TLE493D-P2B6 A1 [INFINEON]

The Infineon TLE493D-P2B6 is our newest magnetic 3D Hall sensor enabled by new and improved accuracy. It is the best product for high performance applications with respect to pricing and package size.;
TLE493D-P2B6 A1
型号: TLE493D-P2B6 A1
厂家: Infineon    Infineon
描述:

The Infineon TLE493D-P2B6 is our newest magnetic 3D Hall sensor enabled by new and improved accuracy. It is the best product for high performance applications with respect to pricing and package size.

文件: 总21页 (文件大小:978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Features  
3D (X, Y, Z) magnetic flux density sensing of ±160 mT  
Programmable flux resolution down to 65 µT (typ.)  
X-Y angular measurement mode  
Diagnostic measurements to check digital parts, analog parts and Hall  
probe of the sensor  
Wake Up function and Power down mode with 7 nA (typ.) power  
consumption  
12-bit data resolution for each measurement direction plus 10-bit  
temperature sensor  
Variable update frequencies and power modes (configurable during  
operation)  
PG-TSOP6-6-8  
Temperature range Tj = -40°C…125°C, supply voltage range = 2.8 V…3.5 V  
Triggering by external µC possible via I2C protocol  
Interrupt signal to indicate a valid measurement to the microcontroller  
Potential applications  
The TLE493D-P2B6 is designed for a wide range of magnetic sensing, including the following:  
Gear stick position  
Control elements in the top column module and multi function steering wheel  
Multi function knobs  
Pedal/valve position sensing  
Benefits  
Component reduction due to 3D magnetic measurement principle  
Wide application range addressable due to high flexibility  
Platform adaptability due to device configurability  
Supporting functional safety by means of integrated diagnostics  
Very low system power consumption due to Wake-Up mode resulting in extended battery runtime  
Disturbance of smaller stray fields are neglectable compared to the high magnetic flux measurement range  
Product validation  
Qualified for Automotive Applications. Product validation according to AEC-Q100.  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
1.0  
www.infineon.com  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Ordering information  
Ordering information  
Product type  
Marking 1)  
Ordering code  
Package  
Default address  
write/read  
TLE493D-P2B6 A0  
TLE493D-P2B6 A1  
TLE493D-P2B6 A2  
TLE493D-P2B6 A3  
P0  
P1  
P2  
P3  
SP005557415  
SP005557413  
SP005557411  
SP005557408  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
PG-TSOP6-6-8  
6AH / 6BH  
44H / 45H  
F0H / F1H  
88H / 89H  
1
Engineering samples are marked with “SA”  
Datasheet  
2
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Table of contents  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
1.1  
1.1.1  
1.1.2  
1.1.3  
1.2  
1.3  
1.4  
1.5  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Wake-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Definition of magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Sensitive area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Magnetic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Temperature measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overview of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Interface and timing description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3
3.1  
3.2  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Datasheet  
3
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Functional description  
1
Functional description  
This three dimensional Hall effect sensor can be configured by the microcontroller. The measurement data is  
provided in digital format to the microcontroller. The microcontroller is the master and the sensor is the slave. It  
also provides test functions and the capability to Wake-Up a sleeping system.  
1.1  
General  
Description of the block diagram and its functions.  
F-OSC  
LP-OSC  
Power Mode Control  
VDD  
