Q67100-Q1323 [INFINEON]

16 MBit Synchronous DRAM; 16兆位同步DRAM
Q67100-Q1323
型号: Q67100-Q1323
厂家: Infineon    Infineon
描述:

16 MBit Synchronous DRAM
16兆位同步DRAM

动态存储器
文件: 总22页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 MBit Synchronous DRAM  
(second generation)  
HYB 39S16400/800/160AT-8/-10  
Advanced Information  
• High Performance:  
• Multiple Burst Read with Single Write  
Operation  
CAS latency = 3  
-8  
125  
8
-10 Units  
100 MHz  
• Automatic and Controlled Precharge  
Command  
fCK  
tCK3  
tAC3  
10  
8
ns  
ns  
• Data Mask for Read/Write control (× 4, × 8)  
• Dual Data Mask for byte control (× 16)  
• Auto Refresh (CBR) and Self Refresh  
• Suspend Mode and Power Down Mode  
• 4096 refresh cycles/64 ms  
7
• Single Pulsed RAS Interface  
• Fully Synchronous to Positive Clock Edge  
• 0 to 70 °C operating temperature  
• Random Column Address every CLK  
(1-N Rule)  
• Dual Banks controlled by A11 (Bank Select)  
• Programmable CAS Latency: 1, 2, 3  
• Single 3.3 V ± 0.3 V Power Supply  
• LVTTL Interface versions  
• Programmable Wrap Sequence: Sequential  
or Interleave  
• Plastic Packages:  
P-TSOPII-44-1 400 mil width (× 4, × 8)  
P-TSOPII-50-1 400 mil width (× 16)  
• Programmable Burst Length:  
1, 2, 4, 8 and full page for Sequential type  
1, 2, 4, 8 for Interleave type  
The HYB 39S1640x/80x/16xAT are dual bank Synchronous DRAM’s based on the die revisions “B”  
and “C” and organized as 2 banks × 2 MBit × 4, 2 banks × 1 MBit × 8 and 2 banks × 512 kBit × 16  
respectively. These synchronous devices achieve high speed data transfer rates up to 125 MHz by  
employing a chip architecture that prefetches multiple bits and then synchronizes the output data to  
a system clock. The chip is fabricated with SIEMENS advanced 16 MBit DRAM process technology.  
The device is designed to comply with all JEDEC standards set for synchronous DRAM products,  
both electrically and mechanically. All of the control, address, data input and output circuits are  
synchronized with the positive edge of an externally supplied clock.  
Operating the two memory banks in an interleaved fashion allows random access operation to occur  
at higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up to  
125 MHz is possible depending on burst length, CAS latency and speed grade of the device.  
Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single  
3.3 V ± 0.3 V power supply and are available in TSOPII packages.  
Semiconductor Group  
1
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Ordering Information  
Type  
Ordering Code Package  
Description  
LVTTL-Version  
HYB 39S16400AT-8 Q67100-Q1333 P-TSOPII-44-1 (400 mil) 125 MHz 2B × 2 M × 4 SDRAM  
PC66 2-2-2  
HYB 39S16400AT-10 Q67100-Q1323 P-TSOPII-44-1 (400 mil) 100 MHz 2B × 2 M × 4 SDRAM  
PC66 2-2-2  
HYB 39S16800AT-8 Q67100-Q1335 P-TSOPII-44-1 (400 mil) 125 MHz 2B × 1 M × 8 SDRAM  
PC66 2-2-2  
HYB 39S16800AT-10 Q67100-Q1327 P-TSOPII-44-1 (400 mil) 100 MHz 2B × 1 M × 8 SDRAM  
PC66 2-2-2  
HYB 39S16160AT-8 Q67100-Q1337 P-TSOPII-50-1 (400 mil) 125 MHz 2B × 512 k × 16 SDRAM  
HYB 39S16160AT-10 Q67100-Q1331 P-TSOPII-50-1 (400 mil) 100 MHz 2B × 512 k × 16 SDRAM  
Pin Names  
CLK  
CKE  
Clock Input  
DQ  
Data Input/Output  
Data Mask  
Clock Enable  
DQM, LDQM,  
UDQM  
CS  
Chip Select  
VDD  
VSS  
Power (+ 3.3 V)  
Ground  
RAS  
Row Address Strobe  
Column Address Strobe  
Write Enable  
CAS  
VDDQ  
VSSQ  
NC  
Power for DQ’s (+ 3.3 V)  
Ground for DQ’s  
Not connected  
WE  
A0 - A10  
A11 (BS)  
Address Inputs  
Bank Select  
Semiconductor Group  
2
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
VDD  
VSS  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DQ0  
VSSQ  
2
DQ7  
VSSQ  
3
DQ1  
VDDQ  
4
DQ6  
VDDQ  
5
DQ2  
VSSQ  
6
DQ5  
VSSQ  
