 3  
ref  
Q_T1  
Q_T2  
Q_T3  
Q_T4  
Q_T5  
Q_T6  
Tracker  
5V  
Window  
Watchdog  
ref  
Tracker  
5V  
ref  
CLK  
CS  
Tracker  
5V  
Sensor  
supplies  
(off board  
supplies)  
ref  
Tracker  
5V  
SPI  
16 bit  
ref  
DI  
Tracker  
5V  
ref  
DO  
ERR  
Tracker  
5V  
GND  
4*  
Figure 2 Block Diagram  
Data Sheet, Rev. 1.31  
7
2004-10-12  
TLE 6361 G  
2
Detailed circuit description  
In the following major buck regulator blocks, the linear voltage regulators and trackers,  
the undervoltage reset function, the watchdog and the SPI are described in more detail.  
For applications information e.g. choice of external components, please refer to  
section .  
2.1  
Buck Regulator  
The diagram below shows the internal implemented circuit of the Buck converter, i. e. the  
internal DMOS devices, the regulation loop and the other major blocks.  
IN  
5V  
14V  
Int. voltage  
regulator  
Int. charge  
pump  
150µA  
to  
8 to 10V  
current sense  
amplifier  
FB/L_IN  
C+  
C-  
CCP  
Gate driver  
Main switch ON/OFF  
Main  
DMOS  
IN  
under-  
voltage  
lockout  
SW  
BOOT-  
STRAP  
Slope switch  
charge signal  
BOOST  
SW  
switching frequency 330kHz  
Divider  
Slope  
DMOS  
Slope switch  
discharge signal  
Oscillator  
1.4MHz  
Slope  
compensation  
Gate off signal  
from overtemp or  
sleep command  
Trigger for  
gate on  
Lowpass  
Lowpass  
Voltage  
feedback  
amplifier  
Zero cross  
detection  
PWM logic  
Slope logic  
Delay unit  
Current  
comparator  
Trigger for  
gate off  
Vref=6V  
Current  
sense  
from  
+
current sensing  
amplifier  
Slope  
control  
SLEW  
external components  
pins  
Figure 3 Detailed Buck regulator diagram  
The 1.5A Buck regulator consists of two internal DMOS power stages including a current  
mode regulation scheme to avoid external compensation components plus additional  
blocks for low EME and reduced switching loss. Figure 3 indicates also the principle how  
Data Sheet, Rev. 1.31  
8
2004-10-12  
TLE 6361 G  
the gate driver supply is managed by the combination of internal charge pump, external  
charge pump and bootstrap capacitor.  
2.1.1  
Current mode control scheme  
The regulation loop is located at the left lower corner in the schematic, there you find the  
voltage feedback amplifier which gives the actual information of the actual output voltage  
level and the current sense amplifier for the load current information to form finally the  
regulation signal. To avoid subharmonic oscillations at duty cycles higher than 50% the  
slope compensation block is necessary.  
The control signal formed out of those three blocks is finally the input of the PWM  
regulator for the DMOS gate turn off command, which means this signal determines the  
duty cycle. The gate turn on signal is set by the oscillator periodically every 3µs which  
leads to a Buck converter switching frequency around 330kHz.  
With decreasing input voltage the device changes to the so called pulse skipping mode  
which means basically that some of the oscillator gate turn off signals are ignored. When  
the input voltage is still reduced the DMOS is turned on statically (100% duty cycle) and  
its gate is supplied by the internal charge pump. Below typical 4.5V at the feedback pin  
the device is turned off.During normal switching operation the gate driver is supplied by  
the bootstrap capacitor.  
2.1.2  
Start-up procedure  
To guarantee a device startup even under full load condition at the linear regulator  
outputs a special start up procedure is implemented. At first the bootstrap capacitor is  
charged by the internal charge pump. Afterwards the outpuput capacitor is charged  
where the driver supply in that case is maintained only by the bootstrap capacitor. Once  
the output capacitor of the buck converter is charged the external charge pump is  
activated being able to supply the linear regulators and finally the linear regulators are  
released to supply the loads.  
2.1.3  
Reduction of electromagnetic emission  
In figure 3 it is recognized that two internal DMOS switches are used, a main switch and  
an auxiliary switch. The second implemented switch is used to adjust the current slope  
of the switching current. The slope adjustment is done by a controlled charge and  
discharge of the gate of this DMOS. By choosing the external slew resistor appropriate  
the current transition time can be adjusted between 20ns and 100ns.  
2.1.4  
Reducing the switching losses  
The second purpose of the slope DMOS is to minimise the switching losses. Once being  
in freewheeling mode of the buck regulator the output voltage level is sufficient to force  
the load current to flow, the input voltage level is not needed in the first moment. By a  
feedback network consisting of a resistor and a diode to the boost pin (connection see  
Data Sheet, Rev. 1.31  
9
2004-10-12  
TLE 6361 G  
section ) the output voltage level is present at the drain of the switch. As soon as the  
voltage at the SW pin passes zero volts the handover to the main switch occurs and the  
traditional switching behaviour of the Buck switch can be observed.  
2.2  
Linear Voltage Regulators  
The Linear regulators offer voltage rails of 5V, 3.3V and 2.6V which can be determined  
by a hardware connection (see table at 2.2.2) for proper power up procedure. Being  
supplied by the output of the Buck pre-regulator the power loss within the three linear  
regulators is minimized.  
All voltage regulators are short circuit protected which means that each regulator  
provides a maximum current according to its current limit when shorted. Together with  
the external charge pump the NPN pass elements of the regulators allow low dropout  
voltage operation. By using this structure the linear regulators work stable even with a  
minimum of 470nF ceramic capacitors at their output.  
Q_LDO1 has 5V nominal output voltage, Q_LDO2 has a hardware programmable  
output voltage of 3.3V or 2.6V and Q_LDO3 is programmable to 5V or 3.3V (see 2.2.2).  
All three regulators are on all the time, if one regulator is not needed a base load resistor  
in parallel to the output capacitance for controlled power down is recommended.  
2.2.1  
Startup Sequence Linear Regulators  
When acting as 32 bit µC supply the so-called power sequencing (the dependency of the  
different voltage reails to each other) is important. Within the TLE 6361 G the following  
Startup-Sequence is defined (see also figure 4):  
V
Q_LDO2 VQ_LDO1;  
and  
Q_LDO2 VQ_LDO1 with VQ_LDO1=5V, VQ_LDO2 = 2.6V/3.3V and VQ_LDO3 = 5V  
VQ_LDO3 VQ_LDO1 with VQ_LDO1=5V, VQ_LDO2 = 2.6V and VQ_LDO3 = 3.3V  
V
The power sequencing refers to the regulator itself, externally voltages applied at  
Q_LDO2 and Q_LDO3 are not pulled down actively by the device if Q_LDO1 is lower  
than those outputs.  
That means for the power down sequencing if different output capacitors and different  
loads at the three outputs of the linear regulators are used the voltages at Q_LDO2 and  
Q_LDO3 might be higher than at Q_LDO1 due to slower discharging. To avoid this  
behaviour three Schottky diodes have to be connected between the three outputs of the  
linear regulators in that way that the cathodes of the diodes are always connected to the  
higher nominal rail.  
Data Sheet, Rev. 1.31  
10  
2004-10-12  
TLE 6361 G  
Power Sequencing  
VFB/L_IN  
VLDO_EN  
t
t
VQ_LDO1  
5V  
VRth5  
3.3V  
2.6V  
VQ_LDO2 (2.6V Mode)  
0.7V  
5V LDO  
5V LDO  
2.6V  
VRth2.6  
0.7V  
t
VQ_LDO3 (3.3V Mode)  
5V LDO  
+/- 50mV  
5V LDO  
3.3V  
VRth3.3  
+/- 50mV  
t
Figure 4 Power-up and -down sequencing of the regulators  
2.2.2  
Q_LDO2 and Q_LDO3 output voltage selection*  
To determine the output voltage levels of the three linear regulators, the selection pin  