GND  
Bias  
Wake-up  
SCL; /INT  
Lateral  
Hall plates  
Z-Direction  
ADC  
Digital tracking,  
demodulation &  
I²C interface  
MUX  
SDA  
Vertical  
Hall plates  
Y-Direction  
Temperature  
Figure 1  
Block diagram  
The IC consists of three main functional units containing the following building blocks:  
The power mode control system, containing a low-power oscillator, basic biasing, accurate restart,  
undervoltage detection and a fast oscillator.  
The sensing unit, which contains the HALL biasing, HALL probes with multiplexers and successive tracking  
ADC, as well as a temperature sensor is implemented.  
The I2C interface, containing the register files and I/O pads  
1.1.1  
Power mode control  
The power mode control provides the power distribution in the IC, a power-on reset function and a specialized  
low-power oscillator as the clock source. It also manages the start-up behavior.  
On start-up, this unit:  
-
-
activates the biasing, provides an accurate reset detector and fast oscillator  
sensor enters low power mode and can be configured via I2C interface  
Aꢀer re-configuration, a measurement cycle is performed, which consists of the following steps:  
-
-
-
activating internal biasing, checking for the restart condition and providing the fast oscillator  
HALL biasing  
measuring the three HALL probe channels sequentially (including the temperature). This is enabled by  
default  
-
reentering configured mode  
Datasheet  
4
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Functional description  
In any case functions are only executed if the supply voltage is high enough, otherwise the restart circuit will  
halt the state machine until the required level is reached and restart aꢀerwards. The functions are also restarted  
if a restart event occurs in between (see parameter ADC restart level ).  
1.1.2  
Sensing  
Measures the magnetic field in X, Y and Z direction. Each X-, Y- and Z-Hall probe is connected sequentially to a  
multiplexer, which is then connected to an analog to digital converter (ADC). Optional, the temperature (default  
= activated) can be determined as well aꢀer the three Hall channels.  
1.1.3  
Wake-Up  
For each of the three magnetic channels (X/Y/Z), the Wake-Up function has an upper and lower comparison  
threshold. Each component of the applied field is compared to the lower and upper threshold. If one of the  
results is above or below these thresholds, an interrupt pulse /INT is generated. This is called a Wake-Up  
function. The sensor signals a certain field strength change to the microcontroller. As long as all components  
of the field stay within the envelope, no interrupt signal will be provided. Note however that the /INT can also  
be inhibited during I2C activities, by activated collision avoidance. A Wake-Up interrupt /INT is the logical OR  
among all Wake-Up interrupt envelopes of the three channels.  
1.2  
Pin configuration (top view)  
Figure 2 shows the pinout of the TLE493D-P2B6.  
Figure 2  
Table 1  
TLE493D-P2B6 pinout  
TSOP6 pin description and configuration (see Figure 2)  
Pin no.  
Name  
Description  
1
SCL  
Interface serial clock pin (input)  
/INT  
Interrupt pin, signals a finished measurement cycle, open-drain  
2
3
4
5
6
GND  
GND  
VDD  
GND  
SDA  
Connect to GND  
Ground pin  
Supply pin  
Connect to GND  
Interface serial data pin (input/output), open-drain  
Datasheet  
5
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Functional description  
1.3  
Definition of magnetic field  
A positive field is considered as south-pole facing the corresponding Hall element.  
Figure 3 shows the definition of the magnetic directions X, Y, Z of the TLE493D-P2B6.  
Figure 3  
Definition of magnetic field direction  
1.4  
Sensitive area  
The magnetic sensitive area for the Hall measurement is shown in Figure 4.  
Figure 4  
Center of sensitive area (dimensions in mm)  
Datasheet  
6
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Functional description  
