TLD5191ES [INFINEON]

TLD5191ES 是一款具有内置保护功能的同步 MOSFET H 桥 DC-DC 控制器。 该设计有利于以最高的系统效率和最少的外部组件驱动高功率 LED。 TLD5191ES 具有模拟和数字 (PWM) 调光及嵌入式 PWM 发生器。 开关频率可在 200 kHz 至 700 kHz 范围内调节。 内置扩频开关频率调制和强制连续电流调节模式改善了整体 EMC 行为。 此外,电流模式调节方案提供了一个由小型外部补偿元件维持的稳定调节环路。 可调软启动功能可限制启动时的电流峰值和电压过冲。 TLD5191ES 适用于汽车环境以及工业和消费类应用(例如无线充电)。;
TLD5191ES
型号: TLD5191ES
厂家: Infineon    Infineon
描述:

TLD5191ES 是一款具有内置保护功能的同步 MOSFET H 桥 DC-DC 控制器。 该设计有利于以最高的系统效率和最少的外部组件驱动高功率 LED。 TLD5191ES 具有模拟和数字 (PWM) 调光及嵌入式 PWM 发生器。 开关频率可在 200 kHz 至 700 kHz 范围内调节。 内置扩频开关频率调制和强制连续电流调节模式改善了整体 EMC 行为。 此外,电流模式调节方案提供了一个由小型外部补偿元件维持的稳定调节环路。 可调软启动功能可限制启动时的电流峰值和电压过冲。 TLD5191ES 适用于汽车环境以及工业和消费类应用(例如无线充电)。

开关 无线 驱动 控制器 软启动
文件: 总43页 (文件大小:1324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLD5191ES  
Datasheet  
LITIX Power H-Bridge DC-DC controller  
Features  
• Single inductor high power buck-boost controller  
• Switching frequency range from 200 kHz to 700 kHz  
• Maximum efficiency in every condition (up to 96%)  
• Constant current (LED) and constant voltage regulation  
• EMC optimized device: spread spectrum always activated  
• Overvoltage, shorted LED fault and overtemperature diagnostic output  
• Enhanced dimming features: Analog and PWM dimming (from digital input or sourced by  
embedded PWM engine)  
• LED current accuracy ꢀ%  
Potential applications  
• Especially designed for driving high power LEDs in automotive applications  
• Automotive exterior lighting: full LED headlamp assemblies (low beam, high beam, matrix beam,  
pixel light)  
• Voltage pre-regulator for rear lamp assemblies  
• General purpose DC-DC for constant current or constant voltage applications  
Product validation  
Product validation according to AEC-Q100, Grade1. Qualified for automotive applications.  
Description  
The TLD5191ES is a synchronous MOSFET H-Bridge DC-DC controller with built-in protection features. This concept is beneficial  
for driving high power LEDs with maximum system efficiency and minimum number of external components. The TLD5191ES  
offers analog and digital (PWM) dimming and embedded PWM engine. The switching frequency is adjustable in the range of  
200 kHz to 700 kHz. A built-in spread spectrum switching frequency modulation and the forced continuous current regulation  
mode improve the overall EMC behavior. Furthermore the current mode regulation scheme provides a stable regulation loop  
maintained by small external compensation components. The adjustable sof start feature limits the current peak as well as  
voltage overshoot at start-up. The TLD5191ES is suitable for use in the automotive environment.  
VS  
CPOW  
VIVCC  
DBS2  
VIVCC  
DBS1  
VIN  
BST1  
BST2  
CIN  
COUT1 COUT2  
RFB  
VIVCC  
M4  
Mꢀ  
M1  
M2  
CBS1 CBS2  
ROV1  
ROV2  
IVCC  
HSGD1  
SWN1  
CIVCC  
RINUVLO1  
LSGD1  
SWCS  
EN/INUVLO  
RINUVLO2  
RFREQ  
RSWCS  
TLD5191ES  
FREQ  
SGND  
CSOFT START  
RCOMP  
CCOMP  
SOFT START  
COMP  
LSGD2  
HSGD2  
SWN2  
VFB  
Analog  
SET  
dimming  
VIVCC  
RPWM1  
VIVCC  
FBH  
PWMI  
EF  
RPWM2  
RPUEF  
FBL  
MPWM  
To µC  
PWMO  
AGND  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
Description  
Parameter  
Symbol  
VPOW  
Values  
Power stage input voltage range  
Device input supply voltage range  
4.5 V … 55 V  
4.5 V … 40 V  
VVIN  
55 V as LED driver boost mode  
50 V as LED driver buck mode  
50 V as voltage regulator  
Maximum output voltage (depending on the application  
conditions)  
VOUT(max)  
Switching frequency range  
fSW  
200 kHz … 700 kHz  
Typical H-Bridge NMOS driver on-state resistance at TJ = 25°C  
RDS(ON_PU)  
2.ꢀ Ω  
(Gate pull-up)  
Typical H-Bridge NMOS driver on-state resistance at TJ = 25°C  
(Gate pull-down)  
RDS(ON_PD)  
1.2 Ω  
Protective functions  
• Overload protection of external MOSFETs  
• Shorted load, output overvoltage protection  
• Input undervoltage protection  
• Thermal shutdown of device with autorestart behavior  
• Electrostatic discharge protection (ESD)  
Diagnostic functions  
Diagnostic information via error flag: device overtemperature shutdown, output short to GND, output overvoltage  
Type  
Package  
Marking  
TLD5191ES  
PG-TSDSO-24  
TLD5191ES  
Datasheet  
2
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
ꢀ.1  
ꢀ.2  
ꢀ.ꢀ  
4
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Different power states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1ꢀ  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.1  
4.2  
4.ꢀ  
5
5.1  
5.2  
5.ꢀ  
Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Regulator diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adjustable sofꢀstart ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching frequency setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Operation of 4 switches H-Bridge architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Boost mode (VIN < VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Buck mode (VIN > VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Buck-Boost mode (VIN ~ VOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Programming output voltage (constant voltage regulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2ꢀ  
5.4  
5.4.1  
5.4.2  
5.4.ꢀ  
5.5  
5.6  
6
6.1  
6.2  
Digital dimming function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7
7.1  
7.2  
Analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ꢀ1  
8
8.1  
8.2  
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ2  
IVCC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ2  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ꢀ2  
Datasheet  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
Table of contents  
9
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀꢀ  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀꢀ  
Output overvoltage, short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀꢀ  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ4  
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ4  
Device temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ꢀ5  
9.1  
9.2  
9.2.1  
9.2.2  
9.ꢀ  
9.4  
10  
Infineon FLAT SPECTRUM feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ7  
Spread spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ꢀ7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ꢀ7  
10.1  
10.2  
10.ꢀ  
11  
12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ꢀ8  
Package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4ꢀ  
Datasheet  
4
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
1 Block diagram  
1
Block diagram  
IVCC  
Internal  
Supply  
Power On  
Reset  
IVCC  
VIN  
LDO  
GATE  
DRIVERS  
BST1  
Oscillator  
HSGD1  
SWN1  
FREQ  
BUCK  
LOGIC  
IVCC  
IVCC  
Spread  
Spectrum  
Generator  
LSGD1  
LSGD2  
Main PWM  
Generator  
Thermal Protection  
Output Over Voltage  
+ Short to GND detection  
BOOST  
LOGIC  
Soft  
Start  
SOFT_START  
BST2  
VIN Voltage  
Protection +  
Enable  
EN/INUVLO  
HSGD2  
SWN2  
IVCC  
Embedded  
PWM engine  
PWMO  
SWCS  
PWMI  
EF  
Switch Current  
Error Amplifier  
Error  
Flag  
SGND  
VFB  
Voltage  
Feedback  
FBH  
FBL  
Analog  
Dimming  
Feedback Error Amplifier  
SET  
AGND  
COMP  
Figure 1  
Block diagram TLD5191ES  
Datasheet  
5
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
2 Pin configuration  
2
Pin configuration  
Pin assignment  
2.1  
1
2
24  
2ꢀ  
22  
21  
20  
19  
18  
HSGD1  
SWN1  
BST1  
IVCC  
SOFT START  
VIN  
Exposed  
Pad  
LSGD1  
4
EN/INUVLO  
LSGD2  
BST2  
5
AGND  
FREQ  
6
SWN2  
7
EF  
PIN CONFIGURATION.VSDX  
8
17  
PWMO  
PWMI  
HSGD2  
FBH  
9
16  
15  
14  
1ꢀ  
10  
11  
12  
FBL  
SET  
VFB  
SGND  
SWCS  
COMP  
Figure 2  
Pin configuration PG-TSDSO-24  
2.2  
Pin definitions and functions  
Table 1  
Pin definitions and functions  
Pin  
Symbol  
I/O1)  
Function  
22  
VIN  
-
Power supply voltage  
Supply for internal biasing  
20  
-
AGND  
EP  
-
-
Analog ground  
Ground reference  
Exposed pad  
Connect to external heatspreading Cu area (e.g. inner GND layer of multilayer  
PCB with thermal vias)  
1
HSGD1  
O
High-side gate driver output 1  
Drives the top n-channel MOSFET with a voltage equal to VIVCC superimposed  
on the switch node voltage SWN1. Connect to gate of external switching  
MOSFET  
(table continues...)  