7
DQ3  
VDDQ  
8
DQ4  
VDDQ  
9
N.C.  
N.C.  
WE  
CAS  
RAS  
CS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
N.C.  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A9  
A11  
A10  
A0  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
VDD  
A4  
VSS  
SPP03402  
Pin Configuration  
Semiconductor Group  
3
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Signal Pin Description  
Pin  
Type  
Signal Polarity Function  
Pulse Positive The system clock input. All of the SDRAM inputs are  
CLK  
Input  
Edge  
sampled on the rising edge of the clock.  
CKE  
CS  
Input  
Input  
Level Active  
High  
Activates the CLK signal when high and deactivates the  
CLK signal when low, thereby initiates either the Power  
Down mode, Suspend mode or the Self Refresh mode.  
Pulse Active  
Low  
CS enables the command decoder when low and disables  
the command decoder when high. When the command  
decoder is disabled, new commands are ignored but  
previous operations continue.  
RAS  
CAS  
WE  
Input  
Pulse Active  
Low  
When sampled at the positive rising edge of the clock,  
CAS, RAS and WE define the command to be executed by  
the SDRAM.  
A0 - A10 Input  
Level  
During a Bank Activate command cycle, A0 - A10 defines  
the row address (RA0 - RA10) when sampled at the rising  
clock edge.  
During a Read or Write command cycle, A0 - A9 defines  
the column address (CA0 - CAn) when sampled at the  
rising clock edge. CAn depends from the SDRAM  
organisation.  
4M × 4 SDRAM CAn = CA9  
2M × 8 SDRAM CAn = CA8  
1M × 16 SDRAM CAn = CA7  
In addition to the column address, A10 is used to invoke  
autoprecharge operation at the end of the burst read or  
write cycle. If A10 is high, autoprecharge is selected and  
A11 defines the bank to be precharged (low = bank A,  
high = bank B). If A10 is low, autoprecharge is disabled.  
During a Precharge command cycle, A10 is used in  
conjunction with A11 to control which bank(s) to  
precharge. If A10 is high, both bank A and bank B will be  
precharged regardless of the state of A11. If A10 is low,  
then A11 is used to define which bank to precharge.  
A11 (BS) Input  
Level  
Level  
Selects which bank is to be active. A11 low selects bank A  
and A11 high selects bank B.  
DQx  
Input  
Data Input/Output pins operate in the same manner as on  
conventional DRAMs.  
Output  
Semiconductor Group  
4
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Signal Pin Description (cont’d)  
Pin  
Type  
Signal Polarity Function  
DQM  
LDQM  
UDQM  
Input  
Pulse Active  
High  
The Data Input/Output mask places the DQ buffers in a  
high impedance state when sampled high. In Read mode,  
DQM has a latency of two clock cycles and controls the  
output buffers like an output enable. In Write mode, DQM  
has a latency of zero and operates as a word mask by  
allowing input data to be written if it is low but blocks the  
write operation if DQM is high.  
VDD  
VSS  
Supply –  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Supply –  
Isolated power supply and ground for the output buffers to  
provide improved noise immunity.  
Semiconductor Group  
5
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
CKE  
CKE Buffer  
Self  
Refresh Clock  
2048 x 1024  
Row Decoder  
Memory Bank A  
2048  
1024  
Bank A  
Row/Column  
Select  
Row  
Address  
Counter  
4
Sense Amplifiers  
CLK  
CLK Buffer  
Column Decoder  
and DQ Gate  
11  
3
Predecode A  
8
A0  
A1  
Sequential  
Control  
Bank A  
A2  
12  
12  
A3  
Data Latches  
A4  
DQ0  
A5  
8
A6  
DQ1  
A7  
11  
3
Mode Register  
A8  
DQ2  
A9  
A10  
A11 (BS)  
DQ3  
8
Sequential  
Control  
Bank B  
CS  
CS Buffer  
RAS Buffer  
CAS Buffer  
WE Buffer  
DQM Buffer  
Data Latches  
8
11  
RAS  
CAS  
WE  
Predecode B  