1.5  
Application circuit  
The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the  
sensor data.  
The pull-up resistor values of the I2C bus have to be calculated in such a way as to fulfill the rise and fall time  
specification of the interface for the given worst case parasitic (capacitive) load of the actual application setup.  
Please note: Too small resistive R1/2 values have to be prevented to avoid unnecessary power consumption  
during interface transmissions, especially for low-power applications.  
VDD  
Power  
Supply  
R1  
R2  
GND  
RSDA  
VDD  
VDD  
SDA  
TLE493D  
CBuf  
RSCL  
C1  
µC  
SCL  
(/INT)  
GND  
GND  
R1 = 1.2kΩ  
R2 = 1.2kΩ  
C1 = 100nF  
Optional (recommended for wire harness ): RSDA, RSCL  
SDA, SCL capacitance < 200 pF each, including all stray capacitances  
Figure 5  
Application circuit with external power supply and µC  
For additional EMC precaution in harsh environments, C1 may be implemented by two 100 nF capacitors in  
parallel, which should be already given by CBuf near the µC and/or power supply.  
Datasheet  
7
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
2
Specification  
This sensor is intended to be used in an automotive environment. This chapter describes the environmental  
conditions required by the device (magnetic, thermal and electrical).  
2.1  
Absolute maximum ratings  
Stresses above those listed under “Absolute maximum ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Furthermore, only single error cases are  
assumed. More than one stress/error case may also damage the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During  
absolute maximum rating overload conditions the voltage on VDD pin with respect to ground (GND) must not  
exceed the values defined by the absolute maximum ratings.  
Table 2  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Unit  
Note or test condition  
Min.  
-40  
-0.3  
Typ.  
Max.  
125  
3.5  
Junction temperature  
Voltage on VDD  
Tj  
°C  
V
VDD  
Bmax  
Vmax  
Magnetic field  
±1  
T
Voltage range on any pin to GND  
-0.1  
3.5  
V
open-drain outputs are  
not current limited.  
Table 3  
ESD protection2)  
Ambient temperature TA = 25°C  
Parameter  
Symbol  
Values  
Unit  
Note or test condition  
Min.  
Typ.  
Max.  
ESD voltage (HBM)3)  
ESD voltage (CDM)4)  
VESD  
±2.0  
±0.75  
±0.5  
kV  
kV  
kV  
R = 1.5 kΩ, C = 100 pF  
for corner pins  
all pins  
2
Characterization of ESD is carried out on a sample basis, not subject to production test.  
Human body model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.  
Charged device model (CDM), ESD susceptibility according to JEDEC JESD22-C101.  
3
4
Datasheet  
8
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
2.2  
Operating range  
To achieve ultra low power consumption, the chip does not use a conventional, power-consuming restart  
procedure. The focus of the restart procedure implemented is to ensure a proper supply for the ADC operation  
only. So it inhibits the ADC until the sensor supply is high enough.  
Table 4  
Operating range  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note or test condition  
Min.  
-40  
Max.  
125  
3.5  
Operating temperature  
Supply voltage  
Tj  
°C  
V
Tj = Ta +3 K in fast mode  
VDD  
2.8  
3.3  
Supply voltage must be above  
restart level  
ADC restart level  
Vres  
2.2  
2.5  
50  
2.8  
V
Min. ADC operating level  
ADC restart hysteresis  
Register stable level  
Vres-hys  
Vreg  
mV  
V
2.5  
Register values are stable above  
this voltage level  
The sensor relies on a proper supply ramp defined with tPUP, VOUS and IDD-PUP, see Figure 6. The I2C reset  
feature of the sensor shall be used by the µC aꢀer power up. If supply monitoring is used in the system (e.g.  
brown-out detector etc.), it is also recommended to use the I2C reset of the sensor following events detected by  
this monitor.  
In any case, an external supply switch (either provided by a system-basis-chip solution which includes a  