Datasheet  
6
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
2 Pin configuration  
Table 1  
(continued) Pin definitions and functions  
Pin  
Symbol  
I/O1)  
Function  
8
HSGD2  
O
High-side gate driver output 2  
Drives the top n-channel MOSFET with a voltage equal to VIVCC superimposed  
on the switch node voltage SWN2. Connect to gate of external switching  
MOSFET  
4
5
LSGD1  
LSGD2  
O
O
Low-side gate driver output 1  
Drives the low-side n-channel MOSFET between GND and VIVCC. Connect to gate  
of external switching MOSFET  
Low-side gate driver output 2  
Drives the low-side n-channel MOSFET between GND and VIVCC. Connect to gate  
of external switching MOSFET  
2
SWN1  
SWN2  
IVCC  
IO  
IO  
O
Switch node 1  
SWN1 pin swings from a diode voltage drop below ground up to VIN  
7
Switch node 2  
SWN2 pin swings from ground up to a diode voltage drop above VOUT  
24  
Internal LDO output  
Used for internal biasing and gate driver supply. Bypass with external capacitor  
close to the pin. Pin must not be lef open  
21  
EN/INUVLO  
I, PD  
Enable/Input undervoltage lockout  
Used to put the device in a low current consumption mode, with additional  
capability to fix an undervoltage threshold via external components. Pin must  
not be lef open  
19  
16  
FREQ  
PWMI  
I
Frequency select input  
Connect external resistor to GND to set frequency  
I, PD  
PWM Control input  
Used to control the digital dimming via external PWM signal or via the  
embedded PWM engine  
9
FBH  
FBL  
I
Output current feedback positive  
Non inverting Input (+)  
10  
I
Output current feedback negative  
Inverting Input (-)  
BST1  
IO  
Bootstrap capacitor  
Used for internal biasing and to drive the high-side switch HSGD1. Bypass to  
SWN1 with external capacitor close to the pin. Pin must not be lef open  
6
BST2  
IO  
I
Bootstrap capacitor  
Used for internal biasing and to drive the high-side switch HSGD2. Bypass to  
SWN2 with external capacitor close to the pin. Pin must not be lef open  
12  
SWCS  
Current sense input  
Inductor current measurement - Non-inverting input (+)  
(table continues...)  
Datasheet  
7
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
2 Pin configuration  
Table 1  
(continued) Pin definitions and functions  
Pin  
Symbol  
I/O1)  
Function  
11  
SGND  
I
Current sense / Power ground  
Inductor current sense - Inverting Input (-). Power ground, connect to GND  
1ꢀ  
2ꢀ  
14  
15  
COMP  
O
O
I
Compensation network pin  
Connect R and C network to pin for stability phase margin adjustment  
SOFT_START  
VFB  
Softsars configuration pin  
Connect a capacitor CSOFT_START to GND to fix a sof start ramp default time  
Output voltage feedback pin  
Output voltage feedback to set output overvoltage protection function  
SET  
I
Analog current sense adjustment pin  
A voltage VSET between 0.2 V and 1.4 V will adjust the ILED or VOUT in a linear  
relation  
17  
18  
PWMO  
EF  
O
O
PWM Digital dimming output  
Drives n-channel MOSFET between GND and VIVCC for dimming purposes  
Error flag output  
An open drain output which is pulled to LOW when an output short to GND, an  
output overvoltage or IC overtemperature occurs  
1) O: Output, I: Input, PD: pull-down circuit integrated  
Datasheet  
8
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
Supply voltages  
VIN Supply Input  
VVIN  
-0.ꢀ  
60  
V
V
PRQ-ꢀ2  
PRQ-ꢀꢀ  
IVCC Internal linear  
voltage regulator output  
voltage  
VIVCC  
-0.ꢀ  
6
Gate Driver Stages  
LSGD1,2 Low-side  
gatedriver voltage  
VLSGD1,2  
-0.ꢀ  
5.5  
5.5  
60  
6
V
V
V
V
V
V
V
V
PRQ-ꢀ4  
PRQ-ꢀ5  
PRQ-ꢀ6  
PRQ-ꢀ7  
PRQ-ꢀ8  
PRQ-ꢀ9  
PRQ-40  
PRQ-41  
HSGD1,2 - SWN1,2 High- VHSGD1,2-SWN1,2 -0.ꢀ  
side gate driver voltage  
Differential signal  
(not referred to GND)  
SWN1, SWN2 Switching VSWN1, 2  
node voltage  
-1  
(BST1-SWN1), (BST2-  
SWN2) Boostrap voltage  
VBST1,2-SWN1,2  
VBST1, 2  
VSWCS  
-0.ꢀ  
-0.ꢀ  
-0.ꢀ  
-0.ꢀ  
-0.5  
Differential signal  
(not referred to GND)  
BST1, BST2 Boostrap  
voltage related to GND  
65  
0.ꢀ  
0.ꢀ  
0.5  
SWCS Switch current  
sense input voltage  
SGND Switch current  
sense GND voltage  
VSGND  
SWCS-SGND Switch  
current sense differential  
voltage  
VSWCS-SGND  
Differential signal  
(not referred to GND)  
PWMO Output voltage  
VPWMO  
-0.ꢀ  
5.5  
V
PRQ-46  
High voltage pins  
FBH, FBL Feedback error VFBH, FBL  
amplifier voltage  
-0.ꢀ  
-0.5  
60  
V
V
PRQ-42  
PRQ-4ꢀ  
FBH-FBL Feedback error VFBH-FBL  
amplifier differential  
voltage  
0.5  
Differential signal  
(not referred to GND)  
EN/INUVLO Device  
enable/input  
undervoltage lockout  
VEN/INUVLO  
-0.ꢀ  
60  
V
PRQ-44  
(table continues...)  
Datasheet  
9
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
3 General product characteristics  
Table 2  
(continued) Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
Analog pins  
PWMI Input voltage  
VFB Input voltage  
VPWMI  
VVFB  
VEF  
-0.ꢀ  
5.5  
V
V
V
PRQ-45  
PRQ-47  
PRQ-48  
-0.ꢀ  
-0.ꢀ  
5.5  
5.5  
EF Error flag output  
voltage  
SET Analog dimming  
input voltage  
VSET  
-0.ꢀ  
-0.ꢀ  
-0.ꢀ  
-0.ꢀ  
5.5  
ꢀ.6  
ꢀ.6  
ꢀ.6  
V
V
V
V
PRQ-49  
PRQ-205  
PRQ-50  
PRQ-51  
COMP Compensation  
input voltage  
VCOMP  
SOFT_START Sofstart  
voltage  
VSOFT_START  
VFREQ  
FREQ Voltage at  
frequency selection pin  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
PRQ-52  
PRQ-5ꢀ  
Tstg  
ESD resistivity of all pins VESD,HBM  
-2  
2
kV  
V
HBM1)  
CDM2)  
PRQ-54  
PRQ-55  
ESD Resistivity to GND  
VESD,CDM  
-750  
750  
1)  
2)  
ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002  
ESD susceptibility, Charged Device Model “CDM” according to AECQ100-011  
Notes:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Datasheet  
10  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
3 General product characteristics  
3.2  
Functional range  
Table 3  
Parameter  
Functional Range  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
4.5  
Max.  
40  
1)  
Device extended supply VVIN  
voltage range  
V
PRQ-142  
PRQ-57  
PRQ-58  
PRQ-59  
Device nominal supply  
voltage range  
VVIN  
VPOW  
TJ  
8
ꢀ6  
V
1)  
Power stage voltage  
range  
4.5  
55  
V
Junction temperature  
-40  
150  
°C  
1)  
Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
3.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to  
www.jedec.org.  