Column Decoder  
and DQ Gate  
Bank B  
Row/Column  
Select  
Sense Amplifiers  
1024  
Memory Bank B  
2048 x 1024  
DQM  
Row Decoder  
2048  
SPB02835  
Block Diagram for HYB 39S16400T (2 banks × 4 M × 4 SDRAM)  
Semiconductor Group  
6
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
CKE  
CKE Buffer  
Self  
Refresh Clock  
2048 x 512  
Memory Bank A  
2048  
Row Decoder  
8
512  
Bank A  
Row/Column  
Select  
Row  
Address  
Counter  
8
Sense Amplifiers  
8
8
CLK  
CLK Buffer  
Column Decoder  
and DQ Gate  
11  
3
Predecode A  
8
A0  
A1  
A2  
Sequential  
Control  
Bank A  
12  
12  
A3  
Data Latches  
8
A4  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
A5  
A6  
A7  
11  
3
Mode Register  
A8  
A9  
A10  
A11 (BS)  
8
Sequential  
Control  
Bank B  
8
8
CS  
CS Buffer  
RAS Buffer  
CAS Buffer  
WE Buffer  
DQM Buffer  
Data Latches  
8
11  
RAS  
CAS  
WE  
Predecode B  
Column Decoder  
and DQ Gate  
Bank B  
Row/Column  
Select  
Sense Amplifiers  
8
512  
Memory Bank B  
2048 x 512  
DQM  
Row Decoder  
2048  
SPB02836  
Block Diagram for HYB 39S16800T (2 banks × 1 M × 8 SDRAM)  
Semiconductor Group  
7
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
CKE  
CKE Buffer  
Self  
2048 x 256  
Refresh Clock  
Row Decoder  
16  
Memory Bank A  
2048  
16  
256  
Bank A  
Row/Column  
Select  
Row  
Address  
Counter  
Sense Amplifiers  
16  
16  
CLK  
CLK Buffer  
Column Decoder  
and DQ Gate  
11  
3
Predecode A  
8
A0  
DQ0  
A1  
DQ1  
A2  
Sequential  
Control  
Bank A  
12  
12  
DQ2  
A3  
Data Latches  
8
DQ3  
A4  
DQ4  
A5  
DQ5  
A6  
DQ6  
A7  
DQ7  
11  
3
Mode Register  
A8  
DQ8  
A9  
DQ9  
A10  
A11 (BS)  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
8
Sequential  
Control  
Bank B  
16  
16  
CS  
CS Buffer  
RAS Buffer  
CAS Buffer  
WE Buffer  
DQM Buffer  
DQM Buffer  
Data Latches  
8
11  
RAS  
CAS  
WE  
Predecode B  
Column Decoder  
and DQ Gate  
Bank B  
Row/Column  
Select  
Sense Amplifiers  
16  
256  
Memory Bank B  
2048 x 256  
UDQM  
LDQM  
Row Decoder  
2048  
SPB02837  
Block Diagram for HYB 39S16160T (2 banks × 512 k × 16 SDRAM)  
Semiconductor Group  
8
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Operation Definition  
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at  
the positive edge of the clock. The following list shows the most important operation commands.  
Operation  
CS  
H
L
RAS  
X
CAS  
X
WE  
X
H
H
L
(L/U)DQM  
Standby, Ignore RAS, CAS, WE and Address  
Row Address Strobe and Activating a Bank  
Column Address Strobe and Read Command  
Column Address Strobe and Write Command  
Precharge Command  
X
X
X
X
X
X
X
X
L
L
H
L
L
H
H
L
L
L
L
H
H
L
L
Burst Stop Command  
L
H
L
L
Self Refresh Entry  
L
H
L
Mode Register Set Command  
Write Enable/Output Enable  
Write Inhibit/Output Disable  
No Operation (NOP)  
L
L
L
X
X
L
X
X
X
X
H
X
X
H
X
H
H
Mode Register  
For application flexibility, a CAS latency, a burst length, and a burst sequence can be programmed  
in the SDRAM mode register. The mode set operation must be done before any activate command  
after the initial power up. Any content of the mode register can be altered by reexecuting the mode  
set command. Both banks must be in precharged state and CKE must be high at least one clock  
before the mode set operation. After the mode register is set, a Standby or NOP command is  
required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set  
operation. Address input data at this timing defines parameters to be set as shown in the following  
table.  
Semiconductor Group  
9
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
BS  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
Address Bus (Ax)  
Operation Mode  
CAS Latency  
Burst Length  
Mode Register (Mx)  