supply-enable feature, a Bias-resistor-transistor device, a capable µC GPIO pin, etc.) shall allow a power-cycle of  
the sensor as backup for high availability applications to cope with any form of VDD ramps (including potential  
EMC influences), see Figure 6.  
At power up, SDA and SCL shall be pulled to VDD using R1 and R2 of Figure 5 and not be driven to low by any  
device or µC on SDA and SCL.  
VDD  
3.3V  
tPUP  
tAPC  
t
Figure 6  
VDD power up and power cycle for high availability  
Datasheet  
9
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
Table 5  
VDD power up and power cycle  
Symbol  
Parameter  
Values  
Unit Note or test condition  
Min. Typ. Max.  
Power up ramp time  
Availability power cycle5)  
tPUP  
tAPC  
VOUS  
3
10  
µs  
µs  
150  
3.3  
400  
3.5  
Power up over- undershoot  
V
Envelope which must not be  
exceeded at the end of a power up.  
Power up current consumption IDD-PUP  
10  
mA  
Current consumption during tPUP  
2.3  
Electrical characteristics  
This sensor provides different operating modes and a digital communication interface. The corresponding  
electrical parameters are listed in Table 6. Regarding current consumption more information are available in  
Chapter 2.6.  
Table 6  
Electrical setup  
Values for VDD = 3.3 V ±5%, Tj = -40°C to 125°C (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit  
Note or test condition  
Min. Typ. Max.  
Supply current 6)  
IDD_pd  
IDD_fm  
VIL  
7
130  
5
nA  
Tj = 25°C; power down mode  
1
3.4  
mA  
Fast mode  
Input voltage low threshold7)  
Input voltage high threshold7)  
Input voltage hysteresis7)  
30  
%VDD All input pads  
%VDD All input pads  
%VDD All input pads  
VIH  
70  
5
VIHYS  
Output voltage low level @ 3 mA load VOL  
0.4  
V
All output pads, static load  
5
Not subject to production test - verified by design.  
6
7
Currents at pull up resistors (Figure 5) needs to be considered for power supply dimensioning.  
Based on I2C standard 1995 for VDD related input levels  
Datasheet  
10  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
2.4  
Magnetic characteristics  
The magnetic parameters are specified for an end of line production scenario and for an application life  
time scenario. The magnetic measurement values are provided in the two’s complement with 12 bit or 8 bit  
resolution in the registers with the symbols Bx, By and Bz. Two examples, how to calculate the magnetic flux  
density are shown in Table 10 and Table 11.  
Table 7  
Values for VDD = 3.3 V, Tj = 25°C (unless otherwise specified)  
Initial magnetic characteristics8)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or test  
condition  
Min.  
-160  
-100  
6
Max.  
160  
100  
10  
Magnetic linear range9) (full range)  
Magnetic linear range9) (short range) Bxyz_LINSR  
Bxyz_LIN  
mT  
mT  
-40°C < Tj < 125°C  
Sensitivity X, Y, Z (full range)  
Sx, Sy, Sz  
7.7  
LSB12/  
mT  
Sensitivity X, Y, Z (short range)  
Z-Offset (full range and short range)  
SxSR, SySR, SzSR 12  
B0z -1.8  
15.4  
±0.2  
20  
1.8  
0.75  
5
mT  
mT  
%
@ 0 mT  
@ 0 mT  
XY-Offset (full range and short range) B0xy  
-0.75 ±0.2  
X to Y magnetic matching10)  
X/Y to Z magnetic matching10)  
MXY  
-5  
-19  
±1  
-4  
MX/YZ  
Bineff  
11  
%
Magnetic initial noise (rms)  
(full range and short range)  
0.1  
0.4  
mT  
rms = 1 sigma  
Magnetic hysteresis9)  
(full range and short range)  
BHYS  
1
LSB12 due to quantization  
effects  
Sx Sy  
Sx + Sy  
M
= 100 2 ⋅  
%
XY  
Equation 1  
Parameter “X to Y magnetic matching”  
Sx + Sy 2 Sz  
Sx + Sy + 2 Sz  
MX/YZ = 100 2 ⋅  
%
Equation 2  
Parameter “X/Y to Z magnetic matching”  
8
Magnetic test on wafer level. It is assumed that initial variations are stored and compensated in the  
external µC during module test and calibration.  
Not subject to production test - verified by design/characterization.  
See the magnetic matching definition in Equation 1 and Equation 2.  
9
10  
Datasheet  