Table 4  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
1) 2)  
Junction to case  
Junction to ambient  
1)  
RthJC  
RthJA  
7.78  
K/W  
K/W  
PRQ-60  
PRQ-61  
ꢀ8.2  
3) 2s2p  
Not subject to production test, specified by design  
2)  
Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are  
fixed to ambient temperature). TA = 25°C; The IC is dissipating 1 W  
3)  
Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-ꢀ) +  
heatsink area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.ꢀ x 1.5 mm board.  
The 2s2p board has 2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x ꢀ5 µm Cu). A thermal  
via (diameter = 0.ꢀ mm and 25 µm plating) array was applied under the exposed pad and connected the first  
outer layer (top) to the first inner layer and second outer layer (bottom) of the JEDEC PCB. TA = 25°C; The IC is  
dissipating 1 W  
Datasheet  
11  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
4 Power supply  
4
Power supply  
Description  
4.1  
The TLD5191ES is supplied by the VIN (main supply voltage) pin.  
The VIN supply provides internal supply voltages for the analog and digital blocks.  
IVCC supplies the low side driver stages and the PWMO driver.  
This supply is used also to charge, through external Schottky diodes, the bootstrap capacitors which provide supply  
voltages to the high-side driver stages.  
The supply pins VIN and IVCC have undervoltage detections.  
If the voltage on IVCC goes below VIVCC RTH,d, driver stages are deactivated, thus stopping the switching activity.  
_
The EN/INUVLO pin can be used as input undervoltage protection by placing a resistor divider from VIN to GND.  
If the voltage on EN/INUVLO pin goes below VEN/INUVLOth, IVCC voltage regulator is switched off, and switching activity  
is stopped.  
Figure ꢀ shows a basic concept drawing of the supply domains and interactions among pins VIN and IVCC.  
VS  
VIN  
R1  
VREG (5V)  
IVCC  
EN/INUVLO  
Internal pre-regulated  
voltage Supply  
R2  
LS – Drivers &  
PWMO driver  
VREG digital  
VREG analog  
SGND  
Bandgap  
Reference  
BSTx  
HS - Drivers  
SWNx  
LOGIC  
TLD5191ES  
Figure 3  
Power supply concept diagram  
Usage of EN/INUVLO pin in differens applications  
The pin EN/INUVLO is a double function pin and can be used to put the device into a low current consumption mode.  
An undervoltage threshold should be fixed by placing an external resistor divider (A) in order to avoid low voltage  
operating conditions. This pin can be driven by a µC-port as shown in (B) and (C) or directly connected to the input  
voltage supply as shown in (D).  
Datasheet  
12  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
4 Power supply  
A
B
C
D
VS  
VS  
VS  
VS  
VIN  
VIN  
VIN  
VIN  
R1  
R2  
R1  
µC port  
EN/INUVLO  
EN/INUVLO  
EN/INUVLO  
EN/INUVLO  
TLD5191ES  
TLD5191ES  
TLD5191ES  
TLD5191ES  
R2  
µC port  
Figure 4  
Usage of EN/INUVLO pin in differens applications  
4.2  
Differens power states  
TLD5191ES has the following power states:  
SLEEP state  
IDLE state  
ACTIVE state  
The transition between the power states is determined according to these variables:  
VIN level  
EN/INUVLO level  
IVCC level  
The state diagram including the possible transitions is shown in Figure 5  
Power-up  
EN/INUVLO = HIGH  
EN/INUVLO = LOW  
SLEEP  
EN/INUVLO = LOW  
EN/INUVLO = LOW  
IDLE  
ACTIVE  
VIN = LOW  
or IVCC = LOW  
VIN = HIGH  
& IVCC = HIGH  
Figure 5  
Simplified state diagram  
The Power-up condition is entered when the supply voltage VVIN exceeds its minimum supply voltage threshold  
VVIN(ON)  
.
Datasheet  
1ꢀ  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
4 Power supply  
SLEEP  
When the TLD5191ES is in the SLEEP state, all gate drivers and error flag are in OFF state, independently from the  
supply voltages VIN, IVCC. The current consumption is lower than IVIN(SLEEP)  
.
The transition from SLEEP to ACTIVE state requires a specified time: tACTIVE  
.
IDLE  
In IDLE state the internal voltage regulator is working. The output drivers are switched OFF.  
Diagnosis functions are not available.  
ACTIVE  
In active state the device will start switching activity to provide power at the output only when PWMI = HIGH or PWMI  
is in a valid range to enable the embedded PWM engine.  
If the voltage between pins BST1,2 and SWN1,2 is higher than VBST1,2 - VSWN1,2_Uvth, high side gate drivers are enabled,  
otherwise they are disabled and no switching activity is permitted.  
In active state the device current consumption via VIN is dependent on the external MOSFETs used and the switching  
frequency fSW  
.
Digital dimming PWM activity is mirrored on the PWMO output pin unless a fault condition is detected (for details  
see Chapter 6.1).  
VEN/INUVLO  
tACTIVE  
VEN/INUVLOth  
t
VIVCC  
VIVCC_RTH,d  
+VIVCCX_HYST  
t
t
VPWMI  
VPWMO  
t
Switching  
activity  
t
VFBH-VFBL  
V(FBH-FBL)_100  
t
Softstart  
PWM ON  
Gate ON  
PWM OFF  
Gate OFF  
Diag OFF  
PWM ON  
Gate ON  
Diag ON  
PWM OFF  
Gate OFF  
Diag OFF  
PWM ON  
Gate ON  
Diag ON  
PWM OFF  
Gate OFF  
Diag OFF  
Power ON  
Diagnosis ON  
Figure 6  
Timing diagram LED dimming and startup behavior example (VVIN stable in the functional  
range and not during startup)  
Datasheet  
14  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
4 Power supply  
4.3  
Electrical characteristics  
Table 5  
Electrical Characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
4.7  
Input voltage startup  
VVIN(ON)  
V
VVIN increasing;  
VEN/INUVLO = HIGH;  
IIVCC = 0 mA  
PRQ-64  
Input undervoltage  
switch OFF  
VVIN(OFF)  
4.5  
V
VVIN decreasing;  
VEN/INUVLO = HIGH;  
IIVCC = 10 mA  
PRQ-65  
Device operating current IVIN(ACTIVE)  
5
7
mA  
µA  
1) ACTIVE mode;  
VPWMI = 0 V  
PRQ-66  
PRQ-67  
VIN Sleep mode supply  
current  
IVIN(SLEEP)  
1.5  
VEN/INUVLO = 0 V;  
VVIN = 1ꢀ.5 V;  
VIVCC = 0 V  
Input undervoltage  
falling threshold  
VEN/INUVLOth  
1.6  
1.75  
90  
1.9  
V
PRQ-68  
PRQ-69  
PRQ-70  
PRQ-71  
PRQ-72  
1)  
EN/INUVLO rising  
hysteresis  
VEN/INUVLO(hyst)  
mV  
µA  
µA  
ms  
EN/INUVLO input current IEN/INUVLO(LOW)  
LOW  
0.45  
0.89  
2.2  
1.ꢀ4  
ꢀ.ꢀ  
0.7  
VEN/INUVLO = 0.8 V;  
EN/INUVLO input current IEN/INUVLO(HIGH) 1.1  
HIGH  
VEN/INUVLO = 2 V;  
1)  
SLEEP mode to ACTIVE  
time  
tACTIVE  
C
= 10 µF;  
IVCC  
VVIN= 1ꢀ.5 V  
1)  
Not subject to production test, specified by design  
Datasheet  
15  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
5
Regulator  
The TLD5191ES includes all of the functions necessary to provide constant current to the output as usually required  
to drive LEDs. A constant voltage regulation can also be implemented (refer to Chapter 5.5).  
It is designed to control 4 gate driver outputs in a H-Bridge topology by using only one inductor and 4 external  
MOSFETs. This topology is able to operate in high power BOOST, BUCK-BOOST and BUCK mode applications with  
maximum efficiency.  
The transition between the different regulation modes is done automatically by the device itself, with respect to the  
application boundary conditions.  
The transition phase between modes is seamless.  
5.1  
Regulator diagram  
An analog current control loop (with total gain = IFBxgm) connected to the sensing pins FBL, FBH regulates the output  
current.  