Operation Mode  
Burst Type  
M11 M10 M9 M8 M7  
Mode  
M3  
Type  
0
0
0
0
0
Normal  
0
1
Sequential  
Interleave  
Multiple Burst  
with Single  
Write  
X
X
1
0
0
Burst Length  
Length  
Interleave  
1
CAS Latency  
M2 M1 M0  
M6 M5 M4  
Latency  
Reserve  
1
Sequential  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
2
2
4
4
3
8
8
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Full Page *)  
Reserve  
Reserve  
Reserve  
Reserve  
*) optional  
Sequential Burst Addressing  
Interleave Burst Addressing  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
SPD03138  
Address Input for Mode Set (Mode Register Operation)  
Semiconductor Group  
10  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Read and Write Access Mode  
When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle  
starts. According to address data, a word line of the selected bank is activated and all of sense  
amplifiers associated to the word line are fired. A CAS cycle is triggered by setting RAS high and  
CAS low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define  
either a read (WE = H) or a write (WE = L) at this stage.  
SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or  
write operations are allowed at up to a 125 MHz data rate. The numbers of serial data bits are the  
burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page. Column  
addresses are segmented by the burst length and serial data accesses are done within this  
boundary. The first column address to be accessed is supplied at the CAS timing and the  
subsequent addresses are generated automatically by the programmed burst length and its  
sequence. For example, in a burst length of 8 with interleave sequence, if the first address is ‘2’,  
then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.  
Full page burst operation is only possible using the sequential burst type and page length is a  
function of the I/O organisation and column addressing. Full page burst operation do not self  
terminate once the burst length has been reached. In other words, unlike burst length of 2, 3 or 8,  
full page burst continues until it is terminated using another command.  
Similar to the page mode of conventional DRAM’s, burst read or write accesses on any column  
address are possible once the RAS cycle latches sense amplifiers. The maximum tRAS or the refresh  
interval time limits the number of random column accesses. A new burst access can be done even  
before the previous burst ends. The interrupt operation at every clock cycles is supported. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address with the  
full burst length. An interrupt which accompanies with an operation change from a read to a write is  
possible by exploiting DQM to avoid bus contention.  
When two banks are activated sequentially, interleaved bank read or write operations are possible.  
With the programmed burst length, alternate access and precharge operations on two banks can  
realize fast serial data access modes among many different pages. Once two banks are activated,  
column to column interleave operation can be done between two different pages.  
Refresh Mode  
SDRAM has two refresh modes, a CAS-before-RAS (CBR) automatic refresh and a self refresh. All  
of banks must be precharged before applying any refresh mode. An on-chip address counter  
increments the word and the bank addresses and no bank information is required for both refresh  
modes. The chip enters the automatic refresh mode, when RAS and CAS are held low and CKE and  
WE are held high at a clock timing. The mode restores word line after the refresh and no external  
precharge command is necessary. A minimum tRC time is required between two automatic  
refreshes in a burst refresh mode. The same rule applies to any access command after the  