(SEL, pin 23) has to be connected according to the matrix given in the table below.  
Definition of Output voltage Q_LDO2 and Q_LDO3  
Select Pin SEL Q_LDO2  
Q_LDO3  
connected to  
output voltage output voltage  
GND  
3.3 V  
2.6 V  
2.6 V  
5 V  
Q_LDO1  
Q_LDO2  
3.3 V  
5 V  
* for different output voltages please refer to the multi voltage supply TLE6368  
Data Sheet, Rev. 1.31  
11  
2004-10-12  
TLE 6361 G  
2.3  
Voltage Trackers  
For off board supplies i.e. sensors six voltage trackers Q_T1 to Q_T6 with 17mA output  
current capability each are available. The output voltages match Q_LDO1 within  
+5 / -15mV. They can be individually turned on and off by the appropriate SPI command  
word sent by the microcontroller. A ceramic capacitor with the value of 1µF at the output  
of each tracker is sufficient for stable operation without oscillation.  
The tracker outputs can be connected in parallel to obtain a higher output current  
capability, no matter if only two or up to all six trackers are tied together. For uniformly  
distributed current density in each tracker internal balance resistors at each output are  
foreseen internally. By connecting twice three trackers in parallel two sensors with more  
than 50mA each can be supplied, all six in parallel give more than 100mA.  
The tracker outputs can withstand short circuits to GND or battery in a range from -5 to  
+60V. A short circuit to GND at is detected and indicated individually for each tracker in  
the SPI status word. Also an open load condition might be recognised and indicated as  
a failure condition in the SPI status word. A minimum load current of 2mA is required to  
avoid open load failure indication. In case of connecting several trackers to a common  
branch balancing currents can prevent proper operation of the failure indication.  
2.4  
Standby Regulator  
The standby regulator is an ultra low power 2.5V linear voltage regulator with 1mA output  
current which is on all the time. It is intended to supply the microcontroller in stop mode  
and requires then only a minimum of quiescent current (<30µA) to extend the battery  
lifetime.  
2.5  
Charge Pump  
The 1.6 MHz charge pump with the two external capacitors will serve to supply the base  
of the NPN linear regulators Q_LDO1 and Q_LDO3 as well as the gate of the Buck  
DMOS transistor in 100% duty cycle operation at low battery condition. The charge pump  
voltage in the range of 8 to 10V can be measured at pin 22 (CCP) but is not intended to  
be used as a supply for additional circuitry.  
2.6  
Power On Reset  
A power on reset is available for each linear voltage regulator output. The reset output  
lines R1, R2 and R3 are active (low) during start up and turn inactive with a reset delay  
time after Q_LDO1, Q_LDO2 and Q_LDO3 have reached their reset threshold. The  
reset outputs are open collector, three pull up resistors of 10keach have to be  
connected to the I/O rail (e.g. Q_LDO1) of the µC. All three reset outputs can be linked  
in parallel to obtain a wired-OR.  
The reset delay time is 64 ms by default and can be set to lower values as 8 ms, 16 ms  
or 32 ms by SPI command. At each power up of the device when the output voltage at  
Data Sheet, Rev. 1.31  
12  
2004-10-12  
TLE 6361 G  
Q_LDO1 has decreased below 3.3V (max.) the default settings are valid, means the  
64ms delay time. If the voltage on Q_LDO1 during sleep or power off mode was kept  
above 3.3V the delay time set by the last SPI command is valid.  
VFB/L_IN  
< trr  
t
VQ_LDOx  
VRTH,Q_LDOx  
trr  
t
t
tRES  
tRES  
tRES  
VRx  
tRES  
thermal  
under  
over  
load  
shutdown  
voltage  
Figure 5 Undervoltage reset timing  
2.7 RAM good flag  
A RAM good flag will be set within the SPI status word when the Q_LDO1 voltage drops  
below 2.3V. A second one will be set if Q_LDO2 drops below typical 1.4V. Both RAM  
good flags can be read after power up to determine if a cold or warm start needs to be  
processed. Both RAM good flags will be reset after each SPI cycle.  
2.8  
ERR Pin  
An hardware error pin indicates any fault conditions on the chip. It should be connected  
to an interrupt input of the microcontroller. A low signal indicates an error condition. The  
microcontroller can read the root cause of the error by reading the SPI register.  
2.9  
Window Watchdog  
The on board window watchdog for supervision of the µC works in combination with the  
SPI. The window watchdog logic is triggered when CS is low and Bit WD-Trig in the SPI  
command word is set to “1”. The watchdog trigger is recognized with the low to high  
transition of the CS signal. To allow reading the SPI at any time without getting a reset  
due to misinterpretation the WD-Trig bit has to be set to “0” to avoid false trigger  
conditions. To disable the window watchdog the WD-OFF bits need to be set to “010”.  
Data Sheet, Rev. 1.31  
13  
2004-10-12  
TLE 6361 G  
tSR = tOW/2  
tWDR = tRES  
tCW=tCW  
tOW=tCW  
(not the same scale)  
(not the same scale)  
closed window  
open window  
reset delay time without trigger  
definition  
definition  
reset start delay time after window  
watchdog timeout  
reset duration time after window  
watchdog time-out  
tECW  
t
EOW = end of open window  
Example with:  
tCW=128ms  
fOSC=fOSCmax t EOW, w.c.= ( tCW+tOW )(1-)  
=25% (oscillator deviation)  
worst cases  
fOSC=fOSCmin t ECW, w.c.= tCW (1+)  
tECW, w.c. = 128(1.25) = 160ms  
tEOW, w.c = (128+128)(0.75) = 192ms  
towmin  
= 32ms  
t OWmin  
Minimum open window time: t OWmin= tOW - * ( tOW + 2* tCW  
)
Figure 6 Window watchdog timing definition  
Figure 6 shows some guidelines for designing the watchdog trigger timing taking the  
oscillator deviation of different devices into account. Of importance is the maximum  
(w.c.) of the closed window and the minimum of the open window in which the trigger has  
to occur.  
The length of the OW and CW can be modified by SPI command. If a change of the  
window length is desired during the Watchdog function is operating please send the SPI  
command with the new timing with a ’Watchdog trigger Bit’ D15=1.In this case the next  
CW will directly start with the new length.  
A minimum time gap of > 1/48 of the actual OW/CW time between a ’Watchdog disable’  
and ’Watchdog enable’ SPI-command should be maintained. This allows the internal  
Watchdog counters to be resetted. Thus after the enable command the Watchdog will  
start properly with a full CW of the adjusted length.  
Data Sheet, Rev. 1.31  
14  
2004-10-12  
TLE 6361 G  
Perfect triggering after Power on Reset  
VQ_LDO1  
VRth1  
1V  
t
t
t
t
t
tRES  
R1  
tCW  
tSR  
Watchdog  
window  
CW  
OW  
CW  
OW  
CW  
CW  
OW  
CS  
with WD-  
trig=1  
ERR  
Incorrect triggering  
Watchdog  
window  
CW  
OW  
t
t
CS  
with WD-  
trig=1  
1)  
2)  
1) Pretrigger  
2) Missing trigger  
Legend:  
OW = Open window  
CW = Closed window  
Figure 7 Window watchdog timing  
Figure 7 gives some timing information about the window watchdog. Looking at the  
upper signals the perfect triggering of the watchdog is shown. When the 5V linear  
regulator Q_LDO1 reaches its reset threshold, the reset delay time has to run off before  
Data Sheet, Rev. 1.31  
15  
2004-10-12  
TLE 6361 G  
the closed window (CW) starts. Then three valid watchdog triggers are shown, no effect  
on the reset line and/or error pin is observed. With the missing watchdog trigger signal  
the error signal turns low immediately where the reset is asserted after another delay of  
half the closed window time.  
Also shown in the figure are two typical failure modes, one pretrigger and one missing  
signal. In both cases the error signal will go low immediately the failure is detected with  