The regulator function is implemented by a pulse width modulated (PWM) current mode controller. The error in the  
output current loop is used to determine the appropriate duty cycle to get a constant output current.  
An external compensation network (RCOMP, CCOMP) is used to adjust the control loop to various application  
boundary conditions. The inductor current for the current mode loop is sensed by the RSWCS resistor. RSWCS is used  
also to limit the maximum external switches / inductor current.  
If the voltage across RSWCS exceeds its overcurrent threshold (VSWCS_buck or VSWCS_boost for buck or boost operation  
respectively) the device reduces the duty cycle in order to bring the switches current below the imposed limit.  
The current mode controller has a built-in slope compensation as well to prevent sub-harmonic oscillations.  
The control loop logic block (LOGIC) provides a PWM signal to four internal gate drivers. The gate drivers (HSGD1,2  
and LSGD1,2) are used to drive external MOSFETs in an H-Bridge setup.  
Once VSOFT_START exceeds VSofꢁStartꢁLOFF or VFBH-FBL exceeds VFBH_FBL_VALID, TLD5191ES forces CCM regulation mode.  
The control loop block diagram displayed in Figure 7 shows a typical constant current application. The voltage across  
RFB sets the output current.  
RFB  
IOUT  
VS  
COUT  
HSGD1  
LSGD1  
HSGD2  
LSGD2  
M1  
M2  
M4  
LOUT  
Mꢀ  
FBH  
FBL  
TLD5191ES  
ISWCS  
SWCS  
HSGD1  
LSGD1  
RSWCS  
SLOPE  
COMPESANTION  
LOGIC  
HSGD2  
LSGD2  
SGND  
SET  
Isoft_Start_PU  
SOFT  
START  
LOGIC  
Isoft_Start_PD  
SOFT  
START  
COMP  
RCOMP  
CCOMP  
CSOFT START  
Figure 7  
Regulator block diagram - TLD5191ES  
Datasheet  
16  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
5.2  
Adjustable tofꢀtsars ramp  
The sofꢀstart routine limits the current through the inductor and the external MOSFET switches during initialization  
to minimize potential overshoots at the output.  
The SOFT START pin is also used to implement a fault mask and wait-before-retry time, on rising and falling edge  
respectively.  
See Figure 8 and Chapter 9.2 for details.  
The sof start routine is applied if PWMI is above VPWMI,ON or PWMI is in a valid range to enable the embedded PWM  
engine, if one of the following conditions is verified:  
afer IDLE to ACTIVE power state transition  
afer PWMI has been kept below VPWMI,DC_0 for more than tPWMI,OFF  
afer output short to GND detection  
The sof start routine is active during the rising and falling edge of VSOFT_START. The sof start timing is defined  
by a capacitor placed on the SOFT_START pin and both the sof start pull-up and pull-down current sources  
(ISofꢁStartꢁPU, ISofꢁStartꢁPD). Sof start rising edge time is approximately:  
CSoft_Start  
(1)  
tSoft_Start, r  
=
VSoft_Start_LOFF  
·
ISoft_Start_PU  
Note:  
Minimum value of sof start capacitor has to be designed such that, during startup, the output voltage  
exceeds the short to ground threshold (VFBH > VFBH_S2G_inc), before the sof start voltage reaches  
VSOFT_START_LOFF. Minimum temperature and minimum input voltage shall be considered as worst case  
condition for the dimensioning.  
The sof start routine limits the inrush current by clamping the COMP pin through a buffer like depicted in Figure 7.  
Therefore this functionality is effective only when sof start capacitor is sufficiently larger than the COMP capacitor  
and its effect is visible mainly in buck-boost or boost regulation mode.  
If a short circuit on the output is detected the pull-down current source ISofꢁStartꢁPD is activated. This current  
discharges the VSOFT_START until VSofꢁStartꢁRESET is reached. Aferwards the pull-up current source ISofꢁStartꢁPU turns  
on again only if the PWMI signal is higher than VPWMI,DC_0. If the fault condition hasn't been removed  
before VSofꢁStartꢁLOFF is reached, the pull-down current source is reactivated initiating a new cycle.  
During sof start rise time switching activity is observed, during the fall time instead the switching activity is halted  
like shown in Figure 8. This hiccup mode will continue until the fault is removed.  
It is possible to latch the fault condition on the TLD5191ES by sourcing a current higher than ISofꢁStartꢁPD through  
an external pull-up resistor connected from IVCC to the SOFT START pin. In this condition the device will restart  
regulating only if EN/INUVLO pin is toggled or if PWMI is toggled afer having kept it low for more than tPWMI,OFF  
.
During rising edge of sof start, the internal PWM is extended till one of the 2 following condition is reached:  
Until VSOFT_START exceeds VSofꢁStartꢁLOFF  
Until VFBH-FBL exceeds VFBH_FBL_VALID  
Datasheet  
17  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
tS2G_mask  
VFBH  
VFBH_S2G  
PWMI  
SWN  
SHORT  
DETECTION  
ISOFT_START_PU  
ISOFT_START_PD  
I
SOFT_START  
Vsoft_Start_reg  
VSOFT_START  
Vsoft_Start_LOFF  
Vsoft_Start_RESET  
Application Normal  
Normal  
Operation  
Vout shorted to GND  
Operation  
Status  
Event  
Vout short to GND applied  
Event  
Vout short to GND removed  
Figure 8  
Sof start timing diagram on a short to ground detected by the FBH pin  
5.3  
Switching frequency setup  
The switching frequency can be set from 200 kHz to 700 kHz by an external resistor connected from the FREQ pin  
to GND. Select the switching frequency with an external resistor according to the graph in Figure 9 or the following  
approximated formulas.  
0 . 8  
(2)  
(ꢀ)  
fSW kHz = 5375 * RFREQ kΩ  
RFREQ = 46023 * fSW kHz  
1 . 25  
Datasheet  
18  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
Figure 9  
Switching frequency fSW versus frequency select resistor to GND RFREQ  
5.4  
Operation of 4 switches H-Bridge architecture  
Inductor LOUT connects in an H-Bridge configuration with 4 external n-channel MOSFETs (M1, M2, M& M4)  
Transistor M1 and Mprovides a path between VIN and ground through LOUT in one direction (Driven by top and  
bottom gate drivers HSGD1 and LSGD2)  
Transistor M2 and M4 provides a path between VOUT and ground through LOUT in the other direction (Driven by top  
and bottom gate drivers HSGD2 and LSGD1)  
Nodes SWN1, SWN2, voltage across RSWCS and load current are also monitored by the TLD5191ES  
Table 6  
4 switches H-Bridge architecture transistor status summary  
BOOST mode  
ON  
BUCK-BOOST mode  
BUCK mode  
PWM  
M1  
M2  
Mꢀ  
M4  
PWM  
PWM  
PWM  
PWM  
OFF  
PWM  
PWM  
OFF  
PWM  
ON  
VOUT  
VS  
M1  
Mꢀ  
HSGD1  
HSGD2  
LOUT  
SWN1  
SWN2  
LSGD1  
LSGD2  
M2  
Mꢀ  
RSWCS  
Figure 10  
4 switches H-Bridge architecture overview  
Datasheet  
19  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
5.4.1  
Boost mode (VIN < VOUT)  
M1 is always ON, M2 is always OFF  
Every cycle Mturns ON first and inductor current is sensed (peak current control)  
Mstays ON until the upper reference threshold is reached across RSWCS (Energizing)  
Mturns OFF, M4 turns ON until the end of the cycle (Recirculation)  
Switches Mand M4 alternate, behaving like a typical synchronous boost regulator  
ILOUT  
VOUT  
VS  
M1  
M4  
Recirculation  
ON  
HSGD1  
LSGD1  
HSGD2  
LSGD2  
LOUT  
SWN1  
SWN2  
Energizing  
OFF  
M2  
Mꢀ  
t
M1+M3  
M1+M4  
M1+M3  
M1+M4  
M1+M3  
M1+M4  
RSWCS  
Figure 11  
4 switches H-Bridge architecture in BOOST mode  
Simplified comparison of 4 switches H-Bridge architecture to traditional asynchronous Boost approach  
M2 is always OFF in this mode (open)  
M1 is always ON in this mode (closed connection of inductor to VIN)  
M4 acts as a synchronous diode, with significantly lower conduction power losses (I2 x RDSON vs. 0.7 V x I)  
Note:  
Diode is source of losses and lower system efficiency!  