automatic refresh operation.  
The chip has an on-chip timer and the self refresh mode is available. It enters the mode when RAS,  
CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the  
clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation.  
After the exit command, at least one tRC delay is required prior to any access command.  
Semiconductor Group  
11  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
DQM Function  
DQM has two functions for data I/O read write operations. During reads, when it turns to high at a  
clock timing, data outputs are disabled and become high impedance after two clock delay (DQM  
Data Disable Latency tDQZ). It also provides a data mask function for writes. When DQM is activated,  
the write operation at the next clock is prohibited (DQM Write Mask Latency tDQW = zero clocks).  
Suspend Mode  
During normal access mode, CKE is held high and CLK is enabled. When CKE is low, it freezes the  
internal clock and extends data read and write operations. One clock delay is required for mode  
entry and exit (Clock Suspend Latency tCSL).  
Power Down  
In order to reduce standby power consumption, a power down mode is available. Bringing CKE low  
enters the power down mode and all of receiver circuits are gated. All banks must be precharged  
before entering this mode. One clock delay is required for mode entry and exit. The Power Down  
mode does not perform any refresh operation.  
Auto Precharge  
Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS  
timing accepts one extra address, CA10, to determine whether the chip restores or not after the  
operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function  
is initiated. The SDRAM automatically enters the precharge operation one clock after the Read  
Command is registered for CAS latencies of 1 and 2, and two clocks for CAS latencies of 3. If  
CAS10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated.  
The SDRAM automatically enters the precharge operation one clock delay form the last data-in for  
CAS latencies of 1 and 2 and two clocks for CAS latencies of 3. This delay is referenced as tDPL  
.
Precharge Command  
If CA10 is low, the chip needs another way to precharge. In this mode, a separate precharge  
command is necessary. When RAS and WE are low and CAS is high at a clock timing, it triggers the  
precharge operation. Two address bits, A10 and A11, are used to define banks as shown in the  
following list. The precharge command may be applied coincident with the last of burst reads for  
CAS Latency = 1 and with the second to the last read data for CAS Latencies = 2 & 3. Writes  
require a time tDPL from the last burst data to apply the precharge command.  
Semiconductor Group  
12  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Bank Selection by Address Bits  
A10  
Low  
Low  
High  
A11  
Bank A only  
Bank B only  
Both A and B  
Low  
High  
Don’t Care  
Burst Termination  
Once a burst read or write operation has been initiated, there are several methods in which to  
terminate the burst operation prematurely. These methods include using another Read or Write  
Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst  
cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst  
operation but leave the bank open for future Read or Write Commands to the same page of the  
active bank. When interrupting a burst with another Read or Write Command care must be taken to  
avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the  
easiest method to use when terminating a burst operation before it has been completed. If a Burst  
Stop command is issued during a burst write operation, then any residual data from the burst write  
cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is  