the reset following after the half closed window time.  
2.10  
Overtemperature Protection  
At a chip temperature of more than 130° an error and temperature flag is set and can be  
read through the SPI. The device is switched off if the device reaches the  
overtemperature threshold of 170°C. The overtemperature shutdown has a hysteresis to  
avoid thermal pumping.  
2.11  
Power Down Mode  
The TLE 6361 G is started by a static high signal at the wake input or a high pulse with  
a minimum of 50µs duration at the Wake input (pin 34). In order to avoid instabilities of  
the device voltages applied to the Wake pin (pin 34) have to have a certain slope, i.e.  
1V/3µs. Voltages in the range between the turn on and turn off thresholds for a few 100µs  
must be avoided!  
By SPI command (“Sleep”-bit, D8, equals zero) all voltage regulators including the  
switching regulator except the standby regulator can be turned off completely only if the  
wake input is low. In the case the Wake input is permanently connected to battery the  
device cannot be turned off by SPI command, it will always turn on again.  
For stable “on” operation of the device the “Sleep”-bit, D8 has to be set to high at each  
SPI cycle!  
When powering the device again after power down the status of the SPI controlled  
devices (e.g. trackers, watchdog etc.) depends on the output voltage on Q_LDO1. Did  
the voltage at Q_LDO1 decrease below 3.3V the default status (given in the next section)  
is set otherwise the last SPI command defines the status.  
2.12  
Serial Peripheral Interface  
A standard 16bit SPI is available for control and diagnostics. It is capable to operate in a  
daisy chain. It can be written or read by a 16 bit SPI interface as well as by an 8 bit SPI  
interface.  
The 16-bit control word (write bit assignment, see figure 8) is read in via the data input DI,  
synchronous to the clock input CLK supplied by the µC. The diagnosis word appears in  
the same way synchronously at the data output DO (read bit assignment, see figure 9),  
so with the first bit shifted on the DI line the first bit appears on the DO line.  
Data Sheet, Rev. 1.31  
16  
2004-10-12  
TLE 6361 G  
The transmission cycle begins when the TLE 6361 G is selected by the “not chip select”  
input CS (H to L). After the CS input returns from L to H, the word that has been read in  
at the DI line becomes the new control word. The DO output switches to tristate status at  
this point, thereby releasing the DO bus circuit for other uses. For details of the SPI  
timing please refer to figures 10 to 13.  
The SPI will be reset to default values given in the following table “write bit meaning” if  
the RAM good flag of Q_LDO1 indicates a cold start (lower output voltage than 3.3V).  
The reset will be active as long as the power on reset is present so during the reset delay  
time at power up no SPI commands are acceptable.  
The register content of the SPI - including watchdog timings and reset delay timings - is  
maintained if the RAM good flag of Q_LDO1 indicates a warm start (i.e. Q_LDO1 did not  
decrease below 3.3V).  
2.12.1 Write mode  
The following tables show the bit assignment to the different control functions, how to  
change settings with the right bit combination and also the default status at power up.  
2.12.2 Write mode bit assignment  
BIT  
DO  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
sleep  
1
D9  
D10  
reset 1  
0
D11  
reset 2  
0
D12  
WD 1  
0
D13  
WD 2  
0
D14  
D 15  
WD-Trig  
0
WD_OF  
F1  
NOT  
T1-  
T2-  
T6-  
T4-  
T5-  
T6-  
WD_OF  
F2  
WD_OF  
F3  
Name  
assigned control  
control  
control  
control  
control  
control  
Default  
1
X
0
0
0
0
0
0
1
1
Figure 8 Write Bit assignment  
Write Bit meaning  
Function  
Bit  
Combination Default  
Not assigned  
D1  
X
X
0
Tracker 1 to 6 - control:  
turn on/off the individual trackers  
D2  
D3  
D4  
D5  
D6  
D7  
0: OFF  
1: ON  
Power down:  
D8  
0: SLEEP  
1
send device to sleep  
1: NORMAL  
Data Sheet, Rev. 1.31  
17  
2004-10-12  
TLE 6361 G  
Write Bit meaning  
Function  
Bit  
Combination Default  
Reset timing:  
Reset delay time tRES valid at warm start  
D10D11  
00: 64ms  
10: 32ms  
01: 16ms  
11: 8ms  
00  
Window watchdog timing:  
Open window time tOW and  
closed window time tCW valid at warm start  
D12D13  
00: 128ms  
10: 64ms  
01: 32ms  
11: 16ms  
00  
Window watchdog function:  
Enable /disable window watchdog  
D0D9D14 010: OFF  
1xx: ON  
111  
x0x: ON  
xx1: ON  
Window watchdog trigger:  
Enable / disable window watchdog trigger  
D15  
0: not triggered 1  
1: triggered  
2.12.3 Read mode  
Below the status information word and the bit assignments for diagnosis are shown.  
2.12.3.1 Read mode bit assignment  
BIT  
DO  
ERROR  
0
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
WD  
D11  
D12  
D13  
D14  
D 15  
temp_  
warn  
T1-  
T2-  
T3-  
T4-  
T5-  
T6-  
RAM  
RAM  
WD  
DC/DC  
status  
Name  
R-Error1 R-Error2 R-Error3  
status  
status  
status  
status  
status  
status  
Good 1 Good 2 Window  
Error  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Figure 9 Read Bit assignment  
Error bit D0:  
The error bit indicates fail function and turns high if the temperature prewarning, the  
watchdog error is active, further if one RAM good indicates a cold start or if a voltage  
tracker does not settle within 1ms when it is turned on.  
In addition to the error indication by software the ERR pin atcs as a hardware error flag.  
Data Sheet, Rev. 1.31  
18  
2004-10-12  
TLE 6361 G  
Read Bit meaning  
Function  
Type  
Bit  
Combination  
Default  
Error indication,  
explanation see below this  
table  
Latched  
D0  
0: normal operation 0  
1: fail function  
Overtemperature warning Not latched D1  
0: normal operation 0  
1: prewarning  
Status of Tracker Output  
Q_T[1:6],only if output is  
ON  
Not latched D2  
1: settled output  
voltage  
0:Tracker turned  
off or  
shorted output.  
Also open load  
may possibly be  
indicated as 0.1)  
0
D3  
D4  
D5  
D6  
D7  
Indication of cold start/  
warm start, Q_LDO1  
Latched  
Latched  
D8  
D9  
0: cold start  
1: warm start  
0
0
0
Indication of cold start/  
warm start, Q_LDO2  
0: cold start  
1: warm start  
Indication for open or  
closed window  
Not latched D10  
Not latched D11  
Not latched D12  
Not latched D13  
0: open window  
1: closed window  
Reset condition at output  
Q_LDO1  
0: normal operation 0  
1: Reset R1  
Reset condition at output  
Q_LDO2  
0: normal operation 0  
1: Reset R2  
Reset condition at output  
Q_LDO3  
0: normal operation 0  
1: Reset R3  
Watchdog Error  
Latched  
D14  
0: normal operation 0  
1: WD error  
DC/DC converter status  
Not latched D15  
0: off  
1: on  
1
1)  
Min. load current to avoid ’0’ signal caused by open load is 2mA.  
Data Sheet, Rev. 1.31  
19  
2004-10-12  
TLE 6361 G  
2.12.4 SPI Timings  
CS High to Low & rising edge of CLK: DO is enabled.  
Status information is transferred to Output Shift Register  
CS  
CLK  
DI  
CS Low to High: Data from Register  
are transferred to e.g. Trackers  
time  
0
1
2
3
13 14 15  
0
1
Data In (N)  
Data In (N+1)  
D1  
+
D0  
+
D13 D14 D15  
D0  
D1 D2 D3  
DI: Data will be accepted on the falling edge of CLK-Signal  
Data Out (N)  
Data Out (N-1)  
D13 D14 D15  
D1  
D0 D1 D2 D3  
D0  
DO  
DO: State will change on the rising edge of CLK-Signal  
e.g.  
Tracker-  
Setting (N)  
Setting (N-1)  
control  
e.g.  
Tracker-  
Status (N)  
Status (N-1)  
status  
Figure 10 SPI Data Transfer Timing  
Data Sheet, Rev. 1.31  
20  
2004-10-12  
TLE 6361 G  
Figure 11 SPI-Input Timing  
trIN  
tfIN <10ns  
0.7 VQ_LDO1  
50%  
0.2 VQ_LDO1  
CLK  
trDO  
90%  
10%  
(low to high)  
DO  
tVADO  
tfDO  
90%  
10%  
(high to low)  
DO  
Figure 12 DO Valid Data Delay Time and Valid Time  
Data Sheet, Rev. 1.31  
21  
2004-10-12  
TLE 6361 G  
tfIN  
trIN <10ns  
0.7 VQ_LDO1  
50%  
0.2 VQ_LDO1  
CS  
DO  
DO  
10k  
Pullup  
50%  
50%  
to VQ_LDO1  
tENDO  
tDISDO  
10k  
Pulldown  
to GND  
Figure 13 DO Enable and Disable Time  
Data Sheet, Rev. 1.31  
22  
2004-10-12  
TLE 6361 G  
3
Characteristics  
3.1  
Absolute Maximum Ratings  
Item Parameter Symbol Limit Values  
Unit  
Test Condition  
Min.  
Max.  
3.1.1 Supply Voltage Input IN  
Voltage  
Current  
VVS  
IVS  
-0.5  
60  
V
3.1.2 Buck-Switch Output SW  
Voltage  
Current  
VSW  
ISW  
-2  
VS+0.5  
V
3.1.3 Feedback and Linear Voltage Regulator Input  
Voltage  
Current  
VFB/L_IN  
IFB/L_IN  
-0.5  
8
V
3.1.4 Bootstrap Connector Bootstrap  
Voltage  
VBootstrap VSW-  
VSW+  
10V  
V
0.5V  
Voltage  
Current  
VBootstrap -0.5  
70  
V
IBootstrap  
Internally Limited  
3.1.5 Boost Input  
Voltage  
VBoost  
IBoost  
-0.5  
60  
V
Current  
Internally Limited  
3.1.6 Slope Control Input Slew  
Voltage  
Current  
VSlew  
ISlew  
-0.5  
6
V
Internally Limited  
3.1.7 Charge Pump Capacitor Connector C-  
Voltage  
VCL  
-0.5  
VFB/L_IN  
+0.5  
V
Current  
ICL  
-150  
+150  
mA  
Data Sheet, Rev. 1.31  
23  
2004-10-12  
TLE 6361 G  
3.1.8 Charge Pump Capacitor Connector C+  
Voltage  
Current  
VCH  
ICH  
-0.5  
13  
V
-150  
+150  
mA  
3.1.9 Charge Pump Storage Capacitor CCP  
Voltage  
Current  
VCCP  
ICCP  
-0.5  
12  
V
-150  
mA  
3.1.10 Standby Voltage Regulator output Q_STB  
Voltage  
Current  
VQ_Stb  
IQ_Stb  
-0.5  
6
V
Internally limited  
3.1.11 Voltage Regulator output voltage Q_LDO1  
Voltage  
Current  
VQ_LDO1  
IQ_LDO1  
-0.5  
6
V
Internally limited  
3.1.12 Voltage Regulator output voltage Q_LDO2  
Voltage  
Current  
VQ_LDO2  
IQ_LDO2  
-0.5  
6
V
Internally limited  
3.1.13 Voltage Regulator output voltage Q_LDO3  
Voltage  
Current  
VQ_LDO3  
IQ_LDO3  
-0.5  
6
V
Internally limited  
3.1.14 Voltage Tracker output voltage Q_T1  
Voltage  
Current  
VQ_T1  
IQ_T1  
-5  
60  
V
Internally limited  
mA  
3.1.15 Voltage Tracker output voltage Q_T2  
Voltage  
Current  
VQ_T2  
IQ_T2  
-5  
60  
V
Internally limited  
mA  
3.1.16 Voltage Tracker output voltage Q_T3  
Voltage  
Current  
VQ_T3  
IQ_T3  
-5  
60  
V
Internally limited  
mA  
3.1.17 Voltage Tracker output voltage Q_T4  
Voltage  
Current  
VQ_T4  
IQ_T4  
-5  
60  
V
Internally limited  
mA  
Data Sheet, Rev. 1.31  
24  
2004-10-12  
TLE 6361 G  
3.1.18 Voltage Tracker output voltage Q_T5  
Voltage  
Current  
VQ_T5  
IQ_T5  
-5  
60  
V
Internally limited  
mA  
3.1.19 Voltage Tracker output voltage Q_T6  
Voltage  
Current  
VQ_T6  
IQ_T6  
-5  
60  
V
Internally limited  
mA  
3.1.20 Select Input SEL  
Voltage  
Current  
VSEL  
ISEL  
-0.5  
6
V
Internally limited  
3.1.21 Wake Up Input Wake  
Voltage  
Current  
VWake  
IWake  
-0.5  
60  
V
3.1.22 Reset Output R1  
Voltage  
Current  
VR1  
IR1  
-0.5  
6
V
3.1.23 Reset Output R2  
Voltage  
Current  
VR2  
IR2  
-0.5  
6
V
3.1.24 Reset Output R3  
Voltage  
Current  
VR3  
IR3  
-0.5  
6
V
3.1.25 SPI Data Input DI  
Voltage  
Current  
VDI  
IDI  
-0.5  
6
V
3.1.26 SPI Data Output DO  
Voltage  
Current  
VDO  
IDO  
-0.5  
6
V
Internally limited  
3.1.27 SPI Clock Input CLK  
Voltage  
Current  
VCLK  
ICLK  
-0.5  
6
V
Data Sheet, Rev. 1.31  
25  
2004-10-12  
TLE 6361 G  
3.1.28 SPI Chip Select Not Input CS  
Voltage  
Current  
VCS  
ICS  
-0.5  
6
V
3.1.29 Error Output Pin  
Voltage  
Current  
VError  
IError  
-0.5  
6
V
Internally limited  
3.1.30 Thermal Resistance  
Junction-  
ambient  
Rthja  
Rthja  
Rthjc  
37  
29  
2
1)PCB heat sink area  
300mm2  
K/W  
K/W  
K/W  
Junction-  
ambient  
1)PCB heat sink area  
600mm2  
Junction-  
case  
3.1.31 Temperature  
Junction  
temperature  
Tj  
-40  
150  
175  
°C  
°C  
Junction  
Tjt  
lifetime=TBD  
temperature  
transient  
Storage  
Tstg  
-50  
150  
°C  
temperature  
3.1.32 ESD - Protection (Human Body Model; 1.5k; C=100pF)  
Electrostatic VESD  
discharge  
-1  
1
kV  
All pins  
voltage  
1) Package mounted on FR4 47x50x1.5mm3; 70µ Cu, zero airflow  
Note: Maximum ratings are absolute ratings; exceeding any one of these values may  
cause irreversible damage to the integrated circuit.  
Data Sheet, Rev. 1.31  
26  
2004-10-12  
TLE 6361 G  
3.2  
Functional Range  
-40°C < Tj < 150 °C  
Item Parameter  
Symbol  
Limit Values  
Unit  
Condition  
min.  
5.5  
max.  
Supply  
Voltage  
VIN  
V
To achieve VIN,min an  
initial startup with  
VIN >8V is required;  
Supply  
VIN  
60  
V
Voltage  
Ripple at  
FB/L_IN  
VFB/L_IN  
0
150  
mVPP  
ripple  
Note: Within the functional range the IC can be operated . The electrical characteristics,  
however, are not guaranteed over this full functional range  
Data Sheet, Rev. 1.31  
27  
2004-10-12  
TLE 6361 G  
3.3  
Recommended Operation Range  
-40°C < Tj < 150 °C  
Item Parameter  
Symbol  
Limit Values  
typ. max.  
100  
Unit  
Condition  
min.  
1)  
Buck  
Inductor  
LB  
18  
µH  
µF  
Buck  
Capacitor  
CB  
10  
ESR <0.15 ,  
ceramic  
capacitor (X7R)  
recommended1)  
Bootstrap  
Capacitor  
CBTP  
2
0
% of CB  
kΩ  
SLEW  
RSLEW  
20  
resistor  
Linear  
CQ_LDO1-3 470  
nF  
ceramic  
regulator  
capacitors  
capacitor (X7R)  
Tracker  
bypass  
capacitors  
CQ_T1-6  
1
µF  
ns  
ceramic  
capacitor (X7R)  
SPI rise and tr,f  
200  
fall timings,  
CS, DI, CLK  
1)  
CB, min needs a Buck inductance LB=47µH to avoid instabilities  
Data Sheet, Rev. 1.31  
28  
2004-10-12  
TLE 6361 G  
3.4  
Electrical Characteristics  
The electrical characteristics involve the spread of values guaranteed within the  
specified supply voltage and ambient temperature range. Typical values represent the  
median values at room temperature, which are related to production processes.  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
Buck regulator  
3.4.1 Switching  
frequency  
fSW  
280  
370  
20  
425  
kHz  
ns  
3.4.2 Current  
transition  
tr_I_SW  
RSL=01)  
RSL=20k1)  
RSL=01)  
time, min.,  
rising edge  
3.4.3 Current  
transition  
tr_I_SW  
tf_I_SW  
tf_I_SW  
100  
20  
ns  
ns  
ns  
time, max.,  
rising edge  
3.4.4 Current  
transition  
time, min.,  
falling edge  
3.4.5 Current  
transition  
100  
RSL=20k1)  
time, max.,  
falling edge  
1)  
3.4.6 Voltage rise / tf_V_SW  
fall time  
25  
ns  
3.4.7 Static on  
resistance  
RON  
160  
280  
mΩ  
mΩ  
Tj=25°C  
in static operation  
3.4.8 Static on  
resistance  
RON  
400  
Tj=150°C  
in static operation  
3.4.9 Current limit IMAX  
1.5  
5.4  
3.2  
6.3  
A
V
VFB/L_IN=5.4V  
3.4.10 Output  
voltage  
VOUT  
IOUT=0.1A  
VIN=13.5 V  
3.4.11 Output  
voltage  
VOUT  
5.4  
6.05  
V
IOUT=1.5A  
VIN=13.5 V  
Data Sheet, Rev. 1.31  
29  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.12 Bootstrap  
charging  
IBTSTR  
80  
160  
220  
17  
µA  
current at  
start-up  
3.4.13 Bootstrap  
voltage  
VBTSTR  
10  
5
V
V
VFB/L_IN=6.5V,  
Buck converter  
off  
(internal  
charge  
pump)  
3.4.14 Bootstrap  
undervoltage  
lockout, Buck  
turn on  
VBTSTR,  
9
turn on  
threshold  
3.4.15 Bootstrap  
undervoltage  
lockout,  
VBTSTR,  
2.5  
V
V
-
turn on  
VBTSTR,  
hysteresis  
turn off  
3.4.16 Charge  
pump  
VCCP  
7.9  
11.0  
IQ_LDO1 = 800mA,  
VFB/L_IN=6.0V,  
voltage  
CFLY=100nF,  
CCCP=220nF  
3.4.17 Max. Duty  
Cycle  
dutymax  
dutymin  
95  
%
%
Switching  
operation  
3.4.18 Min. Duty  
Cycle  
0
Static-off  
operation  
Voltage Regulator Q_LDO1  
3.4.19 Output  
voltage  
VQ1  
4.9  
5.1  
V
100mA < IQ_LDO1  
< 800mA  
3.4.20 Output  
voltage  
VQ1  
5.0  
40  
V
IQ_LDO1 = 800mA  
3.4.21 Load  
VQ_LDO1  
mV  
100mA< IQ_LDO1  
<800mA;  
Regulation  
VFB/L_IN=5,5V  
3.4.22 Current limit IQ_LDO1limit 800  
Data Sheet, Rev. 1.31  
1050  
30  
1400  
mA  
VQ_LDO1=4V  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.23 Ripple  
rejection  
PSRR1  
26  
40  
dB  
nF  
f=330kHz; 1)  
3.4.24 Output  
Capacitor  
CQ_LDO1 470  
Ceramic type,  
value for stability  
Voltage Regulator Q_LDO2  
3.4.25 Output  
voltage 3.3V  
VQ_LDO2  
3.14  
3.46  
V
50mA < IQ_LDO2  
400mA;  
<
3.3V mode  
3.4.26 Output  
voltage 3.3V  
3.4.27 Output  
voltage 2.6V  
VQ_LDO2  
VQ_LDO2  
3.32  
V
V
IQ_LDO2 =400mA;  
3.3V mode  
2.500  
2.750  
50mA < IQ_LDO2  
400mA;  
<
2.6V mode  
3.4.28 Output  
voltage 2.6V  
3.4.29 Load  
Regulation  
VQ_LDO2  
2.62  
50  
V
IQ_LDO2 =400mA;  
2.6V mode  
VQ_LDO2  
mV  
50mA< IQ_LDO3  
<400mA;  
VFB/L_IN=5.5V  
3.3V mode  
3.4.30 Load  
Regulation  
VQ_LDO2  
50  
mV  
50mA< IQ_LDO2  
<400mA;  
VFB/L_IN=5.5V  
2.6V mode  
3.4.31 Current limit IQ_LDO2limit 500  
3.4.32 Current limit IQ_LDO2limit 500  
650  
650  
40  
850  
850  
mA  
mA  
dB  
VQ_LDO2= 2.8V;  
3.3V mode  
VQ_LDO2= 2V;  
2.6V mode  
f=330kHz; 1)  
3.4.33 Ripple  
rejection  
3.4.34 Output  
Capacitor  
Voltage Regulator Q_LDO3  
PSRR2  
26  
CQ_LDO2 470  
nF  
Ceramic type,  
value for stability  
Data Sheet, Rev. 1.31  
31  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.35 Output  
voltage 5V  
VQ_LDO3  
4.8  
5.2  
V
20mA < IQ_LDO3  
300mA;  
<
5V mode  
3.4.36 Output  
voltage 5V  
VQ_LDO3  
VQ_LDO3  
5.0  
V
V
IQ_LDO3 =300mA;  
5V mode  
3.4.37 Output  
voltage 3.3V  
3.14  
3.46  
20mA < IQ_LDO3  
300mA;  
<
3.3V mode  
3.4.38 Output  
voltage 3.3V  
VQ_LDO3  
3.32  
100  
V
IQ_LDO3 =300mA;  
3.3V mode  
3.4.39 Load  
Regulation  
VQ_LDO3  
mV  
20mA< IQ_LDO3  
<300mA;  
VFB/L_IN=5,5V  
5V mode  
3.4.40 Load  
Regulation  
VQ_LDO3  
50  
mV  
20mA< IQ_LDO3  
<300mA;  
VFB/L_IN=5,5V  
3.3V mode  
3.4.41 Current limit IQ_LDO3  
350  
350  
26  
500  
500  
40  
600  
600  
mA  
mA  
dB  
VQ_LDO3=4V;  
5V mode  
limit  
3.4.42 Current limit IQ_LDO3  
limit  
VQ_LDO3=2.8V;  
3.3V mode  
f=330kHz; 1)  
3.4.43 Ripple  
rejection  
3.4.44 Output  
Capacitor  
Voltage Tracker Q_T1  
3.4.45 Output VQ_T1  
PSRR3  
CQ_LDO3 470  
nF  
Ceramic type,  
value for stability  
-15  
5
mV  
mV  
VQ_T1-VQ_LDO1  
;
voltage  
tracking  
accuracy  
1mA < IQ_T1  
17mA  
<
3.4.46 Output  
voltage  
VQ_T1  
-10  
32  
VQ_T1-VQ_LDO1  
Q_T1 = 17mA  
;
I
tracking  
accuracy  
Data Sheet, Rev. 1.31  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter Symbol Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.47 Overvoltage VOVQ_T1  
threshold  
VQ_T1,  
mV  
mV  
IQ_T1 = 0mA; 1)  
nom  
1)  
3.4.48 Undervoltage VUVQ_T1  
threshold  
VQ_T1-  
15mV  
3.4.49 Current limit IQ_T1 limit 17  
30  
mA  
dB  
VQ_T1=4V  
f=330kHz; 1)  
3.4.50 Ripple  
rejection  
PSRR  
26  
3.4.51 Tracker load CQ_T1  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Voltage Tracker Q_T2  
3.4.52 Output  
voltage  
VQ_T2  
-15  
5
mV  
mV  
VQ_T2-VQ_LDO1  
;
;
1mA < IQ_T2  
17mA  
<
tracking  
accuracy  
3.4.53 Output  
voltage  
VQ_T2  
-10  
VQ_T2-VQ_LDO2  
IQ_T2 = 17mA  
tracking  
accuracy  
3.4.54 Overvoltage VOVQ_T2  
threshold  
VQ_T2,  
mV  
mV  
IQ_T2 = 0mA;1)  
nom  
1)  
3.4.55 Undervoltage VUVQ_T2  
threshold  
VQ_T2-  
15mV  
3.4.56 Current limit IQ_T2 limit 17  
30  
mA  
dB  
VQ_T2=4V  
f=330kHz; 1)  
3.4.57 Ripple  
rejection  
PSRR  
26  
3.4.58 Tracker load CQ_T2  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Voltage Tracker Q_T3  
Data Sheet, Rev. 1.31  
33  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.59 Output  
voltage  
VQ_T3  
-15  
5
mV  
VQ_T3-VQ_LDO1  
;
1mA < IQ_T3  
17mA  
<
tracking  
accuracy  
3.4.60 Output  
voltage  
VQ_T3  
-10  
mV  
VQ_T3-VQ_LDO3  
IQ_T3 = 17mA  
;
tracking  
accuracy  
3.4.61 Overvoltage VOVQ_T3  
threshold  
VQ_T3,  
mV  
mV  
IQ_T3 = 0mA; 1)  
nom  
1)  
3.4.62 Undervoltage VUVQ_T3  
threshold  
VQ_T3-  
15mV  
3.4.63 Current limit IQ_T3 limit 17  
30  
mA  
dB  
VQ_T3=4V  
f=330kHz; 1)  
3.4.64 Ripple  
rejection  
PSRR  
26  
3.4.65 Tracker load CQ_T3  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Voltage Tracker Q_T4  
3.4.66 Output  
voltage  
VQ_T4  
-15  
5
mV  
mV  
VQ_T4-VQ_LDO1;  
1mA < IQ_T4  
17mA  
<
tracking  
accuracy  
3.4.67 Output  
voltage  
VQ_T4  
-10  
VQ_T4-VQ_LDO4  
;
I
Q_T4 = 17mA  
tracking  
accuracy  
3.4.68 Overvoltage VOVQ_T4  
threshold  
VQ_T4,  
mV  
mV  
IQ_T4 = 0mA; 1)  
nom  
1)  
3.4.69 Undervoltage VUVQ_T4  
threshold  
VQ_T4-  
15mV  
3.4.70 Current limit IQ_T4 limit 17  
3.4.71 Ripple PSSR 26  
rejection  
30  
mA  
dB  
VQ_T4=4V  
f=330kHz; 1)  
Data Sheet, Rev. 1.31  
34  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter Symbol Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.72 Tracker load CQ_T4  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Voltage Tracker Q_T5  
3.4.73 Output  
voltage  
VQ_T5  
-15  
5
mV  
mV  
VQ_T5-VQ_LDO1  
;
;
1mA < IQ_T5  
17mA  
<
tracking  
accuracy  
3.4.74 Output  
voltage  
VQ_T5  
-10  
VQ_T5-VQ_LDO5  
Q_T5 = 17mA  
I
tracking  
accuracy  
3.4.75 Overvoltage VOVQ_T5  
threshold  
VQ_T5,  
mV  
mV  
IQ_T5 = 0mA; 1)  
nom  
1)  
3.4.76 Undervoltage VUVQ_T5  
threshold  
VQ_T5-  
15mV  
3.4.77 Current limit IQ_T5 limit 17  
30  
mA  
dB  
VQ_T5=4V  
f=330kHz; 1)  
3.4.78 Ripple  
rejection  
PSRR  
26  
3.4.79 Tracker load CQ_T5  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Voltage Tracker Q_T6  
3.4.80 Output  
voltage  
VQ_T6  
-15  
5
mV  
mV  
mV  
VQ_T6-VQ_LDO1;  
1mA < IQ_T6  
17mA  
<
tracking  
accuracy  
3.4.81 Output  
voltage  
VQ_T6  
-10  
VQ_T6-VQ_LDO6  
Q_T6 = 17mA  
;
I
tracking  
accuracy  
3.4.82 Overvoltage VOVQ_T6  
threshold  
VQ_T6,  
IQ_T6 = 0mA; 1)  
nom  
Data Sheet, Rev. 1.31  
35  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter Symbol Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
1)  
3.4.83 Undervoltage VUVQ_T6  
threshold  
VQ_T6  
15mV  
-
mV  
3.4.84 Current limit IQ_T6 limit 17  
30  
mA  
dB  
VQ_T6=4V  
f=330kHz; 1)  
3.4.85 Ripple  
rejection  
PSRR  
26  
3.4.86 Tracker load CQ_T6  
capacitor  
1
µF  
Ceramic type,  
minimum for  
stability  
Standby Regulator  
3.4.87 Output  
voltage  
VQ_STB  
2.2  
2.4  
3
2.6  
6
V
0µA  
<IQ_STB<500µA  
3.4.88 Current limit IQ_STB limit  
1
mA  
nF  
VQ_STB=2V  
3.4.89 Standby  
load  
CQ_STB  
100  
Ceramic type,  
minimum for  
stability  
capacitor  
Off-Mode  
3.4.90 Supply  
current from  
battery  
Iq,off  
10  
30  
30  
2.8  
µA  
µA  
V
VIN=13.5V,  
Vwake=0V,  
I
Q_STB=0µA  
3.4.91 Supply  
current from  
battery  
Iq,off  
10  
VIN=42V,  
Vwake=0V  
I
Q_STB=0µA  
3.4.92 Turn on  
Wake-up  
Vwake th, on  
2.4  
2.35  
Vwake increasing  
Vwake decreasing  
Vwake=5V  
threshold  
3.4.93 Turn off  
Wake-up  
Vwake th, off 1.8  
V
threshold  
3.4.94 Wake-up  
input current  
Iwake  
twake,min  
50  
10  
150  
50  
µA  
µs  
3.4.95 Wake up  
input on time  
4
Vwake  
>
1)  
Vwake th, on max  
;
Reset R1  
Data Sheet, Rev. 1.31  
36  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.96 Reset  
threshold  
Q_LDO1  
VRTH  
4.5  
4.65  
4.8  
V
VQ_LDO1  
decreasing  
Q_LDO1, de  
3.4.97 Reset  
threshold  
Q_LDO1  
VRTH  
4.55  
4.70  
4.9  
V
VQ_LDO1  
increasing  
Q_LDO1, in  
3.4.98 Reset output VR1 L  
low voltage  
0.4  
0.3  
1
V
IR1=1.6mA;  
VQ_LDO1 =5V  
3.4.99 Reset output VR1 L  
low voltage  
V
IR1=0.3mA;  
VQ_LDO1 =1V  
3.4.100 Reset High  
leakage  
IR1 H  
µA  
current  
Reset R2  
3.4.101 Reset  
threshold  
Q_LDO2  
VRTH  
2.6  
2.3  
2.8  
40  
3.0  
2.5  
V
3.3V mode;  
VQ_LDO2  
decreasing  
Q_LDO2, de  
3.4.102 Reset  
threshold  
hysteresis  
Q_LDO2  
VRTH  
mV  
3.3V mode  
-
-
Q_LDO2, in  
VRTH  
Q_LDO2, de  
VRTH  
3.4.103 Reset  
threshold  
Q_LDO2  
2.4  
40  
V
2.6V mode;  
VQ_LDO2  
decreasing  
Q_LDO2, de  
3.4.104 Reset  
threshold  
hysteresis  
Q_LDO2  
VRTH  
mV  
2.6V mode  
Q_LDO2, in  
VRTH  
Q_LDO2, de  
3.4.105 Reset output VR2 L  
low voltage  
0.4  
0.3  
1
V
IR2=1.6mA;  
VQ_LDO2 =2.5V  
3.4.106 Reset output VR2 L  
low voltage  
V
IR2=0.3mA;  
VQ_LDO2 =1V  
3.4.107 Reset High  
leakage  
IR2 H  
µA  
current  
Data Sheet, Rev. 1.31  
37  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
Reset R3  
3.4.108 Reset  
threshold  
Q_LDO3  
VRTH  
2.7  
2.85  
3.0  
V
3.3V mode;  
VQ_LDO3  
decreasing  
Q_LDO3, de  
3.4.109 Reset  
threshold  
hysteresis  
Q_LDO3  
VRTH  
40  
mV  
3.3V mode  
-
-
Q_LDO3, in  
VRTH  
Q_LDO3, de  
VRTH  
3.4.110 Reset  
threshold  
Q_LDO3  
4.0  
4.2  
40  
4.5  
V
5V mode;  
VQ_LDO3  
decreasing  
Q_LDO3, de  
3.4.111 Reset  
threshold  
hysteresis  
Q_LDO3  
VRTH  
mV  
5V mode  
Q_LDO3, in  
VRTH  
Q_LDO3, de  
3.4.112 Reset output VR3 L  
low voltage  
0.4  
0.3  
1
V
IR3=1.6mA;  
VQ_LDO3 =3.3V  
3.4.113 Reset output VR3 L  
low voltage  
V
IR3=0.3mA;  
VQ_LDO3 =1V  
3.4.114 Reset High  
leakage  
IR3 H  
µA  
current  
1)  
3.4.115 Reset  
reaction time  
trr  
1
2
10  
µs  
1
Valid for R1, R2  
and R3  
3.4.116 Reset Delay tNORM,RES 0.75  
Norm factor  
1
1
1.25  
1.25  
3.4.117 Reset Delay tRES  
time  
0.75  
tRES(SPI) Valid for R1, R2  
and R3; tRES (SPI)  
is defined by the  
SPI word (see  
section 2.12)  
RAM Good  
3.4.118 VQ1 threshold VTh Q1  
2.3  
2.8  
38  
3.3  
V
Data Sheet, Rev. 1.31  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter Symbol Limit Values  
Unit  
Test Conditions  
min.  
1.2  
typ.  
1.4  
1.4  
max.  
3.4.119 VQ2 threshold VTh Q2  
3.4.120 VQ2 threshold VTh Q2  
Window Watchdog  
1.7  
1.7  
V
V
3.3V mode  
2.6V mode; 1)  
1.2  
3.4.121 Closed  
window time  
tolerance  
tCW_tol  
0.75  
0.75  
1
1.25  
1.25  
Multiply with  
watchdog  
window time set  
by SPI to obtain  
the limits (2.12)  
3.4.122 Open  
tOW_tol  
1
Multiply with  
window time  
tolerance  
watchdog  
window time set  
by SPI to obtain  
the limits (2.12)  
3.4.123 Watchdog  
reset low  
tWRL  
tRES  
time  
3.4.124 Watchdog  
reset delay  
time  
tSR  
tCW/2  
Error Output ERR  
3.4.125 H-output  
VERR,H  
VQ_LDO1 VQ_LDO1  
V
V
IERR, H = 1 mA  
voltage level  
– 2.0  
– 0.7  
0.3  
3.4.126 L-output  
VERR,L  
0.5  
IERR, L = – 1.6 mA  
voltage level  
SPI  
3.4.127 SPI clock  
frequency  
fCLK  
0
2.5  
MHz  
Production test  
up to 1MHz;  
2.5MHz 1)  
SPI Input DI  
Data Sheet, Rev. 1.31  
39  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.128 H-input  
voltage  
VIH  
40  
70  
% of  
VQ_LDO1  
threshold  
3.4.129 L-input  
voltage  
VIL  
20  
36  
% of  
VQ_LDO1  
threshold  
1)  
3.4.130 Hysteresis of VIHY  
50  
5
200  
25  
10  
500  
100  
15  
mV  
µA  
pF  
ns  
input voltage  
3.4.131 Pull down  
II  
VDI = 0.2 *  
VQ_LDO1  
current  
3.4.132 Input  
CI  
0 V < VQ_LDO1 <  
5.25 V  
1)  
capacitance  
3.4.133 Input signal tr  
200  
200  
rise time  
1)  
3.4.134 Input signal tf  
ns  
fall time  
SPI Clock Input CLK  
3.4.135 H-input  
VIH  
40  
36  
70  
% of  
VQ_LDO1  
voltage  
threshold  
3.4.136 L-input  
voltage  
VIL  
20  
% of  
VQ_LDO1  
threshold  
1)  
3.4.137 Hysteresis of VIHY  
50  
5
200  
25  
10  
500  
100  
15  
mV  
µA  
pF  
ns  
input voltage  
3.4.138 Pull down  
II  
VCLK = 0.2 *  
VQ_LDO1  
current  
3.4.139 Input  
CI  
0 V < VQ_LDO1 <  
5.25 V  
1)  
capacitance  
3.4.140 Input signal tr  
200  
200  
rise time  
1)  
3.4.141 Input signal tf  
ns  
fall time  
SPI Chip Select Input CS  
Data Sheet, Rev. 1.31  
40  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.142 H-input  
voltage  
VIH  
39  
70  
% of  
VQ_LDO1  
threshold  
3.4.143 L-input  
voltage  
VIL  
20  
35  
% of  
VQ_LDO1  
threshold  
1)  
3.4.144 Hysteresis of VIHY  
50  
200  
500  
– 5  
mV  
input voltage  
3.4.145 Pull up  
II, CS  
– 100  
– 25  
µA  
VCS = 0.2 *  
VQ_LDO1  
current at pin  
CS  
3.4.146 Input  
CI  
10  
15  
pF  
ns  
ns  
0 V < VQ_LDO1 <  
5.25 V  
1)  
capacitance  
3.4.147 Input signal tr  
200  
200  
rise time  
1)  
3.4.148 Input signal tf  
fall time  
Logic Output DO  
3.4.149 H-output  
voltage level  
3.4.150 L-output  
voltage level  
VDOH  
VQ_LDO1 VQ_LDO1  
V
IDOH = 1 mA  
– 1.0  
– 0.8  
0.2  
VDOL  
0.4  
10  
V
IDOL = – 1.6 mA  
3.4.151 Tri-state  
leakage  
IDO_TRI  
– 10  
µA  
VCS = VQ_LDO1;  
0 V < VDO  
VQ_LDO1  
<
current  
3.4.152 Tri-state  
CDO  
10  
15  
pF  
ns  
VCS = VQ_LDO1  
input  
0 V < VQ_LDO1  
5.25 V  
<
capacitance  
Data Input Timing  
1)  
3.4.153 Clock period tpCLK  
1000  
Data Sheet, Rev. 1.31  
41  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
1)  
3.4.154 Clock high  
tCLKH  
tCLKL  
tbef  
500  
ns  
ns  
ns  
time  
1)  
1)  
3.4.155 Clock low  
time  
500  
500  
3.4.156 Clock low  
before CS  
low  
1)  
1)  
1)  
3.4.157 CS setup  
time  
tlead  
tlag  
500  
500  
500  
ns  
ns  
ns  
3.4.158 CLK setup  
time  
3.4.159 Clock low  
after CS high  
tbeh  
1)  
1)  
3.4.160 DI setup time tDISU  
3.4.161 DI hold time tDIHO  
250  
250  
ns  
ns  
Data Output Timing  
CL = 100 pF  
CL = 100 pF  
low impedance  
3.4.162 DO rise time trDO  
3.4.163 DO fall time tfDO  
50  
50  
100  
100  
250  
ns  
ns  
ns  
3.4.164 DO enable  
time  
tENDO  
high impedance  
3.4.165 DO disable  
time  
tDISDO  
250  
250  
ns  
ns  
VDO < 10%  
VDO > 90%  
CL = 100 pF  
3.4.166 DO valid time tVADO  
100  
General  
2)  
3.4.167 Temperature TJ,Flag  
warning flag  
140  
170  
°C  
°C  
3.4.168 Over  
Temperature  
TJ,Shutdown 150  
200  
shutdown  
Data Sheet, Rev. 1.31  
42  
2004-10-12  
TLE 6361 G  
-40 < Tj <150 °C; VIN=13.5V unless otherwise specified  
Item Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
3.4.169 Over-  
Temperature  
shutdown  
Tsd_hys  
30  
K
Hysteresis  
3.4.170 DeltaTW to  
TSD  
TJ,Shutdown  
- TJ,Flag  
20  
K
1)  
Specified by design, not subject to production test  
2)  
Simulated at wafer test only, not absolutely measured  
4
Typical performance charcteristics  
Buck converter switching frequency  
vs. junction temperature  
420  
fSW  
kHz  
400  
380  
360  
340  
320  
300  
280  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
°C  
Data Sheet, Rev. 1.31  
43  
2004-10-12  
TLE 6361 G  
Buck converter output voltage at 1.5A load Buck converter current limit  
vs. junction temperature  
vs. junction temperature  
6.0  
4.0  
VFB/L_IN  
IMAX  
V
A
5.9  
3.5  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Buck converter DMOS on-resistance  
vs. junction temperature  
Start-up bootstrap charging current  
vs. junction temperature  
280  
400  
IBTSTR  
RON  
µA  
mΩ  
240  
350  
300  
250  
200  
150  
100  
50  
200  
160  
120  
80  
40  
0
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Data Sheet, Rev. 1.31  
44  
2004-10-12  
TLE 6361 G  
Bootstrap UV lockout, turn on threshold  
vs. junction temperature  
Q_LDO1 output voltage at 800mA load  
vs. junction temperature  
VBTSTR,  
turn on  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
5.20  
VQ_LDO1  
V
V
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Device wake up thresholds  
vs. junction temperature  
Reset1 threshold at drecreasing V_LDO1  
vs. junction temperature  
2.8  
VRTH  
4.80  
Vwake th  
Q_LDO1, de  
V
V
2.7  
4.75  
2.6  
2.5  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
Vwake th, on  
2.4  
2.3  
Vwake th, off  
2.2  
2.1  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Data Sheet, Rev. 1.31  
45  
2004-10-12  
TLE 6361 G  
Q_LDO1 current limit  
Q_LDO2 current limit (2.6V mode)  
vs. junction temperature  
vs. junction temperature  
1400  
850  
IQ_LDO1  
IQ_LDO2  
V
V
1300  
800  
1200  
1100  
1000  
900  
750  
700  
650  
600  
550  
500  
800  
700  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Q_LDO2 output voltage at 400mA load  
(2.6V mode) vs. junction temperature  
Q_LDO3 output voltage at 300mA load  
(3.3V mode) vs. junction temperature  
2.80  
3.50  
VQ_LDO2  
VQ_LDO3  
V
V
2.75  
3.45  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Data Sheet, Rev. 1.31  
46  
2004-10-12  
TLE 6361 G  
Reset2 threshold at decreasing V_LDO2  
(2.6V mode) vs. junction temperature  
Reset3 threshold at decreasing V_LDO3  
(3.3V mode) vs. junction temperature  
VRTH  
VRTH  
2.60  
3.00  
Q_LDO2, de  
Q_LDO3, de  
V
V
2.55  
2.95  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Q_LDO3 current limit (3.3V mode)  
vs. junction temperature  
Tracker current limit  
vs. junction temperature  
32  
600  
IQ_Tx  
IQ_LDO3  
mA  
30  
V
550  
28  
26  
24  
22  
20  
18  
500  
450  
400  
350  
300  
250  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Data Sheet, Rev. 1.31  
47  
2004-10-12  
TLE 6361 G  
Tracker accuracy with respect to V_LDO1 Q_STB current limit  
vs. junction temperature  
vs. junction temperature  
4
4.0  
dVQ_Tx  
IQ_STB  
mV  
2
mA  
3.5  
0
-2  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
-4  
-6  
-8  
-10  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Q_STB output voltage at 500µA load  
vs. junction temperature  
Device current consumption in off mode  
vs. junction temperature  
2.8  
35  
VQ_STB  
Iq, off  
V
µA  
30  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
25  
20  
15  
10  
5
0
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Data Sheet, Rev. 1.31  
48  
2004-10-12  
TLE 6361 G  
5
Application Information  
Application Diagram  
5.1  
RBoost  
22 Ω  
TLE 6361  
DBOOST  
Standby  
Q_STB  
Regulator  
2.5 V  
CSTB  
100 nF  
CBOOST  
LI  
BOOST  
Buck  
100 nF  
LB  
Up to  
47 µH  
SW 2*  
Output  
2* IN  
47 µH  
C
Battery  
CBTSTR  
CI3  
+
DB  
>B10 µF  
Buck  
CI1  
100 nF  
+
CI2  
47 µF  
680 nF  
3 A,  
Regulator  
10 to  
ceramic or  
60 V  
100 nF  
SLEW  
BOOTSTRAP  
> 20 µF  
low ESR  
tantalum  
Driver  
PWM  
RSlew  
0 to  
20 kΩ  
Error-  
Amplifier  
Internal  
Reference  
Feedback  
OSZ  
To  
FB/L_IN 2*  
IGN  
C+  
CFLY  
Protection  
10 kΩ  
100 nF  
C-  
Charge  
Pump  
Q_LDO1  
Power  
Down  
Logic  
CCP  
WAKE  
CCCP  
220 nF  
10 kΩ  
10 kΩ  
10 kΩ  
SEL  
R1  
R2  
R3  
Q_LDO1  
Lin. Reg.  
5 V  
CLDO1,1  
CLDO1,2  
+
+
470 nF  
4.7 µF  
To  
Reset  
Logic  
Q_LDO2  
Q_LDO3  
Lin. Reg.  
3.3/2.6 V  
µ-Controller/  
µC  
CLDO2,1  
CLDO2,2  
Memory  
Supply  
470 nF  
4.7 µF  
Lin. Reg.  
5/3.3 V  
CLDO3,1  
470 nF  
CLDO3,2  
4.7 µF  
+
Ref  
Ref  
Ref  
Ref  
Ref  
Ref  
Q_T1  
Q_T2  
Q_T3  
Q_T4  
Q_T5  
Q_T6  
Tracker  
5 V  
Window  
CT1  
Watchdog  
1 µF  
Tracker  
5 V  
CT2  
1 µF  
10 kΩ  
CLK  
CS  
DI  
Tracker  
5 V  
CT3  
1 µF  
Sensor  
10 kΩ  
10 kΩ  
1 kΩ  
Supplies  
(off board  
supplies)  
Tracker  
5 V  
CT4  
SPI  
1 µF  
16 Bit  
To  
Tracker  
5 V  
µC  
CT5  
1 µF  
DO  
Tracker  
5 V  
CT6  
1 µF  
ERR  
GND  
4*  
AEA03380_6361ZR.VSD  
Figure 14 Application Diagram  
Data Sheet, Rev. 1.31  
49  
2004-10-12  
TLE 6361 G  
5.2  
Buck converter circuit  
A typical choice of external components for the buck converter is given in figure 14. For  
basic operation of the buck converter the input capacitor CI2, the bootstrap capacitor  
CBTP, the catch diode DB, the induuctance LB, the output capacitor CB and the charge  
pump capacitors CFLY and CCCP are necessary.  
The additional components shown on top of the circuit lower the electromagnetic  
emission (LI, CI1, CI3, RSlew) and the switching losses (RBoost, CBoost, DBoost). For 12V  
battery systems the switching loss minimization feature might not be used. In that case  
the Boost pin (33) is connected directly to the IN pins (32, 30) and the components  
R
Boost, CBoost and DBoost are left away  
5.2.1 Buck inductance (LB) selection:  
The inductance value determines together with the input voltage, the output voltage and  
the switching frequency the current ripple which occurs during normal operation of the  
step down converter. This current ripple is important for the all over ripple at the output  
of the switching converter.  
As a rule of thumb this current ripple I is chosen between 10% and 50% of the load  
current.  
(VI – VOUT) VOUT  
L = --------------------------------------------------  
fSW VI I  
For optimum operation of the control loop of the Buck converter the inductance value  
should be in the range indicated in section 3.3, recommended operation range.  
When picking finally the inductance of a certain supplier (Epcos, Coilcraft etc.) the  
saturation current has to be considered. With a maximum current limit of the Buck  
converter of 3.2A an inductance with a minimum saturation current of 3.2A has to be  
chosen.  
Data Sheet, Rev. 1.31  
50  
2004-10-12  
TLE 6361 G  
5.2.2  
Buck output capacitor (CB) selection:  
The choice of the output capacitor effects straight to the minimum achievable ripple  
which is seen at the output of the buck converter. In continuous conduction mode the  
ripple of the output voltage equals:  
1
VRipple = I  
R
ESRCB + ----------------------------  
8 fSW CB  
From the formula it is recognized that the ESR has a big influence in the total ripple at  
the output, so ceramic types or low ESR tantalum capacitors are recommended for the  
application.  
One other important thing to note are the requirements for the resonant frequency of the  
output LC-combination. The choice of the components L and C have to meet also the  
specified range given in section 3.3 otherwise instabilities of the regulation loop might  
occur.  
5.2.3  
Input capacitor (CI2) selection:  
At high load currents, where the current through the inductance flows continuously, the  
input capacitor is exposed to a square wave current with its duty cycle VOUT/VI. To  
prevent a high ripple to the battery line a capacitor with low ESR should be used. The  
maximum RMS current which the capacitor has to withstand is calculated to:  
2  
VOUT  
IRMS = ILOAD -------------- 1 +  
VIN  
1
3
I  
2 ILOAD  
-- -----------------------  
5.2.4  
Freewheeling diode / catch diode (DB)  
For lowest power loss in the freewheeling path Schottky diodes are recommended. With  
those types the reverse recovery charge is negligible and a fast handover from  
freewheeling to forward conduction mode is possible. Depending on the application (12V  
battery systems) 40V types could be also used instead of the 60V diodes.  
A fast recovery diode with recovery times in the range of 30ns can be also used if smaller  
junction capacitance values (smaller spikes) are desired, the slew resistor should be set  
in this case between 10 and 20k.  
Data Sheet, Rev. 1.31  
51  
2004-10-12  
TLE 6361 G  
5.2.5  
Bootstrap capacitor (CBTP)  
The voltage at the Bootstrap capacitor does not exceed 15V, a ceramic type with a  
minimum of 2% of the buck output capacitance and voltage class 16V would be  
sufficient.  
5.2.6  
External charge pump capacitors (CFLY, CCCP)  
Out of the feedback voltage the charge pump generates a voltage between 8 and 10V.  
The fly capacitor connected between C+ and C- is charged with the feedback voltage  
level and discharged to achieve the (almost) double voltage level at CCP. CFLY is chosen  
to 100nF and CCCP to 220nF, both ceramic types.  
The connection of CCP to a voltage source of e.g. 7V (take care of the maximum  
ratings!) via a diode improves the start-up behavior at very low battery voltage. The diode  
with the cathode on CCP has to be used in order to avoid any influence of the voltage  
source to the device’s operation and vice versa.  
5.2.7  
Input filter components for reduced EME (CI1, CI2, CI3, LI, RSlew)  
At the input of Buck converters a square wave current is observed causing  
electromagnetical interference on the battery line. The emission to the battery line  
consists on one hand of components of the switching frequency (fundamental wave) and  
its harmonics and on the other hand of the high frequency components derived from the  
current slope. For proper attenuation of those interferers a π-type input filter structure is  
recommended which is built up with inductive (LI) and capacitive components (CI1, CI2,  
CI3). The inductance can be chosen up to the value of the Buck converter inductance,  
higher values might not be necessary, CI1 and CI3 should be ceramic types and for CI2 an  
input capacitance with very low ESR should be chosen and placed as close to the input  
of the Buck converter as possible.  
Inexpensive input filters show due to their parasitrics a notch filter characteristic, which  
means basically that the lowpass filter acts from a certain frequency as a highpass filter  
and means further that the high frequency components are not attenuated properly. For  
that reason the TLE 6361 G offers the possibility of current slope adjustment. The current  
transistion time can be set by the external slew resistor to times between 20ns and 80ns  
by varying the resistor value bewteen 0(fastest transition) and 20k(slowest  
transistion).  
5.2.8  
Feedback circuit for minimum switching loss (RBoost, CBoost, DBoost)  
To decrease the switching losses to a mininum the external components RBoost, CBoost  
and DBoost are needed. The current through the feedback resistor RBoost is about a few  
mA where the Diode DBoost and the capacitor CBoost run a part of the load current.  
If this feature is not needed the three components are not needed and the Boost pin (33)  
can be connected directly to the IN pins(32, 30).  
Data Sheet, Rev. 1.31  
52  
2004-10-12  
TLE 6361 G  
5.3  
Reverse polarity protection  
The Buck converter is due to the parasitic source drain diode of the DMOS not reverse  
polarity protected. Therefore, as an example, the reverse polarity diode is shown in the  
application circuit, in general the reverse polarity protection can be done in different  
ways.  
5.4  
Linear voltage regulators (CLDO1, 2, 3)  
As indicated before the linear regulators show stable operation with a minimum of 470nF  
ceramic capacitors. To avoid a high ripple at the output due to load steps this output cap  
might have to be increased to some few µF capacitors.  
5.5  
Linear voltage trackers (CT1,2,3,4,5,6)  
The voltage trackers require at their outputs 1µF ceramic capacitors each to avoid some  
oscillation at the output. If needed the tracker outputs can be connected in parallel, in  
that the output capacitor increases linear according to the number of parallel outputs.  
5.6  
Reset outputs (R1,2,3)  
The undervoltage/watchdog reset outputs are open drain structures and require external  
pull up resistors in the range of 10kto the µC I/O voltage rail.  
Data Sheet, Rev. 1.31  
53  
2004-10-12  
TLE 6361 G  
5.7  
Components recommendation - overview  
Device Type  
Supplier  
EPCOS  
EPCOS  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
Remark  
LI  
B82479 series  
10-1000µH; 4.3-0.56A  
1-1000µH; 6.8-0.3A  
10-1000µH; 8.0-0.8A  
1-1000µH; 20.0-1.0A  
10-1000µH; 8.0-0.8A  
33µH, 3.2A  
B82464-A4 series  
DO3340P series  
DO5022P series  
DS5022P series  
SLF1275T-330M3R2  
Ceramic  
CI1  
various  
various  
various  
various  
EPCOS  
EPCOS  
Coilcraft  
Coilcraft  
Coilcraft  
various  
Motorola  
Motorola  
various  
EPCOS  
100nF, 60V  
CI2  
Low ESR tantalum  
Ceramic  
47µF, 60V  
CI3  
10nF to 100nF, 60V  
DBoost  
LB  
S3B  
B82479 series  
B82464-A4 series  
DO3340P series  
DO5022P series  
DS5022P series  
Ceramic  
10-1000µH; 4.3-0.56A  
1-1000µH; 6.8-0.3A  
10-1000µH; 8.0-0.8A  
1-1000µH; 20.0-1.0A  
10-1000µH; 8.0-0.8A  
100nF, 10V  
CBTP  
DB  
MBRD360  
Schottky, 60V, 3A  
Schottky, 40V, 3A  
Schottky, 40V, 3A  
MBRD340  
SS34  
CB  
B45197-A2226  
Low ESR Tantalum, 22µF, 10V,  
C-case  
2 * LMK316BJ475ML  
C3216X7R1C106M  
TPSC476K010R350  
Taiyo Yuden  
TDK  
Ceramic X7R, 4.7µF, 10V  
Ceramic X7R, 10µF, 16V  
AVX  
Low ESR Tantalum, 47µF, 10V,  
C-case  
CLDOx  
CTx  
Ceramic  
Ceramic  
various  
various  
470nF, 10V  
1µF, 60V  
Data Sheet, Rev. 1.31  
54  
2004-10-12  
TLE 6361 G  
5.8  
Layout recommendation  
The most sensitive points for Buck converters - when considering the layout - are the  
nodes at the input and the output of the Buck switch, the DMOS transistor.  
For proper operation the external catch diode and Buck inductance have to be  
connected as close as possible to the SW pins (29, 31). Best suitable for the connection  
of the cathode of the Schottky diode and one terminal of the inductance would be a small  
plain located next to the SW pins.  
The GND connection of the catch diode must be also as short as possible. In general the  
GND level should be implemented as surface area over the whole PCB as second layer,  
if necessary as third layer.  
The pin FB/L_IN is sensitive to noise. With an appropriate layout the Buck output  
capacitor helps to avoid noise coupling to this pin. Also filtering of steep edges at the  
supply voltage pin e.g. as shown in the application diagram is mandatory. CI2 may either  
be a low ESR Tantalum capacitor or a ceramic capacitor. A minimum capacitance of  
10µF is recommended for CI2.  
To obtain the optimum filter capability of the input π-filter it has to be located also as  
close as possible to the IN pins, at least the ceramic capacitor CI3 should be next to those  
pins.  
Data Sheet, Rev. 1.31  
55  
2004-10-12  
TLE 6361 G  
Package Outlines  
P-DSO-36-12  
SMD = Surface Mounted Device  
Dimensions in mm  
1)  
±0.15  
11  
B
2.8  
±0.1  
1.1  
±0.1  
15.74  
6.3  
(Heatslug)  
Heatslug  
0.65  
0.1 C  
(Mold)  
±0.15  
0.95  
36x  
0.25 A B C  
0.25 +0.13  
M
±0.3  
14.2  
0.25 B  
Bottom View  
36  
19  
19  
36  
Index Marking  
Heatslug  
1
18  
1
10  
13.7 -0.2  
(Metal)  
1 x 45˚  
1)  
±0.1  
15.9  
A
(Mold)  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
see also: http://www.infineon.com -> Products -> Packages  
Data Sheet, Rev. 1.31  
56  
2004-10-12  
TLE 6361 G  
Published by Infineon Technologies AG ,  
Bereichs Kommunikation, St.-Martin-Strasse 53  
D-81541 München  
© Infineon Technologies AG 2003  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted char-  
acteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologiesis an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest In-  
fineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address  
list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the fail-  
ure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life sup-  
port devices or systems are intended to be implanted in the human body, or to support and/or maintain and sus-  
tain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons  
may be endangered.  
Data Sheet, Rev. 1.31  
57  
2004-10-12  

相关型号:

Q67007-A9553

TrilithIC
INFINEON

Q67007-A9554

TrilithIC
INFINEON

Q67007-A9648

Multi-Voltage Processor Power Supply
INFINEON

Q67007-A9668

Dual Low Drop Voltage Regulator
INFINEON

Q67007-A9683

Dual Low Drop Voltage Regulator
INFINEON

Q67007-A9689

Dual Low Drop Voltage Regulator
INFINEON

Q67007-A9690

Dual Low Drop Voltage Regulator
INFINEON

Q67007A9397A702

Buffer/Inverter Based Peripheral Driver, 4A, PDSO36, GREEN, PLASTIC, 36 PIN
INFINEON

Q6701-H6481

Quadruple Transceiver for S/T Interface QUAT-S
INFINEON

Q67020-Y149

Octal Latch
INFINEON

Q67020-Y150

Octal Latch
INFINEON

Q67020-Y151

CLOCK GENERATOR AND DRIVER FOR SAB8086 FAMILY PROCESSORS
INFINEON