Figure 12  
4 switches H-Bridge architecture in BOOST mode compared to standard async booster  
5.4.2  
Buck mode (VIN > VOUT)  
M4 is always ON, Mis always OFF  
Every cycle M2 turns ON and inductor current is sensed (valley current control)  
M2 stays ON until the lower reference threshold is reached across RSWCS (Recirculation)  
M2 turns OFF, M1 turns ON until the end of the cycle (Energizing)  
Switches M1 and M2 alternate, behaving like a typical synchronous BUCK Regulator  
Datasheet  
20  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
ILOUT  
VOUT  
VS  
M1  
M4  
HSGD1  
ON  
HSGD2  
LSGD2  
Energizing  
LOUT  
SWN1  
SWN2  
Recirculation  
LSGD1  
OFF  
M2  
Mꢀ  
t
M1+M4  
M2+M4  
M1+M4  
M2+M4  
M1+M4  
M2+M4  
RSWCS  
Figure 13  
4 switches H-Bridge architecture in BUCK mode  
Simplified comparison of 4 switches architecture to traditional asynchronous Buck approach  
Mis always OFF in this mode (open)  
M4 is always ON in this mode (closed connection inductor to VOUT  
M2 acts as a synchronous diode, with significantly lower conduction losses (I2 x RDSON vs. 0.7 V x I)  
)
Figure 14  
4 switches H-Bridge architecture in BUCK mode compared to standard async BUCK  
5.4.3  
Buck-Boost mode (VIN ~ VOUT)  
When VIN is close to VOUT the controller is in Buck-Boost operation  
All switches are switching in buck-boost operation. The direct energy transfer from the input to the output (M1+M4  
= ON) is beneficial to reduce ripple current and improves the energy efficiency of the buck-boost control scheme  
The two buck boost waveforms and switching behaviors are displayed in Figure 15 below  
Datasheet  
21  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
ILOUT  
VS VOUT  
VOUT  
VS  
M1  
M4  
HSGD1  
HSGD2  
LSGD2  
Energizing  
LOUT  
SWN1  
SWN2  
Recirculation  
Energizing  
LSGD1  
M2  
Mꢀ  
t
M1+Mꢀ M1+M4  
M1+Mꢀ M1+M4  
M1+Mꢀ M1+M4  
M1+M4  
M1+M4  
M1+M4  
RSWCS  
ILOUT  
VS VOUT  
t
M2+M4 M1+M4  
M2+M4 M1+M4  
M2+M4 M1+M4  
M1+M4  
M1+M4  
M1+M4  
Figure 15  
4 switches H-Bridge architecture in BUCK_BOOST mode  
5.5  
Programming output voltage (constant voltage regulation)  
For a voltage regulator, the output voltage can be set by selecting the values RFB1 and RFB2 according to the following  
equation:  
VFBH FBL  
RFB1  
VOUT  
=
IFBL · RFB2 + VFBH FBL  
(4)  
VOUT  
FBH  
RFB1  
TLD5191ES  
IFBL  
FBL  
RFB2  
Figure 16  
Programming output voltage (Constant voltage regulation)  
Datasheet  
22  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
5.6  
Electrical characteristics  
Table 7  
Electrical characteristics  
VIN = 8 V to ꢀ6 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
V(FBH-FBL) threshold @ V(FBH-FBL)_100  
145.5  
150  
154.5  
mV  
mV  
µA  
VSET = 2 V; VFBH = 2 V to PRQ-7ꢀ  
analog dimming 100%  
60 V;  
V(FBH-FBL) threshold @ V(FBH-FBL)_10  
analog dimming 10%  
10  
65  
15  
20  
VSET = 0.ꢀ2 V; VFBH = 2 PRQ-74  
V to 60 V  
1)  
FBH Bias current  
FBL Bias current  
IFBH  
110  
155  
V
= 7 V;  
PRQ-75  
FBL  
VFBH -FBL = 150 mV  
1)  
IFBL  
17  
110  
ꢀ0  
4ꢀ  
1ꢀ0  
µA  
mV  
µS  
%
V
= 7 V; VFBH-FBL  
=
PRQ-76  
PRQ-198  
PRQ-77  
PRQ-80  
PRQ-81  
PRQ-82  
FBL  
150 mV  
V(FBH-FBL) valid range  
threshold  
VFBH_FBL_VALID  
IFBxgm  
120  
890  
91  
VSET > 1.5 V  
1)  
1)  
OUT Current sense  
amplifier gain  
Maximum BOOST duty  
cycle  
DBOOST_MAX  
89  
70  
-60  
9ꢀ  
82  
-40  
f
= ꢀ00 kHz  
sw  
1)  
1)  
Switch peak over current VSWCS_boost  
threshold - BOOST  
76  
mV  
mV  
Switch peak over current VSWCS_buck  
threshold - BUCK  
-50  
Sof Start pull up current ISofꢁStartꢁPU  
22  
26  
ꢀ2  
µA  
µA  
VSofꢁStart = 1 V  
VSofꢁStart = 1 V  
PRQ-8ꢀ  
PRQ-84  
Sof Start pull down  
ISofꢁStartꢁPD  
2.2  
2.6  
ꢀ.2  
current  
Sof start latch-OFF  
threshold  
VSofꢁStartꢁLOFF  
1.65  
1.75  
1.85  
V
PRQ-85  
Sof start reset threshold VSofꢁStartꢁRESET 0.1  
0.2  
2
0.ꢀ  
2.1  
V
V
PRQ-86  
PRQ-87  
Sof start voltage during VSofꢁStartꢁreg  
1.9  
1) No Faults  
regulation  
Average switching  
frequency  
fSW  
280  
ꢀ00  
ꢀ20  
kHz  
TJ = 25°C;  
PRQ-88  
RFREQ= ꢀ7.4 kΩ;  
Average value (spread  
spectrum modulator  
always on)  
Gate driver undervoltage VBST1,2-  
ꢀ.4  
4
V
VBST1,2 - VSWN1,2  
decreasing;  
PRQ-89  
threshold  
VSWN1,2_UVth  
Differential signal  
(not referred to GND)  
(table continues...)  
Datasheet  
2ꢀ  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
5 Regulator  
Table 7  
(continued) Electrical characteristics  
VIN = 8 V to ꢀ6 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.ꢀ  
Unit  
Note or condition  
P-Number  
Min.  
1.4  
Max.  
ꢀ.7  
HSGD1,2 NMOS driver  
on-state resistance (Gate  
Pull Up)  
RDS(ON_PU)HS  
VBST1,2 - VSWN1,2 = 5 V; PRQ-90  
Isource = 100 mA  
HSGD1,2 NMOS driver  
on-state resistance (Gate  
Pull Down)  
RDS(ON_PD)HS  
0.6  
1.4  
0.4  
ꢀ80  
1.2  
2.ꢀ  
1.2  
2.2  
ꢀ.7  
2.5  
VBST1,2 - VSWN1,2 = 5 V; PRQ-91  
Isink = 100 mA  
LSGD1,2 NMOS driver on- RDS(ON_PU)LS  
state resistance (Gate  
Pull Up)  
VIVCC = 5 V; Isource  
=
PRQ-92  
PRQ-9ꢀ  
PRQ-161  
100 mA  
LSGD1,2 NMOS driver on- RDS(ON_PD)LS  
state resistance (Gate  
Pull Down)  
VIVCC = 5 V; Isink =  
100 mA  
1)  
HSGD1,2 Gate driver  
peak sourcing current  
IHSGD1,2_SRC  
mA  
V
=
HSGD1,2 - VSWN1,2  
1 V to 4 V;  
VBST1,2 - VSWN1,2 = 5 V  
1)  
HSGD1,2 Gate driver  
peak sinking current  
IHSGD1,2_SNK  
410  
mA  
V
- VSWN1,2  
=
PRQ-162  
HSGD1,2  
4 V to 1 V;  
VBST1,2 - VSWN1,2 = 5 V  
1)  
LSGD1,2 Gate driver peak ILSGD1,2_SRC  
ꢀ70  
550  
mA  
mA  
ns  
V
= 1 V to 4 V; PRQ-16ꢀ  
= 4 V to 1 V; PRQ-164  
PRQ-98  
LSGD1,2  
sourcing current  
VIVCC = 5 V  
1)  
LSGD1,2 Gate driver peak ILSGD1,2_SNK  
sinking current  
V
LSGD1,2  
VIVCC = 5 V  
1)  
LSGD1,2 OFF to HSGD1,2 tLSOFF-HSON_delay 15  
ON delay  
ꢀ0  
60  
40  
75  
1)  
HSGD1,2 OFF to LSGD1,2 tHSOFF-LSON_delay ꢀ5  
ON delay  
ns  
PRQ-99  
1)  
Not subject to production test, specified by design  
Datasheet  
24  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
6 Digital dimming function  
6
Digital dimming function  
PWM dimming is adopted to vary LEDs brightness with greatly reduced chromaticity shif. PWM dimming achieves  
brightness reduction by varying the duty cycle of a constant current in the LED string.  