registered will be written to the memory.  
Power Up Procedure  
All VDD and VDDQ must reach the specified voltage no later than any of input signal voltages. An  
initial pause of 200 µs is required after power on. All banks have to be precharged and a minimum  
of 2 auto-refresh cycles are required prior to the mode register set operation.  
Semiconductor Group  
13  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Absolute Maximum Ratings  
Operating temperature range ........................................................................................ 0 to + 70 °C  
Storage temperature range..................................................................................... – 55 to + 150 °C  
Input/output voltage .......................................................................... – 0.5 to min (VCC + 0.5, 4.6) V  
Power supply voltage VDD / VDDQ ............................................................................. – 1.0 to + 4.6 V  
Power Dissipation....................................................................................................................... 1 W  
Data out current (short circuit) ................................................................................................ 50 mA  
Note: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent  
damage of the device. Exposure to absolute maximum rating conditions for extended periods  
may affect device reliability.  
Recommended Operation and Characteristics for LV-TTL Versions  
TA = 0 to 70 °C; VSS = 0 V; VDD, VDDQ = 3.3 V ± 0.3 V  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
2.0  
1, 2  
Input high voltage  
VIH  
VIL  
V
CC + 0.3  
V
1, 2  
Input low voltage  
– 0.3  
2.4  
0.8  
V
Output high voltage (IOUT = – 2.0 mA)  
Output low voltage (IOUT = 2.0 mA)  
VOH  
VOL  
II(L)  
V
0.4  
10  
V
Input leakage current, any input  
– 10  
µA  
(0 V < VIN < VDDQ, all other inputs = 0 V)  
Output leakage current  
IO(L)  
– 10  
10  
µA  
(DQ is disabled, 0 V < VOUT < VCC)  
Capacitance  
TA = 0 to 70 °C; VDD = 3.3 V ± 0.3 V, f = 1 MHz  
Parameter  
Symbol max. Values Unit  
Input capacitance (A0 to A11)  
CI1  
4
4
5
8
pF  
pF  
pF  
pF  
Input capacitance (RAS, CAS, WE, CS, CLK, CKE, DQM)  
CI2  
Output capacitance (DQ)  
CIO  
CREF  
VREF  
Semiconductor Group  
14  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Operating Currents  
TA = 0 to 70 oC, VCC = 3.3 V ± 0.3 V  
(Recommended Operating Conditions unless otherwise noted)  
Parameter  
Symbol Test Condition  
CAS  
Latency  
-8  
-10 Unit Note  
max. max.  
80 65  
115 90  
6, 7  
Operating current ICC1  
Burst Length = 4  
1
2
3
mA  
mA  
t
t
RC tRC(MIN.)  
CK tCK(MIN.), IO = 0 mA  
125 100 mA  
2 bank interleave operation  
Precharge  
ICC2P  
CKE VIL(MAX.), tCK tCK(MIN.)  
3
3
mA  
mA  
Standby current in  
Power Down  
Mode  
ICC2PS CKE VIL(MAX.), tCK = infinite –  
2
2
Precharge  
ICC2N  
CKE VIH(MIN.)  
CK tCK(MIN.) input signals  
changed once in 3 cycles  
,
20  
20  
mA CS = High  
Standby current in  
Non-power down  
Mode  
t
ICC2NS CKE VIH(MIN.),tCK = infinite, –  
10  
10  
mA  
input signals are stable  
Active Standby  
current in Power  
Down Mode  
ICC3P  
ICC3PS CKE VIL(MAX.)  
CK = infinite, input signals  
CKE VIL(MAX)., tCK tCK(MIN.)  
3
2
3
2
mA  
mA  
,
t
are stable  
Active Standby  
current in Non-  
power Down  
Mode  
ICC3N  
CKE VIH(MIN.)  
,
25  
15  
25  
15  
mA CS = High  
6
t
CK tCK(MIN.), changed once  
in 3 cycles  
ICC3NS CKE VIH(MIN.)  
,
mA  
t
CK = infinite, input signals  
are stable  
6, 7  
Burst Operating  
current  
ICC4  
Burst Length = full page  
1
2
3
50  
80  
120 95  
40  
65  
mA  
t
t
RC = infinite  
CK tCK(MIN.), IO = 0 mA  
2 banks activated  
6, 7  
Auto (CBR)  
Refresh current  
ICC5  
t
RC tRC(MIN.)  
1
2
3
75  
95  
115 90  
60  
75  
mA  
mA  
mA  
6, 7  
Self Refresh  
ICC6  
CKE 0.2 V  
2
2
mA  
Semiconductor Group  
15  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
8, 9  
AC Characteristics  
TA = 0 to 70 °C; VSS = 0 V; VCC = 3.3 V ± 0.3 V, tT = 1 ns  
Parameter  
Symbol  
Limit Values  
-10  
min. max. min. max.  
Unit Note  
-8  
Clock and Clock Enable  
Clock Cycle time  
tCK  
tCK  
tAC  
CAS Latency = 3  
CAS Latency = 2  
CAS Latency = 1  
8
12  
24  
10  
15  
30  
ns  
ns  
ns  
System frequency  
Clock Access time  
CAS Latency = 3  
CAS Latency = 2  
CAS Latency = 1  
125  
83  
41  
100  
66  
33  
MHz  
MHz  
MHz  
10  
CAS Latency = 3  
CAS Latency = 2  
CAS Latency = 1  
7
8
21  
8
9
27  
ns  
ns  
ns  
Clock High Pulse width  
Clock Low Pulse width  
tCH  
tCL  
tT  
3
3
1
3.5  
3.5  
1
ns  
ns  
ns  
Transition time (rise and fall)  
30  
30  
Setup and Hold Times  
Command Setup time  
Address Setup time  
11  
tCS  
2.5  
2.5  
2.5  
2.5  
2.5  
8
3
3
3
3
3
8
1
1
1
1
ns  
11  
tAS  
ns  
11  
Data In Setup time  
tDS  
ns  
11  
CKE Setup time  
tCKS  
tCKSP  
tCKSR  
tCH  
ns  
11  
CKE Set-up time (Power down mode)  
CKE Set-up time (Self Refresh Exit)  
Command Hold time  
Address Hold time  
ns  
ns  
11  
1
ns  
11  
tAH  
1
ns  
11  
Data In Hold time  
tDH  
1
ns  
11  
CKE Hold time  
tCKH  
1
ns  
Semiconductor Group  
16  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
AC Characteristics (cont’d) 8, 9  
TA = 0 to 70 °C; VSS = 0 V; VCC = 3.3 V ± 0.3 V, tT = 1 ns  
Parameter  
Symbol  
Limit Values  
-10  
min. max. min. max.  
Unit Note  
-8  
Common Parameters  
Row to Column Delay time  
Row Active time  
tRCD  
tRAS  
tRP  
24  
36  
24  
60  
16  
1
30  
120k 45  
30  
120k 75  
ns  
120k ns  
ns  
120k ns  
Precharge time  
Row Cycle time  
tRC  
Bank to Bank delay time  
CAS to CAS delay time (same bank)  
tRRD  
tCCD  
20  
1
ns  
CLK  
Refresh Cycle  
13  
12  
Self Refresh Exit time  
Refresh period (4096 cycles)  
tSREX  
tREF  
2 CLK + tRC  
ns  
64  
64  
ms  
Read Cycle  
Data Out Hold time  
tOH  
tLZ  
3
0
3
0
ns  
ns  
Data Out to Low Impedance time  
14  
Data Out to High Impedance time  
tHZ  
CAS Latency = 3  
CAS Latency = 2  
CAS Latency = 1  
5
7
19  
6
8
25  
ns  
ns  
ns  
DQM Data Out Disable Latency  
tDQZ  
2
2
CLK  
Write Cycle  
Last Data-Input to Precharge  
(Write Recovery Latency)  
CL = 1, 2 tDPL  
CL = 3  
1
2
1
2
CLK  
CLK  
DQM Write Mask Latency  
tDQW  
0
0
CLK  
Semiconductor Group  
17  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Notes  
1. All voltages are referenced to VSS.  
2. VIH may overshoot to VCC + 2.0 V for pulse width of < 4 ns with 3.3 V. VIL may undershoot to  
– 2.0 V for pulse width < 4.0 ns with 3.3 V. Pulse width measured at 50 % points with amplitude  
measured peak to DC reference.  
3. Under all conditions VDDQ must be less than or equal to VDD.  
4. The value of VREF may be selected by the user to provide optimum noise margin in the system.  
VREF has to be in the range between 0.43 × VDDQ and 0.47 × VDDQ and is expected to track  
variations in VDDQ  
5. VIH may overshoot to VDD, VDDQ + 1.2 V for pulse width < 5 ns and VIL may undershoot to VSS,  
SSQ – 1.2 V for pulse width < 5 ns.  
.
V
6. The specified values are valid when addresses are changed no more than three times during  
tRC(MIN.) and when No Operation commands are registered on every rising clock edge during  
tRC(MIN.)  
.
7. The specified values are valid when data inputs (DQ’s) are stable during tRC(MIN.)  
.
8. An initial pause of 200 µs is required after power-up, then a Precharge All Banks command  
must be given followed by 8 Auto Refresh (CBR) cycles before the Mode Register Set  
Operation can begin.  