11  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
Table 8  
Sensor driꢀs11) valid for both full range and short range (unless indicated)  
Values for VDD = 3.3 V ±5%, Tj = -40°C to 125°C, static magnetic field within full magnetic linear range (unless  
otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or test condition  
Min.  
SxD, SyD, SzD -15  
Typ.  
±5  
Max.  
15  
Sensitivity driꢀ X, Y, Z  
Offset driꢀ X, Y  
%
TC0  
BO_DXY  
BO_DZ  
BO_DZ  
MXY_D  
-0.45  
0.45  
1.6  
mT  
mT  
mT  
%
@ 0 mT, TC0  
Offset driꢀ Z  
-1.6  
-0.45  
-1.9  
-12  
@ 0 mT, TC0  
Offset driꢀ Z  
X to Y magnetic matching driꢀ12)  
0.45  
1.9  
@ 0 mT, TC0, Z Hall spin test  
±0.5  
±5  
TC0  
TC0  
X/Y to Z magnetic matching driꢀ12) MX/YZ_D  
12  
%
Table 9  
Values for VDD = 3.3 V ±5%, Tj = -40°C to 125°C (unless otherwise specified)  
Temperature compensation, non-linearity and noise13)  
Parameter  
Symbol  
Values  
Typ.  
±0  
Unit  
Note or test condition  
Min.  
Max.  
Temperature compensation14)  
(full range and short range)  
TC0  
TC1  
TC2  
TC3  
DNL  
ppm/K Bx, By and Bz (default)  
Bx, By and Bz (option 1)  
Bx, By and Bz (option 2)  
Bx, By and Bz (option 3)  
LSB12 Bx, By and Bz  
-750  
-1500  
+350  
±2  
Differential non linearity (full range)  
Differential non linearity (short range) DNLSR  
±4  
Integral non linearity (full range)  
Integral non linearity (short range)  
Magnetic noise (rms)  
INL  
±2  
LSB12 Bx, By and Bz  
INLSR  
BNeff  
BNeffZ  
BNeffXY  
±4  
1
mT  
mT  
mT  
rms = 1 sigma  
Z-magnetic noise (rms)  
0.5  
0.25  
rms = 1 sigma,  
-40°C < Tj < 85°C  
XY-magnetic noise (rms)  
11  
Not subject to production test, verified by design/characterization. Driꢀs are changes from the initial  
characteristics Table 7 due to external influences.  
See the magnetic matching definition in Equation 1 and Equation 2.  
Not subject to production test, verified by design/characterization.  
12  
13  
14  
TCX must be set before magnetic flux trimming and measurements with the same value.  
Datasheet  
12  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
Conversion register value to magnetic field value:  
Table 10  
Magnetic conversion table for 12 bit  
MSB  
Bit10 Bit9  
Bit8  
256  
1
Bit7  
128  
0
Bit6  
64  
Bit5  
32  
Bit4  
16  
Bit3  
Bit2  
Bit1  
LSB  
1
[Dec]  
-2048 1024  
512  
1
8
1
4
1
2
1
[Bin] e.g.  
1
1
0
0
0
1
The conversion is realized by the two’s complement. Please use following table for transformation:  
Example for 12-bit read out: 1111 0000 1111B: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 +1 = -241 LSB12  
Calculation of magnetic flux density: -241 LSB12 x 0.13 mT/LSB12 = -31.3 mT  
Table 11  
Magnetic conversion table for 8 bit  
MSB  
-128  
0
Bit10  
64  
Bit9  
32  
Bit8  
16  
Bit7  
Bit6  
Bit5  
LSB  
1
[Dec]  
8
1
4
1
2
0
[Bin] e.g.  
0
1
1
1
Example for 8-bit read out: 0011 1101B: 0 + 0 +32 + 16 + 8 + 4 + 0 + 1 = 61 LSB8  
Calculation of magnetic flux density (full range): 61 LSB8 x 16 / 7.7 LSB8/mT = 127 mT  
2.5  
Temperature measurement  
By default, the temperature measurement is activated. The temperature measurement can be disabled if it is  
not needed and to increase the speed of repetition of the magnetic values.  
Table 12  
Temperature measurement characteristics15)  
Parameter  
Symbol  
Values  
Typ.  
1180  
0.24  
Unit  
Note or test condition  
Min.  
1000  
0.21  
Max.  
1360  
0.27  
Digital value @ 25°C  
T25  
LSB12  
Temperature resolution, 12 bit TRes12  
Temperature resolution, 8 bit TRes8  
K/LSB12  
K/LSB8  
referring to Tj  
referring to Tj  
3.84  
Table 13  
Temperature conversion table for 12 bit  
The bits MSB to Bit2 are read out from the temperature value registers. Bit1 and LSB are added to get a 12-bit  
value for calculation.  
MSB  
-2048  
0
Bit10  
1024  
1
Bit9  
512  
0
Bit8  
256  
1
Bit7  
128  
0
Bit6  
64  
Bit5  
32  
Bit4  
16  
Bit3  
Bit2  
[Dec]  
8
1
4
1
[Bin] e.g.  
0
1
0
Example for 12-bit calculation: 0110 1010 11B: 0 + 1024 + 0 + 256 + 0 + 0 + 32 + 0 + 8 + 4 = 1324 LSB12  
Calculation to temperature: (1324 LSB12 - 1180 LSB12) x 0.24 K/LSB12 + 25°C ≈ 60°C  
15  
The temperature measurement is not trimmed on the sensor. An external μC can measure the sensor  
during module production and implement external trimming to gain higher accuracies. Temperature  
values are based on 12 bit resolution. Please note: only bit 11 ... 2 are listed in the bitmap registers.  
Datasheet  
13  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
2.6  
Overview of modes  
For a good adaptation on application requirements this sensor is equipped with different modes. An overview is  
listed in Table 14.  
Table 14  
Overview of modes16)  
17)  
Mode  
Measurements  
No measurements  
Bx, By, Bz, T  
Typ. fUpdate  
Description  
Power down  
Lowest possible supply current IDD  
Low power mode  
0.05 Hz - 770 Hz Cyclic measurements and ADC-  
conversions with different update rates  
(full range and short range)  
(8 steps)  
Bx, By, Bz  
Bx, By  
Fast mode  
(full range)  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
5.8 kHz  
7.8 kHz  
11.6 kHz  
4.5 kHz  
5.6 kHz  
8.5 kHz  
Measurements and ADC conversions are  
running continuously.  
An I2C clock speed up to 1 MHz and use of  
the interrupt /INT is required.  
Fast mode  
(short range)  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
Master controlled mode  
(full range and short range)  
Bx, By, Bz, T  
Bx, By, Bz  
Bx, By  
Up to fast mode Measurements triggered by the  
values  
microcontroller via I2C  
Typical IDD current consumption estimation formula (e.g. full range and all channels):  
I
I  
f  
t + t + t + t  
DD  
DD_fm  
Update  
Bx  
By  
Bz  
Temp  
Equation 3  
IDD estimation formula  
16  
Not subject to production test - verified by design/characterization.  
This is the frequency at which specified measurements are updated.  
17  
Datasheet  
14  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
2.7  
Interface and timing description  
This chapter refers to how to set the boundary conditions in order to establish a proper interface  
communication.  
Table 15  
Interface and timing18)  
Symbol  
Parameter  
Values  
Typ.  
43  
Unit  
Note or test condition  
Min.  
Max.  
Bx, By and Bz conversion time  
(full range)  
tBx,  
tBy  
32  
54  
μs  
,
tBz  
Bx, By and Bz conversion time  
(short range)  
tBx_SR  
tBy_SR  
tBz_SR  
,
,
44  
32  
59  
43  
74  
54  
μs  
μs  
Temp conversion time  
(all ranges)  
tTemp  
/INT pulse width  
tINT  
1.8  
1.8  
2.5  
2.5  
3.2  
3.2  
μs  
μs  
/INT delay  
tINT_d  
I2C timings  
Allowed I2C bit clock frequency19)  
Low period of SCL clock  
High period of SCL clock  
fI2C_clk  
tL  
400  
1000  
kHz  
μs  
0.5  
0.4  
0.4  
1.3 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
tH  
μs  
SDA fall to SCL fall hold time  
tSTA  
μs  
(hold time start condition to clock)  
SCL rise to SDA rise setup time  
(setup time clock to stop condition)  
tSTOP  
tWAIT  
0.4  
0.4  
μs  
μs  
0.6 μs for 400-kHz mode  
0.6 μs for 400-kHz mode  
SDA rise to SDA fall hold time  
(wait time from stop to start cond.)  
SDA setup before SCL rising  
SDA hold aꢀer SCL falling  
Fall time SDA/SCL signal20)  
Rise time SDA/SCL signal20)  
tSU  
0.1  
0
μs  
μs  
µs  
µs  
tHOLD  
tFALL  
tRISE  
0.25  
0.5  
0.3  
R = 1.2 kΩ  
The fast mode, shown in Figure 7, requires a very strict I2C behavior synchronized with the sensor conversions  
and high bit rates. In this mode, a fresh measurement cycle is started immediately aꢀer the previous cycle was  
completed.  
Other modes are available for more relaxed timing and also for a synchronous microcontroller operation of  
sensor conversions. In these modes, a fresh measurement cycle is only started if it is triggered by an internal or  
external trigger source.  
18  
Not subject to production test - verified by design/characterization  
Dependent on R-C-combination on SDA and SCL. Ensure reduced capacitive load for speeds above  
19  
400 kHz.  
20  
Dependent on used R-C-combination.  
Datasheet  
15  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Specification  
In the default measurement configuration (Bx, By, Bz and T), shown in Figure 7, the measurement cycle ends  
aꢀer the temperature measurement.  
In 3-channel measurement configuration (Bx, By and Bz), the temperature channel is not converted and  
updated. Thus, the measurement cycle ends aꢀer the Bz measurement.  
In X/Y angular measurement configuration (Bx and By), the Bz and temperature channel are not converted and  
updated. Thus, the measurement cycle ends aꢀer the By measurement.  
*) setup/hold time for i2c readout to register value.  
first register  
address is 0,  
trigger bits are 0  
SCL falling edge SCL falling edge SCL falling edge SCL falling edge  
shadowed LSBs  
from prev.  
MSBs read  
status output starts  
with odd parity bit of  
last 6 bytes transmitted  
time must be either:  
or:  
addressing options;  
R/W bit is 1  
@ ACK bit  
@ ACK bit  
reads Y[n-1]  
@ ACK bit  
reads Z[n-1]  
@ ACK bit  
reads T[n-1]  
1
1
reads X[n-1]  
tS/H  
tS/H  
-
fi2c_clk  
fi2c_clk  
(update after read)  
(update before read)  
i2c bus protocol  
SCL / SDA  
transmission direction  
X[n-1]LSBs Z[n-1]LSBs  
Y[n-1]LSBs T[n-1]LSBs  
S
i2c_adr sens_reg X[n-1]MSBs Y[n-1]MSBs Z[n-1]MSBs T[n-1]MSBs  
STATUS  
P
S
i2c_adr sens_reg X[n-1]MSBs  
Mà S Mà S Sà M  
Mà S  
Mà S  
Sà M  
Sà M  
Sà M  
Sà M  
Sà M  
Sà M  
Sà M  
t
S/H *)  
t
S/H *)  
corresponds to 10bit addressing:  
two bytes following a S condition  
(i2c standard 1995, section 13.1)  
µC can start  
readout after  
/INT is high  
again  
tS/H *)  
t
S/H *)  
/INT  
tINT  
tINT  
tINT_d  
tINT_d  
1 / update_rate (fast mode)  
tBy  
tBx  
X[n-1]  
tBz  
tTemp  
tBx  
X value register  
X[n]  
Y[n-1]  
Y[n]  
Y value register  
Z value register  
T value register  
Z[n-1]  
By  
Z[n]  
T[n-1]  
T[n]  
Bx  
ADC conversion  
chan. (fast mode)  
Bx  
Bz  
T
Figure 7  
I2C readout frame, ADC conversion and related timing  
tRISE  
tFALL  
tH  
tL  
tSTOP  
tWAIT  
tSTA  
70% VDD  
30% VDD  
SCL  
pin  
70% VDD  
30% VDD  
SDA  
pin  
tHOLD  
tSU  
1 bit transfer  
STOP cond.  
START cond .  
Figure 8  
I2C timing specification  
Datasheet  
16  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Package information  
3
Package information  
3.1  
Package parameters  
Table 16  
Package parameters  
Parameter  
Symbol  
Values  
Min.  
Unit  
Notes  
Typ.  
Max.  
Thermal resistance21)  
Junction ambient  
RthJA  
RthJL  
MSL 1  
200  
K/W  
K/W  
Junction to air for  
PG-TSOP-6-6-8  
Thermal resistance  
Junction lead  
Soldering moisture level22)  
100  
Junction to lead for  
PG-TSOP-6-6-8  
260°C  
Figure 9  
Image of TLE493D-P2B6 in TSOP6  
Figure 10  
Footprint PG-TSOP6-6-8 (compatible to PG-TSOP6-6-5, all dimensions in mm)  
21  
According to Jedec JESD51-7  
Suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020D.1 (March 2008)  
22  
Datasheet  
17  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Package information  
3.2  
Package outlines  
Figure 11  
Package outlines (all dimensions in mm)  
Datasheet  
18  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Package information  
Figure 12  
Packing (all dimensions in mm)  
Further information about the package can be found here:  
http://www.infineon.com/cms/en/product/packages/PG-TSOP6/PG-TSOP6-6-8/  
Datasheet  
19  
1.0  
2021-01-12  
TLE493D-P2B6  
High Accuracy Low Power 3D Hall Sensor with I2C Interface  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
V1.0  
2021-01-12  
Initial release  
Datasheet  
20  
1.0  
2021-01-12  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-01-12  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
a written document signed by  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-xtl1604393071312  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLE493D-P2B6 A2