6.1  
Description  
PWM via direct interface  
Pulse width modulated (PWM) signals can be applied to the PWMI pin. The gate drivers are enabled if the signal is on  
high level and they are disabled if the the signal is at low level.  
The applied PWM signal shall have a frequency above fPWM,min.  
PWMO pin replicates PWMI pin HIGH or LOW state, unless one of the following conditions occur:  
Output overvoltage event  
Output short to ground event  
Thermal shutdown  
µC  
TLD5191ES  
PWMI  
Digital dimming  
Figure 17  
Digital dimming overview  
PWM dimming in LOW states can be used to suspend the output current for long time intervals in a safe  
manner. Indeed a sof start routine is applied once the channel is enabled if the PWM input signal has been kept  
below VPWMI,DC_0 for at least tPWMI,OFF.  
fPWMI > PWMfmin  
VPWMI  
VPWMI,ON  
VPWMI,OFF  
t
t
ILED  
Dim ON  
Dim OFF  
Dim ON  
Dim OFF  
Dim OFF  
VPWMI < VPWMI,DC_0 for at least tPWMI,OFF  
VPWMI  
VPWMI,ON  
VPWMI,DC_0  
t
t
ILED  
Soft Start  
Dim OFF  
Figure 18  
PWMI timings diagrams  
Datasheet  
25  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
6 Digital dimming function  
PWM via embedded PWM engine  
If an analog signal in between VPWMI,DC_0 and VPWMI,DC_100 is applied, embedded PWM is activated.  
The embedded PWM engine has an 8 bit resolution with a fixed internal frequency of fPWM  
.
TLD5191ES  
Main PWM  
generator  
IVCC  
RA  
RB  
PWMI  
PWMO  
PWM dimming  
generator  
IPWMI_INT  
Figure 19  
Block diagram of embedded PWM generator  
Note:  
A non linear embedded PWM engine is implemented to guarantee high accuracy for low values of duty  
cycle. It helps the headlamp designers to achieve high LED brightness accuracy when dimming to low duty  
cycle values. Moreover it helps to produce smooth fading curve, compensating the logarithmic change in the  
perceived brightness.  
PWMO pin replicates the frequency and duty cycle of the embedded PWM engine, unless one of the following  
conditions occur:  
Output overvoltage event  
Output short to ground event  
Thermal shutdown  
The duty cycle produced by the embedded PWM engine is a function of the voltage applied on PWMI pin.  
The duty cycle is quantized with different LSB step values in the following VPWMI ranges:  
0.142% for VPWMI,DC_0 VPWMI ≤ 0.2ꢀVIVCC  
0.284% for 0.2ꢀVIVCC < VPWMI ≤ 0.28VIVCC  
0.569% for 0.28VIVCC < VPWMI VPWMI,DC_100  
and can be calculated by the following formulas:  
V
0 . 18 · V  
PWMI  
IVCC  
DC % = 63 ·  
· 0 . 142 % for  
V
V  
0 . 23 · V  
(5)  
(6)  
(7)  
PWMI, DC_0  
PWMI  
IVCC  
0 . 05 · V  
IVCC  
V
0 . 23 · V  
PWMI  
IVCC  
IVCC  
DC % = 8 . 95 % + 64 ·  
· 0 . 284 % for 0 . 23 · V  
· 0 . 569 % for 0 . 28 · V  
< V  
0 . 28 · V  
V  
IVCC  
IVCC  
PWMI  
IVCC  
0 . 05 · V  
IVCC  
V
0 . 28 · V  
PWMI  
DC % = 27 . 13 % + 128 ·  
< V  
PWMI  
PWMI, DC_100  
0 . 1 · V  
IVCC  
Datasheet  
26  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
6 Digital dimming function  
PWM  
Duty Cycle  
100%  
27%  
9%  
VPWMI,DC_0  
VPWMI,DC_100  
VPWMI  
PWM  
OFF  
PWM ON  
Variable DC  
PWM ON  
DC = 100%  
Figure 20  
Analog PWM DC curve  
6.2  
Electrical characteristics  
Table 8  
Electrical characteristics  
VIN = 8 V to ꢀ6 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
PWMI Turn on threshold VPWMI,ON  
PWMI Turn off threshold VPWMI,OFF  
PWMI Off time threshold tPWMI,OFF  
2
V
PRQ-100  
PRQ-101  
PRQ-199  
PRQ-202  
0.8  
V
1)  
25  
ms  
Hz  
1)  
PWMI Minimum  
frequency  
fPWM,min  
75  
PWM Engine minimum  
voltage  
VPWMI,DC_0  
0.176* 0.18*  
V
V
PRQ-102  
PRQ-10ꢀ  
VIVCC  
VIVCC  
PWM Engine maximum  
voltage  
VPWMI,DC_100  
0.ꢀ8*  
0.ꢀ87*  
VIVCC  
VIVCC  
PWM Engine DC  
PWMDC_15%  
fPWM  
14.25  
220  
15  
275  
15.75  
ꢀꢀ0  
%
VPWMI = 0.246*VIVCC  
PRQ-104  
PRQ-105  
PRQ-106  
PWM Engine frequency  
Hz  
uA  
1)  
PWMI Internal pull down IPWMI_INT  
current  
1.5  
ꢀ.5  
V
= 0.2*VIVCC  
PWMI  
1)  
PWMO Gate driver  
sourcing current  
IPWMO_SRC  
-40  
-22  
-10  
mA  
VPWMO = 2.5 V; VIVCC PRQ-109  
= 5 V  
(table continues...)  
Datasheet  
27  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
6 Digital dimming function  
Table 8  
(continued) Electrical characteristics  
VIN = 8 V to ꢀ6 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
10  
Max.  
40  
1)  
PWMO Gate driver  
sinking current  
IPWMO_SNK  
tR,PWMO  
25  
mA  
ns  
V
= 2.5 V; VIVCC = PRQ-110  
PWMO  
5 V  
1)  
PWMO Gate driver rise  
time  
200  
150  
4.8  
450  
ꢀ75  
5
700  
600  
5.2  
C
= 2.2 nF;  
PRQ-111  
PRQ-112  
PRQ-11ꢀ  
gate  
VPWMO = 1 V to 4 V  
1)  
PWMO Gate driver fall  
time  
tF,PWMO  
ns  
V
C
= 2.2 nF;  
gate  
VPWMO = 4 V to 1 V  
PWMO Gate driver supply VPWMO  
voltage  
1)  
Not subject to production test, specified by design  
Datasheet  
28  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
7 Analog dimming  
7
Analog dimming  
The analog dimming feature allows further control of the output current. This approach is used to:  
Reduce the default current in a narrow range to adjust to different binning classes of the used LEDs  
Adjust the load current to enable the usage of one hardware for several LED types where different current levels  
are required  
Reduce the current at high temperatures (protect LEDs from overtemperature)  
Reduce the current at low input voltages (for example, cranking-pulse breakdown of the supply or power  
derating)  
7.1  
Description  
The analog dimming feature is adjusting the average load current level via the control of the feedback error amplifier  
voltage (VFBH-FBL).  
The SET pin is used to adjust the mean output current/voltage. The VSET range where analog dimming is enabled is  
from 200 mV to 1.5 V.  
Different application scenarios are described in Figure 22.  
Using the SET pin to adjust the output current:  
For the calculation of the output current IOUT the following equation is used:  
VFBH FBL  
IOUT  
=
(8)  
RFB  
A decrease of the average output current can be achieved by controlling the voltage at the SET pin (VSET) between 0.2  
V and 1.4 V. The mathematical relation is given in the formula below:  
VSET 200mV  
RFB · 8  
IOUT  
=
(9)  
If VSET is 200 mV (typ.) the LED current is only determined by the internal offset voltages of the comparators.  
