TLE4941CHAMA2 [INFINEON]

Hall Effect Sensor,;
TLE4941CHAMA2
型号: TLE4941CHAMA2
厂家: Infineon    Infineon
描述:

Hall Effect Sensor,

文件: 总20页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2018  
TLE4941C in PG-SSO-2-4  
Differential Two-Wire Hall Effect Sensor-IC for  
Wheel Speed Applications  
Final Data Sheet  
Revision 3.1  
ATV SC AE  
Edition March 2010  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© 2010 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
TLE4941C  
Revision History: January 2018, Revision 3.1  
Previous Version: September 2007, Data Sheet, V2.2  
Page  
Subjects (major changes since last revision)  
Changes due to PCN 2009-069-A  
New Ordering Code inserted  
all  
5
5
Changes due to PCN PCN 2017-106  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
sensors@infineon.com  
Final Data Sheet  
3
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1
1.1  
1.2  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration and Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.3.1  
3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Diagrams (measured performance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electro Magnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
4
4.1  
4.2  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Final Data Sheet  
4
Revision 3.1, January 2018  
Differential Two-Wire Hall Effect Sensor IC  
TLE4941C in PG-SSO-2-4  
1
Product Description  
1.1  
Overview  
The Hall Effect sensor IC TLE4941C is designed to provide information  
about rotational speed to modern vehicle dynamics control systems and  
ABS. The output has been designed as a two wire current interface. The  
sensor operates without external components and combines a fast power-  
up time with a low cut-off frequency. Excellent accuracy and sensitivity is  
specified for harsh automotive requirements as a wide temperature range,  
high ESD and EMC robustness. State-of-the art BiCMOS technology is  
used for monolithic integration of the active sensor areas and the signal  
conditioning circuitry.  
PG SSO 2 2  
Finally, the optimized piezo compensation and the integrated dynamic  
offset compensation enable easy manufacturing and elimination of  
magnet offsets.  
The TLE4941C is additionally provided with an overmolded 1.8 nF  
capacitor for improved EMI performance.  
1.2  
Features  
Two-wire current interface  
Dynamic self-calibration principle  
Single chip solution  
No external components needed  
High sensitivity  
South and north pole pre-induction possible  
High resistance to piezo effects  
Large operating air-gaps  
Wide operating temperature range  
TLE4941C: 1.8 nF overmolded capacitor  
Product Name  
Product Type  
Ordering Code  
Package  
TLE4941C in PG-SSO-2-4 Diff. Speed Sensor  
SP001952924  
PG-SSO-2-4  
Final Data Sheet  
5
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Functional Description  
2
Functional Description  
2.1  
General  
The differential hall sensor IC detects the motion of ferromagnetic and permanent magnet structures by measuring  
the differential flux density of the magnetic field. To detect the motion of ferromagnetic objects the magnetic field  
must be provided by a back biasing permanent magnet. Either south or north pole of the magnet can be attached  
to the rear unmarked side of the IC package.  
Magnetic offsets of up to ± 20 mT and device offsets are cancelled by a self-calibration algorithm. Only a few  
transitions are necessary for self-calibration. After the initial calibration sequence switching occurs when the input  
signal is crossing the arithmetic mean of its max. and min. value (e.g. zero-crossing for sinusoidal signals).  
The ON and OFF state of the IC are indicated by High and Low current consumption.  
2.2  
Pin Configuration and Marking  
2.67  
B
A
0.3 B  
2.5  
Center of  
sensitive area  
1
2
G:  
YY:  
WW:  
green package  
production year  
production week  
VCC  
GND  
123456:  
41C0R Æ TLE4941C  
AEP03200  
Figure 1  
Pin Description (view on branded side of component)  
Final Data Sheet  
6
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Functional Description  
2.3  
Block Diagram  
"VCC  
"
Power Supply  
Regulator  
Main  
Comp  
"GND"  
Oscillator  
(syst clock)  
PGA  
Hall  
Probes  
Speed  
ADC  
Digital  
Circuit  
Gain Range  
Offset  
DAC  
AEB03201  
Figure 2  
Block Diagram  
The circuit is supplied internally by a 3 V voltage regulator. An on-chip oscillator serves as clock generator for the  
digital part of the circuit.  
TLE4941C signal path is comprised of a pair of hall probes, spaced at 2.5 mm, a differential amplifier including a  
noise-limiting low-pass filter and a comparator feeding a switched current output stage. In addition an offset  
cancellation feedback loop is provided by a signal-tracking A/D converter, a digital signal processor (DSP) and an  
offset cancellation D/A converter.  
During the startup phase (un-calibrated mode) the output is disabled (I = ILOW).  
The differential input signal is digitized in the speed A/D converter and fed into the DSP. The minimum and  
maximum values of the input signal are extracted and their corresponding arithmetic mean value is calculated. The  
offset of this mean value is determined and fed into the offset cancellation DAC.  
After successful correction of the offset, the output switching is enabled.  
In running mode (calibrated mode) the offset correction algorithm of the DSP is switched into a low-jitter mode,  
avoiding oscillation of the offset DAC LSB. Switching occurs at zero-crossing. It is only affected by the (small)  
remaining offset of the comparator and by the remaining propagation delay time of the signal path, mainly  
determined by the noise-limiting filter. Signals below a defined threshold ΔBLimit are not detected to avoid unwanted  
parasitic switching.  
Final Data Sheet  
7
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Functional Description  
2.3.1  
Output Description  
Under ideal conditions, the output shows a duty cycle of 50%. Under real conditions, the duty cycle is determined  
by the mechanical dimensions of the target wheel and its tolerances (40% to 60% might be exceeded for pitch >>  
5 mm due to the zero-crossing principle).  
Speed Signal  
Sensor Internal  
Transferred  
Speed Signal  
AET03202  
Figure 3  
Speed Signal (half a period = 0.5 x 1/fspeed)  
I
tr  
tf  
IHIGH  
90%  
50%  
10%  
ILOW  
t1  
T
t
AET03203  
Figure 4  
Definition of Rise and Fall Time, Duty = t1/T x 100%  
Final Data Sheet  
8
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3
Specification  
3.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings  
Tj = – 40°C to 150°C, 4.5 V Vcc 16.5 V  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Supply voltage  
– 0.3  
V
Tj < 80°C  
VCC  
16.5  
20  
Tj = 170°C  
Tj = 150°C  
t = 10 × 5 min.  
22  
24  
t = 10 × 5 min.,  
RM 75 Ω  
included in VCC  
27  
t = 400 ms, RM 75 Ω  
included in VCC  
Reverse polarity current  
Junction temperature  
200  
mA  
°C  
External current limitation  
required,  
t< 4 h  
Irev  
Tj  
150  
160  
5000 h, VCC < 16.5 V  
2500 h, VCC < 16.5 V  
(not additive)  
170  
500 h, VCC < 16.5 V  
(not additive)  
190  
4 h, VCC < 16.5 V  
Active lifetime  
tB,active  
TS  
10000  
– 40  
h
Storage temperature  
150  
190  
°C  
K/W  
1)  
Thermal resistance  
PG-SSO-2-4  
RthJA  
1) Can be significantly improved by further processing like overmolding  
Attention: Stresses above the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
Table 2  
ESD Protection  
Human Body Model (HBM) tests according to  
Standard EIA/JESD22-A114-B HBM (covers MIL STD 883D)  
Parameter  
Symbol  
Limit Values  
Unit  
Notes  
min.  
max.  
ESD-Protection  
TLE4941C  
VESD  
kV  
R = 1.5 kΩ,  
C = 100 pF  
± 12  
Final Data Sheet  
9
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3.2  
Operating Range  
Table 3  
Parameter  
Operating Range  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Supply voltage  
VCC  
4.5  
20  
V
Directly on IC leads;  
includes not the  
voltage drop at RM  
Supply voltage ripple  
Junction temperature  
VAC  
Tj  
6
Vpp  
°C  
VCC = 13 V  
0 < f < 50 kHz  
– 40  
150  
170  
500 h,  
VCC 16.5 V,  
increased jitter  
permissible  
Pre-induction  
B0  
– 500  
– 20  
+ 500  
+ 20  
mT  
mT  
Pre-induction offset between  
outer probes  
ΔBstat., l/r  
Differential Induction  
ΔB  
– 120  
+ 120  
mT  
Note:Within the operating range the functions given in the circuit description are fulfilled.  
Final Data Sheet  
10  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3.3  
Electrical Characteristics  
Table 4  
Electrical Characteristics  
All values specified at constant amplitude and offset of input signal, over operating range,  
unless otherwise specified. Typical values correspond to VCC = 12 V and TA = 25°C  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
5.9  
typ.  
7
max.  
8.4  
Supply current  
ILOW  
mA  
mA  
Supply current  
IHIGH  
11.8  
1.9  
14  
16.8  
Supply current ratio  
IHIGH / ILOW  
tr, tf  
Output rise/fall slew rate  
TLE4941C  
12  
7.5  
26  
24  
mA/µs  
RM 150 Ω  
RM 750 Ω  
See Figure 4  
Output rise/fall slew rate  
TLE4941C  
tr, tf  
RM = 75 Ω  
T < 125°C  
T < 170°C  
See Figure 4  
8
8
22  
26  
mA/µs  
Current ripple dIX/dVCC  
IX  
90  
µA/V  
mT  
only valid for 49411)  
2)  
Limit threshold  
ΔBLimit  
1 Hz < f < 2500 Hz  
2500 Hz < f < 10000 Hz  
0.35  
0.8  
1.5  
1.7  
3)  
Initial calibration  
delay time  
td,input  
300  
µs  
Additional to nstart  
Magnetic edges required for initial nstart  
calibration  
3
64)  
magn.  
edges5)  
7th edge correct 6)  
8)  
Frequency  
f
17)  
2500  
2500  
10000  
Hz  
Frequency changes  
Duty cycle  
df/dt  
duty  
± 100  
60  
Hz/ms  
%
40  
50  
9)ΔB = 2 mT sin-wave  
Def. See Figure 4  
Jitter, Tj < 150°C  
Tj < 170°C  
1 Hz < f < 2500 Hz  
SJit-close  
SJit-close  
SJit-far  
± 2  
± 3  
%
%
%
%
%
10)1σ value  
VCC = 12 V  
ΔB 2 mT  
10)1σ value  
VCC = 12 V  
ΔB 2 mT  
10)1σ value  
Jitter, Tj < 150°C  
Tj < 170°C  
2500 Hz < f < 10000 Hz  
± 3  
± 4.5  
Jitter, Tj < 150°C  
Tj < 170°C  
1 Hz < f < 2500 Hz  
± 4  
± 6  
VCC= 12 V  
2 mT ≥ ΔB > ΔBLimit  
10)1σ value  
SJit-far  
± 6  
± 9  
Jitter, Tj < 150°C  
Tj < 170°C  
2500 Hz < f < 10000 Hz  
VCC = 12 V  
2 mT ≥ ΔB > ΔBLimit  
SJit-AC  
± 2  
Jitter at board net ripple  
VCC = 13 V ± 6 Vpp  
0 < f < 50 kHz  
ΔB = 15 mT  
1) only valid for TLE4941. For TLE4941C higher values occure and depend strongly on Rm-C combination  
2) Magnetic amplitude values, sine magnetic field, limits refer to the 50% critera. 50% of edges are missing  
Final Data Sheet  
11  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3) Occurrence of Initial Calibration Delay Time td,input  
If there is no input signal (standstill), a new initial calibration is triggered each 0.7 s. This calibration has a duration td,input  
of max. 300 µs. No input signal change is detected during that initial calibration time. In normal operation (signal startup)  
the probability of td,input to come into effect is: td,input / time frame for new calibration 300 µs/700 ms = 0.05%. After IC resets  
(e.g. after a significant undervoltage) td,input will always come into effect.  
4) Magnetic Input Signal Extremely Close to a Switching Threshold of PGA (Pragrammable Gain Amplifier) at Signal Startup  
After signal startup generally all PGA switching into the appropriate gain state happens within less than one signal period.  
This is included in the calculation for nDZ-Start. For the very rare case that the signal amplitude is extremely close to a PGA  
switching threshold and the full range of following speed ADC respectively, a slight change of the signal amplitude can  
cause one further PGA switching. It can be caused by non-perfect magnetic signal (e.g. amplitude modulation due to  
tolerances of pole-wheel, tooth wheel or air gap variation). This additional PGA switching can result in a further delay of  
the output signal (nDZ-Start) up to three magnetic edges leading to a worst case of nDZ-Start = 9. Due to the low probability  
of this case it is not defined as max. value in the data sheet.  
5) The sensor requieres up to nstart magnetic switching edges for valid speed information after power-up or after a stand still  
condition. During that phase the output is disabled.  
6) One magnetic edge is defined as a montonic signal change of more than 3.3 mT  
7) only valid in calibrated mode. For entering calibrated mode higher frequencies are necessary.  
8) High frequency behavior not subject to production test - verified by design/characterization. Frequency above 2500 Hz may  
have influence on jitter performance and magnetic thresholds  
9) During fast offset alterations, due to the calibration algorithm, exceeding the specified duty cycle is permitted for short time  
periods  
10) Not subject to production test verified by design/characterization  
Final Data Sheet  
12  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3.4  
Typical Diagrams (measured performance)  
Tc = Tcase, IC = approx. Tj - 5°C  
AED03216  
2.4  
IHIGH / ILOW  
2.3  
AED03215  
18  
mA  
HIGH, ILOW  
I
16  
IHIGH  
2.2  
2.1  
2.0  
1.9  
1.8  
14  
12  
10  
8
ILOW  
6
-40  
0
40 80 120  
°C 200  
-40  
0
40 80 120  
˚C 200  
TC  
TC  
Figure 5  
Supply Current = f(T) (left), Supply Current Ratio Ihigh / I Low= f(T) (right)  
AED03218  
AED03217  
2.4  
20  
mA  
ILOW  
IHIGH  
/
ILOW  
IHIGH  
,
2.2  
2.0  
1.8  
1.6  
16  
14  
12  
10  
8
IHIGH  
IHIGH / ILOW  
ILOW  
6
0
5
10 15 20 25 V 30  
0
5
10 15 20 25 V 30  
VCC  
VCC  
Figure 6  
Supply Current =f(Vcc) (left), Supply Current Ratio Ihigh / I Low=f(Vcc) (right)  
Final Data Sheet  
13  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
AED03222  
AED03220  
22  
mA/µs  
26  
mA/µs  
24  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
Fall  
Rise  
Fall  
Rise  
6
4
2
0
-40  
0
40 80 120  
˚C 200  
0
200 400 600 800 1000  
Ω
TC  
RM  
Figure 7  
Slew Rate with C = 1.8 nF = f(RM) (left), Slew Rate with C = 1.8 nF, RM = 75 Ω (right)  
AED03223  
AED03224  
1.0  
mT  
1.0  
mT  
BLimit  
ΔB  
0.9  
0.9  
0.8  
0.7  
0.6  
0.5  
BLimit  
0.8  
0.7  
0.6  
0.5  
BLimit  
100  
101  
102  
103  
104  
Hz  
-40  
0
40 80 120  
˚C 200  
f
TC  
Figure 8  
Magnetic Threshold ΔBLimit = f(T) at f = 1 kHz (left), Magnetic Threshold ΔBLimit = f(f) (right)  
Final Data Sheet  
14  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
AED03225  
AED03226  
0.9  
%
0.8  
12  
µs  
td  
10  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
8
t
d @ 2.5 kHz  
6
4
2
0
-40  
0
40 80 120  
˚C 200  
-40  
0
40  
80 120 ˚C 180  
TC  
TC  
Figure 9  
Jitter 1σ at ΔB = 2 mT at 1 kHz (left), Delaytime td (right) 1)  
1) td is the time between the zero crossing of ΔB = 2 mT sinusoidal input signal and the rising edge (50%) of the  
signal current.  
Final Data Sheet  
15  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
3.5  
Electro Magnetic Compatibility (EMC)  
Table 5  
Electro Magnetic Compatibility (values depend on RM!)  
Ref. ISO 7637-1; test circuit 1;  
ΔB = 2 mT (amplitude of sinus signal); VCC = 13.5 V, fB = 100 Hz; T = 25°C; RM 75 Ω  
Parameter  
Symbol  
Level/Typ  
Status  
Testpulse 1  
Testpulse 2  
Testpulse 3a  
Testpulse 3b  
Testpulse 4  
Testpulse 5  
VEMC  
IV / – 100 V  
IV / 100 V  
IV / – 150 V  
IV / 100 V  
IV / – 7 V  
C2)  
C2)  
A
A
B3)  
C
IV / 86.5 V1)  
Note:Values are valid for all TLE4941C/42C types!  
Ref. ISO 7637-3; test circuit 1;  
ΔB = 2 mT (amplitude of sinus signal); VCC = 13.5 V, fB = 100 Hz; T = 25°C; RM 75 Ω  
Parameter  
Symbol  
Level/Typ  
Status  
Testpulse 1  
Testpulse 2  
Testpulse 3a  
Testpulse 3b  
VEMC  
IV / – 30 V  
IV / 30 V  
IV / – 60 V  
IV / 40 V  
A
A
A
A
Note:Values are valid for all TLE4941C/42C types!  
Ref. ISO 11452-3; test circuit 1; measured in TEM-cell  
ΔB = 2 mT; VCC = 13.5 V, fB = 100 Hz; T = 25°C  
Parameter  
Symbol  
Level/Typ  
Remarks  
EMC field strength  
Note:Only valid for C-types!  
ETEM-Cell  
IV / 250 V/m  
AM = 80%,f = 1 kHz  
1) Applying in the board net a suppressor diode with sufficient energy absorption capability  
2) According to 7637-1 the supply switched “OFF” for t = 200 ms  
3) According to 7637-1 for test pulse 4 the test voltage shall be 12 V ± 0.2 V. Measured with RM = 75 Ω only. Mainly the current  
consumption will decrease. Status C with test circuit 1  
Final Data Sheet  
16  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Specification  
EMC-Generator  
Mainframe  
D1  
VCC  
Sensor  
GND  
VEMC  
C1  
D2  
RM  
C2  
AES03199  
Components: D1: 1N4007 or higher  
D2: T 5Z27 1J  
C1: 10 µF / 35 V  
C2: 1 nF / 1000 V  
RM: 75 Ω / 5 W  
Figure 10 EMC Test Circuit 1  
Final Data Sheet  
17  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Package Information  
4
Package Information  
Pure tin covering (green lead plating) is used. Leadframe material is Wieland K62 (UNS: C18090) and contains  
CuSn1CrNiTi. Product is RoHS (restriction of hazardous substances) compliant when marked with letter G in front  
or after the data code marking and may contain a data matrix code on the rear side of the package (see also  
information note 136/03). Please refer to your Key account team or regional sales if you need further information.  
d=0.3±0.08mm  
Distance chip to front side  
(date code) of IC  
Figure 11 Distance Chip to Upper Side of IC  
.
Final Data Sheet  
18  
Revision 3.1, January 2018  
TLE4941C in PG-SSO-2-4  
Package Information  
4.1  
Package Outline  
±0.05  
5.34  
0.2  
2 A  
1-0.1  
±0.08  
5.16  
±1  
12.7  
B
±0.05  
0.25  
±1˚  
1x45˚  
1.9 MAX.  
CODE  
CODE  
CODE  
±0.05  
±0.05  
0.87  
1.67  
2x  
0.2+0.1  
2.54  
±0.05  
1.5  
A
A
0.1  
±0.05  
0.5 2x  
0.2 2x  
±0.05  
0.25  
1.2  
1.9 MAX.  
1
2
3.01  
0.2  
B
±0.08  
±0.05  
1.81  
5.16  
A
Adhesive  
Tape  
Tape  
±0.3  
0.25-0.15  
±0.4  
4
6.35  
±0.1  
±0.3  
0.39  
12.7  
Total tolerance at 10 pitches ±1  
1) No solder function area  
Figure 12 PG-SSO-2-4 (Plastic Single Small Outline Package); Dimensions in mm  
4.2  
Packing  
You can find all of our packages, sorty of packing and others in our Infineon Internet Page  
“Products”: http://www.infineon.com/products  
.
Final Data Sheet  
19  
Revision 3.1, January 2018  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

TLE4941PLUSC

Analog Circuit, 1 Func, BICMOS, PXSS2, SSO-2-53, 2 PIN
INFINEON

TLE4941PLUSCAAMA1

Analog Circuit,
INFINEON

TLE4941PLUSCB

Analog Circuit
INFINEON

TLE4941PLUSCXAMA1

Analog Circuit,
INFINEON

TLE4942

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE4942-1

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE4942-1C

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE4942-1C-HT

Hall Effect Sensor,
INFINEON

TLE4942-2

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE4942-2C

Differential Two-Wire Hall Effect Sensor IC
INFINEON

TLE49421CBAMA1

Hall Effect Sensor, Rectangular, Through Hole Mount, SSOP-2
INFINEON

TLE4942C

Differential Two-Wire Hall Effect Sensor IC
INFINEON