The Infineon TLE493D-P2B6 is our newest magnetic 3D Hall sensor enabled by new and improved accuracy. It is the best product for high performance applications with respect to pricing and package size.
INFINEON

TLE493D-P2B6 A3

The Infineon TLE493D-P2B6 is our newest magnetic 3D Hall sensor enabled by new and improved accuracy. It is the best product for high performance applications with respect to pricing and package size.
INFINEON

TLE493D-W2B6

Hall Effect Sensor,
INFINEON

TLE493D-W2B6 A0

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field. Thus the sensor family is ideally suited for the measurement of:
INFINEON

TLE493D-W2B6 A1

With the TLE493D-W2B6 A0-A3, a 3D sensor has been developed, which includes an enhanced dynamic wake up feature. Four pre-programmed address options (A0-A3) will be available, enabling for a fast start up initialization, when used in I2 C bus configurations. It also includes enhanced test options and a safety documentation is available to enable the usage of this sensor in the context of ASIL B systems.
INFINEON

TLE493D-W2B6 A2

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field.Thus the sensor family is ideally suited for the measurement of:
INFINEON

TLE493D-W2B6 A3

Infineon´s  3D magnetic sensor family TLE493D offers accurate three dimensional sensing with extremely low-power consumption. Within its small 6-pin package the sensor provides direct measurement of the x-, y-, and z components of a magnetic field. Thus the sensor family is ideally suited for the measurement of:
INFINEON

TLE493D-W2B6A0

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A1

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A2

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493D-W2B6A3

Low Power 3D Hall Sensor with I2C Interface and Wake Up Function
INFINEON

TLE493DA2B6HTSA1

Hall Effect Sensor,
INFINEON