To assure the switching activity is stopped and IOUT = 0, VSET has to be < 100 mV.  
VFBH-FBL  
V(FBH-FBL)_100  
0mV  
100mV  
200mV  
1.4V  
1.5V  
VSET  
Analog Dimming Enabled  
Analog Dimming Disabled  
Figure 21  
Analog dimming overview  
Datasheet  
29  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
7 Analog dimming  
Multi-purpose usage of the analog dimming feature  
1.  
2.  
3.  
A μC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET pin of  
the TLD5191ES.  
The usage of an external resistor divider connected between IVCC, SET and GND can be chosen for systems  
without μC on board. The concept allows control of the LED current by placing low power resistors.  
Furthermore a temperature sensitive resistor (thermistor) to protect the LED loads from thermal destruction  
can be connected.  
4.  
5.  
If the analog dimming feature is not needed, the SET pin should be connected to the IVCC pin.  
Instead of a DAC, the μC can provide a PWM signal and an external R-C filter to produce a constant voltage for  
the analog dimming. The voltage level depends on the duty cycle which can be controlled by the μC sofware  
afer reading the coding resistor placed on the LED module.  
1
3
5
2
D/A output  
SET  
IVCC  
RA  
RB  
µC  
TLD5191ES  
TLD5191ES  
VSET  
SET  
GND  
AGND  
AGND  
VSET  
Cfilter  
4
IVCC  
IVCC  
RA  
RA  
TLD5191ES  
TLD5191ES  
SET  
SET  
RB  
AGND  
AGND  
VSET  
VSET  
Cfilter  
Cfilter  
PWM output  
SET  
µC  
TLD5191ES  
VSET  
Cfilter  
GND  
AGND  
Figure 22  
Differens use cases for analog dimming pin SET  
Datasheet  
ꢀ0  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
7 Analog dimming  
7.2  
Electrical characteristics  
Table 9  
Electrical characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
1)  
Source current on SET  
pin  
ISET_source  
1
µA  
V
= 0.2 V to 1.4 V PRQ-114  
SET  
1)  
Not subject to production test, specified by design  
Datasheet  
ꢀ1  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
8 Linear regulator  
8
Linear regulator  
The TLD5191ES features an integrated voltage regulator for the supply of the internal gate driver stages.  
8.1  
IVCC description  
Internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to ILIM  
.
An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient load currents.  
During normal operation the external MOSFET switches will draw transient currents from the linear regulator and its  
output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the  
gate of the external MOSFET switches. A minimum capacitance value is given in parameter CIVCC  
.
Integrated undervoltage protection for the external switching MOSFET  
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage. If the voltage on IVCC  
pin falls below VIVCC_RTH,d the gate drivers are turned OFF.  
The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power  
dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of the external logic level n-channel  
MOSFETs.  
8.2  
Electrical characteristics  
Table 10  
Electrical characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
4.8  
Max.  
5.2  
Output voltage  
VIVCC  
5
V
VVIN = 1ꢀ.5 V;  
PRQ-1ꢀ4  
0.1 mA ≤ IIVCC ≤ 50 mA  
1)  
Output current limitation ILIM  
70  
90  
110  
ꢀ50  
mA  
mV  
V
= 4 V  
PRQ-1ꢀ5  
PRQ-1ꢀ6  
IVCC  
Drop out voltage  
VDR  
200  
VVIN = 5 V;  
IIVCC = 10 mA  
1) 2)  
IVCC buffer capacitor  
CIVCC  
10  
µF  
V
PRQ-1ꢀ7  
PRQ-1ꢀ8  
3)  
IVCC undervoltage reset VIVCC_RTH,d  
switch OFF threshold  
ꢀ.7  
ꢀ.9  
4.1  
V
decreasing  
IVCC  
IVCC undervoltage  
hysterisis  
VIVCC_HYST  
0.ꢀ1  
0.ꢀ4  
0.ꢀ7  
V
VIVCC increasing;  
PRQ-1ꢀ9  
1)  
2)  
not subject to production test, specified by design  
minimum value given is needed for regulator stability; application might need higher capacitance than the  
minimum. Use capacitors with LOW ESR  
selection of external switching MOSFET is crucial and the VIVCC,RTH,d min, as worst case the threshold voltage of  
MOSFET must be considered  
3)  
Datasheet  
ꢀ2  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
9 Protection and diagnostic functions  
9
Protection and diagnostic functions  
Description  
9.1  
The TLD5191ES has integrated circuits to diagnose and protect against overvoltage, short circuits of the load and  
overtemperature faults.  
In IDLE state only the overtemperature shut-down is reported according to specifications.  
In Figure 2ꢀ a summary of the protection, diagnostic and monitor functions is displayed.  
Protection and Diagnostic  
EF  
OR  
Overvoltage  
No output current  
IVCC OFF  
OR  
Short at the Load  
Device  
Overtemperature  
OR  
Input  
Undervoltage  
TLD5191ES  
Figure 23  
Protection and diagnostic overview - TLD5191ES  
9.2  
Output overvoltage, short circuit protection  
VS  
IVCC  
CIVCC  
D1  
D2  
VOUT  
VVFBH_S2G  
BST1  
BST2  
RFB  
CBS1  
CBS2  
M1  
M4  
COUT  
DLED1  
HSGD1  
RVFBH  
VVFB_OVTH  
RVFBL  
SWN1  
LOUT  
DLEDn  
M2  
Mꢀ  
LSGD1  
SWCS  
TLD5191ES  
RSWCS  
SGND  
LSGD2  
SWN2  
HSGD2  
VFB  
VFBH  
VFBL  
Figure 24  
Protections pins - overview  
Datasheet  
ꢀꢀ  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
9 Protection and diagnostic functions  
9.2.1  
Short circuit protection  
The device detects a short circuit at the output if this condition is verified:  
The pin VFBH falls below the threshold voltage VVFBH_S2G_dec for at least tS2G_mask  
.
During the rising edge of the sofꢀstart the short circuit detection is ignored until VSOFT_START_LOFF  
.
The TLD5191ES provides an open-drain status pin, EF, which pulls low when the short circuit is detected.  
In case of short circuit detection, the SOFT START pin is used to implement a fault mask and wait-before-retry time,  
on rising and falling edge respectively. See Figure 8 for more details.  
Note:  
If the short circuit condition disappears, the device will re-start with the sof start routine as described  
in Chapter 5.2.  
9.2.2  
Overvoltage protection  
TLD5191ES integrates an output overvoltage protection by monitoring the voltage on the VFB pin.  
A voltage divider between VOUT, VFB pin and AGND is used to adjust the overvoltage protection threshold.  
To fix the overvoltage protection threshold the following equation is used:  
RVFBH + RVFBL  
VOUT_OV_protected = VVFB_OVTH  
·
(10)  
RVFBL  
An overvoltage event is detected when VVFB > VVFB_OVTH and the device reacts as described below:  
Switching activity is disabled  
Mosfet M1, Mand M4 are kept OFF while mosfet M2 is kept ON to discharge the inductor current to the output  
Once the voltage VVFB < VVFB_OVTH - VVFB_OVTH,HYS the switching activity is resumed.  
In case of overvoltage event at the output, the open-drain status pin EF will toggle to LOW. Afer the overvoltage event  
disappeared the device will auto restart and the status pin EF will toggle to HIGH.  
Note:  
During the overvoltage event the inductor current is discharged to the output, thus an output voltage  
increase may be observed based on the LOUT and COUT design. The overvoltage threshold must be designed  
to avoid to exceed the device maximum absolute ratings.  
9.3  
Device temperature monitoring  
A temperature sensor is integrated on the chip. The temperature monitoring circuit compares the measured  
temperature to the shutdown threshold.  
If the internal temperature sensor reaches the shut-down temperature TJ,SD, the IVCC regulator is shut down and the  
gate driver outputs are set to LOW.  
The device exits from thermal shutdown condition with a sof start routine afer the temperature measured by the  
integrated sensor decreases below TJ,SD - TJ,SD,hyst.  
The TLD5191ES provides an open-drain status pin, EF, which pulls low when the shut-down temperature is reached.  
Datasheet  
ꢀ4  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
9 Protection and diagnostic functions  
TJ  
TJ,SD  
ΔT  
TJ,SD,hyst  
t
t
xSGDx  
LED  
current  
t
EF and IVCC  
5 V  
t
Device  
OFF  
Overtemp  
Fault  
Overtemp  
Fault  
Overtemp  
Fault  
Overtemp  
Fault  
Normal Operation  
ON  
ON  
ON  
Figure 25  
Device overtemperature protection behavior  
9.4  
Electrical characteristics  
Table 11  
Electrical characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or condition  
P-Number  
Min.  