9. AC timing tests for LV-TTL versions have VIL = 0.4 V and VIH = 2.4 V with the timing referenced  
to the 1.4 V crossover point. The transition time is measured between VIH and VIL. All AC  
measurements assume tT = 1 ns with the AC output load circuit shown in figure below.  
10. If clock rising time is longer than 1 ns, (tT/2 – 0.5) ns has to be added to this parameter.  
11. If tT is longer than 1 ns, a time (tT – 1) ns has to be added to this parameter.  
12. Any time that the refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh  
commands must be given to “wake-up” the device.  
13. Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after  
CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied  
once the Self Refresh Exit command is registered.  
14. Referenced to the time which the output achieves the open circuit condition, not to output  
voltage levels.  
Semiconductor Group  
18  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
tCH  
2.4 V  
0.4 V  
CLOCK  
tT  
tCL  
tHOLD  
tSETUP  
INPUT  
1.4 V  
tAC  
tAC  
tLZ  
tOH  
OUTPUT  
1.4 V  
tHZ  
SPT03404  
Semiconductor Group  
19  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Clock Frequency and Latency  
Parameter  
Symbol  
Speed Sort  
Unit  
-8  
125 83  
-10  
Clock frequency  
Clock Cycle time  
CAS latency  
max. tCK  
100 66  
MHz  
ns  
min. tCK  
min. tAA  
min. tRCD  
min. tRL  
min. tRAS  
max. tRAS  
min. tRP  
min. tRC  
8
3
3
6
5
12  
2
10  
3
15  
2
CLK  
CLK  
CLK  
CLK  
Row to Column delay  
RAS latency  
2
3
2
4
6
4
Row Active time  
3
5
3
120 120 120 120 µs  
Row Precharge time  
Row Cycle time  
3
8
2
5
2
1
0
0
2
1
2
5
1
3
2
1
0
0
2
1
3
8
2
5
2
1
0
0
2
1
2
5
1
3
2
1
0
0
2
1
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
Last Data-In to Precharge (Write Recovery) min. tDPL  
Last Data-In to Active/Refresh  
Bank to Bank delay time  
CAS to CAS delay time  
Write latency  
min.  
tDPL + tRP  
min. tRRD  
min. tCCD  
fixed tWL  
fixed tDQW  
fixed tDQZ  
fixed tCSL  
DQM Write Mask latency  
DQM Data Disable latency  
Clock Suspend latency  
Semiconductor Group  
20  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Package Outlines  
Plastic Package P-TSOPII-44  
(400 mil, 0.8 mm lead pitch)  
Thin Small Outline Package, SMD  
15˚±5˚  
15˚±5˚  
2)  
10.16±0.13  
0.8  
0.5±0.1  
11.76±0.2  
0.1 44x  
21x 0.8 = 16.8  
3)  
M
0.2  
44x  
+0.1  
0.35  
-0.05  
44  
23  
22  
1
2.5 max  
1)  
18.41 ±0.13  
GPX05941  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max per side  
2) Does not include plastic protrusion of 0.25 max per side  
3) Does not include dambar protrusion of 0.13 max per side  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
21  
1998-10-01  
HYB 39S16400/800/160AT-8/-10  
16 MBit Synchronous DRAM  
Plastic Package P-TSOPII-50  
(400 mil, 0.8 mm lead pitch)  
Thin Small Outline Package, SMD  
.06  
10.16±  
0.13  
0
0.03  
+
-
0.15  
0.8  
0.5±  
0.1  
11.76±  
0.2  
0.4+- 0.05  
0.1  
M
0.2  
50x  
0.1  
50  
26  
1
25  
1)  
20.95±  
0.13  
GPX05956  
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 max. per side  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
22  
1998-10-01  

相关型号:

Q67100-Q1327

16 MBit Synchronous DRAM
INFINEON

Q67100-Q1331

16 MBit Synchronous DRAM
INFINEON

Q67100-Q1333

16 MBit Synchronous DRAM
INFINEON

Q67100-Q1335

16 MBit Synchronous DRAM
INFINEON

Q67100-Q1337

16 MBit Synchronous DRAM
INFINEON

Q67100-Q1838

64-MBit Synchronous DRAM
INFINEON

Q67100-Q1841

64-MBit Synchronous DRAM
INFINEON

Q67100-Q1844

64-MBit Synchronous DRAM
INFINEON

Q67100-Q2001

8M x 32-Bit Dynamic RAM Module
INFINEON

Q67100-Q2002

1M x 64-Bit Dynamic RAM Module
INFINEON

Q67100-Q2003

1M x 64-Bit Dynamic RAM Module
INFINEON

Q67100-Q2004

1M x 72-Bit Dynamic RAM Module
INFINEON