1.9  
Max.  
2.15  
Short to GND exit  
threshold  
VFBH_S2G_inc  
VFBH_S2G_dec  
tS2G_mask  
TJ,SD  
2
V
VFBH increasing  
PRQ-127  
PRQ-128  
PRQ-20ꢀ  
PRQ-129  
PRQ-1ꢀ0  
PRQ-1ꢀ1  
PRQ-1ꢀ2  
Short to GND entry  
threshold  
1.65  
1.75  
42  
1.85  
50  
V
VFBH decreasing  
1)  
Short to GND masking  
time  
μs  
°C  
°C  
V
1)  
1)  
Over temperature  
shutdown  
160  
175  
10  
190  
Over temperature  
shutdown hysteresis  
TJ,SD,hyst  
VFB over voltage  
feedback threshold  
VVFB_OVTH  
VVFB_OVTH,HYS  
1.42  
25  
1.46  
40  
1.50  
58  
Output over voltage  
feedback hysteresis  
mV  
Output Voltage  
decreasing  
(table continues...)  
Datasheet  
ꢀ5  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
9 Protection and diagnostic functions  
Table 11  
(continued) Electrical characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.1  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
EF pin output impedance REF  
kΩ  
1) Fault Condition  
PRQ-1ꢀꢀ  
I = 100 μA  
1)  
specified by design; not subject to production test  
Note:  
Integrated protection functions are designed to prevent IC destruction under fault conditions described in  
the datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions  
are not designed for continuous repetitive operation.  
Datasheet  
ꢀ6  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
10 Infineon FLAT SPECTRUM feature  
10  
Infineon FLAT SPECTRUM feature  
Description  
10.1  
The Infineon FLAT SPECTRUM feature has the target to minimize external additional filter circuits.  
10.2  
Spread spectrum  
The spread spectrum modulation technique significantly improves the lower frequency range of the spectrum (f < ꢀ0  
MHz).  
By using the spread spectrum technique, it is possible to optimize the input filter only for the peak limits, and also  
pass the average limits (average emission limits are -20 dB lower than the peak emission limits). By using spread  
spectrum, the need for low ESR input capacitors is relaxed because the input capacitor series resistor is important for  
the low frequency filter characteristic. This can be an economic benefit if there is a strong requirement for average  
limits.  
The TLD5191ES features a built in spread spectrum function always activated with modulation frequency fFM and a  
frequency deviation fdev  
.
fSW  
fdev  
t
1/fFM  
Figure 26  
Spread spectrum overview  
10.3  
Electrical characteristics  
Table 12  
Electrical Characteristics  
VIN = 8V to ꢀ6V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin; (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
20  
Unit  
Note or condition  
P-Number  
Min.  
Max.  
1)  
1)  
Frequency deviation  
Frequency modulation  
1)  
fdev  
fFM  
%
PRQ-140  
PRQ-141  
12  
kHz  
specified by design; not subject to production test  
Datasheet  
ꢀ7  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
11 Application information  
11  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VS  
CPOW  
VIVCC  
DBS2  
VIVCC  
DBS1  
VIN  
BST1  
BST2  
CIN  
COUT1 COUT2  
RFB  
VIVCC  
M4  
Mꢀ  
M1  
M2  
CBS1 CBS2  
ROV1  
ROV2  
IVCC  
HSGD1  
SWN1  
CIVCC  
RINUVLO1  
LSGD1  
SWCS  
EN/INUVLO  
RINUVLO2  
RFREQ  
RSWCS  
TLD5191ES  
FREQ  
SGND  
CSOFT START  
RCOMP  
CCOMP  
SOFT START  
COMP  
LSGD2  
HSGD2  
SWN2  
VFB  
Analog  
dimming  
SET  
VIVCC  
Digital  
dimming  
FBH  
PWMI  
RPUEF  
FBL  
MPWM  
To µC  
EF  
PWMO  
AGND  
Figure 27  
Application drawing - TLD5191ES as current regulator  
Datasheet  
ꢀ8  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
11 Application information  
VS  
CPOW  
VIVCC  
DBS2  
VIVCC  
DBS1  
VIN  
BST1  
BST2  
CIN  
COUT1 COUT2  
RFB  
VIVCC  
M4  
Mꢀ  
M1  
CBS1 CBS2  
ROV1  
ROV2  
IVCC  
HSGD1  
SWN1  
CIVCC  
RINUVLO1  
M2  
LSGD1  
SWCS  
EN/INUVLO  
RINUVLO2  
RFREQ  
RSWCS  
TLD5191ES  
FREQ  
SGND  
CSOFT START  
RCOMP  
CCOMP  
SOFT START  
COMP  
LSGD2  
HSGD2  
SWN2  
VFB  
Analog  
SET  
dimming  
VIVCC  
RPWM1  
VIVCC  
FBH  
PWMI  
EF  
RPWM2  
RPUEF  
FBL  
MPWM  
To µC  
PWMO  
AGND  
Figure 28  
Application drawing - TLD5191ES as current regulator with PWM engine  
VS  
CPOW  
VIVCC  
DBS2  
VIVCC  
DBS1  
VIN  
BST1  
BST2  
CIN  
COUT1 COUT2  
MPWM_P  
RFB  
VIVCC  
M4  
Mꢀ  
M1  
M2  
CBS1 CBS2  
ROV1  
ROV2  
IVCC  
HSGD1  
SWN1  
CIVCC  
RINUVLO1  
LSGD1  
SWCS  
EN/INUVLO  
RINUVLO2  
RFREQ  
RSWCS  
TLD5191ES  
FREQ  
SGND  
MPWM_N  
CSOFT START  
RCOMP  
CCOMP  
SOFT START  
COMP  
LSGD2  
HSGD2  
SWN2  
VFB  
Analog  
dimming  
SET  
VIVCC  
Digital  
dimming  
FBH  
PWMI  
RPUEF  
FBL  
To µC  
EF  
PWMO  
AGND  
Figure 29  
Application drawing - TLD5191ES as current regulator with dimming PMOS  
Datasheet  
ꢀ9  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
11 Application information  
VS  
CPOW  
VIVCC  
DBS2  
VIVCC  
DBS1  
VIN  
BST1  
BST2  
CIN  
COUT1 COUT2  
VIVCC  
PWMI  
IVCC  
M4  
Mꢀ  
M1  
VOUT  
CBS2  
CBS1  
ROV1  
ROV2  
HSGD1  
SWN1  
CIVCC  
RINUVLO1  
M2  
LSGD1  
SWCS  
EN/INUVLO  
RINUVLO2  
RFREQ  
CSOFT START  
RCOMP  
RSWCS  
TLD5191ES  
FREQ  
SOFT  
START  
COMP  
SGND  
LSGD2  
CCOMP  
HSGD2  
SWN2  
VFB  
Analog  
dimming  
SET  
EF  
VIVCC  
FBH  
FBL  
RFB1  
RFB2  
RPUEF  
To µC  
RFF  
CFF  
PWMO  
AGND  
Figure 30  
Application drawing - TLD5191ES voltage mode  
Datasheet  
40  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
12 Package dimensions  
12  
Package dimensions  
Figure 31  
PG-TSDSO-24 package outline  
Figure 32  
PG-TSDSO-24 package pads and stencil  
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly  
products and to be compliant with government regulations the device is available as a green product. Green products  
are RoHS-Compliant (i.e Pb free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website: https://www.infineon.com/packages  
Datasheet  
41  
Rev.1.00  
2022-02-18  
TLD5191ES  
Datasheet  
Revision history  
Revision history  
Document  
version  
Date of  
Description of changes  
release  
Rev.1.00  
2022-02-18  
Datasheet release  
Datasheet  
42  
Rev.1.00  
2022-02-18  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-02-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-qnq1639124674948  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLD5541-1

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QU

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD5541-1_18

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QUXUMA1

LED Driver,
INFINEON

TLD55411QV

H-Bridge DC/DC Controller with SPI Interface
INFINEON

TLD55411QVXUMA1

LED Driver, 4-Segment, PQCC48, VQFN-48
INFINEON

TLD5S10AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S11AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S12AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD5S13AH

3600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC