TLE63892GVNTMA1 [INFINEON]

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14;
TLE63892GVNTMA1
型号: TLE63892GVNTMA1
厂家: Infineon    Infineon
描述:

Switching Controller, Current-mode, 2.3A, 420kHz Switching Freq-Max, PDSO14, PLASTIC, SOP-14

开关 光电二极管
文件: 总38页 (文件大小:1233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Step-Down DC/DC Controller  
TLE 6389  
1
Overview  
Features  
1.1  
• Input voltage range from < 5V up to 60V  
• Output voltage: 5V fixed or adjustable (7V to 15V)  
• Output voltage accuracy: 3%  
• Output current up to 2.3A  
• 100% maximum duty cycle  
• Less than 120µA quiescent current at low loads1)  
• 2µA max. shutdown current at device off (TLE 6389-2 GV)  
• Fixed 360kHz switching frequency  
• Frequency synchronization input for external clocks  
• Current Mode control scheme  
• Integrated output under voltage Reset circuit  
• On chip low battery detector (on chip comparator)  
• Automotive temperature range -40°C to 150 °C  
• Green Product (RoHS compliant)  
• AEC qualified  
1) dependend on external components  
RSENSE  
47mΩ  
=
M1  
VIN  
L1 = 47 µH  
VOUT  
IOUT  
CIN1  
100 µF  
=
COUT  
100 µF  
=
CBDS  
220 nF  
=
D1  
M1: Infineon BSO613SPV  
11  
BDS  
VS  
14  
12  
GDRV  
2
Infineon BSP613P  
CS  
3
9
8
FB  
13  
7
D1: MotorolaMBRD360  
VOUT  
RSI1  
400kΩ  
=
C
220nF  
=
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
IN2  
SO  
TLE6389-3 GV50  
SI  
C
IN1: Electrolythic  
COMP  
C
IN2: Ceramic  
RSI2  
=
SI_GND SI_ENABLE  
SYNC GND RO  
10  
2.2nF 680Ω  
COUT: Low ESR Tantalum  
100kΩ  
6
1
5
4
ON OFF  
Type  
Package  
Description  
TLE 6389-2 GV  
TLE 6389-2 GV50  
TLE 6389-3 GV50  
PG-DSO-14-1  
PG-DSO-14-1  
PG-DSO-14-1  
adjustable  
5V, RO-Hysteresis <<  
5V, RO-Hysteresis 1V  
Datasheet Rev. 2.1  
1
2007-08-13  
TLE 6389  
1.2  
Short functional description  
The TLE 6389 step-down DC-DC switching controllers provide high efficiency over loads  
ranging from 1mA up to 2.5A. A unique PWM/PFM control scheme operates with up to  
a 100% duty cycle, resulting in very low dropout voltage. This control scheme eliminates  
minimum load requirements and reduces the supply current under light loads to 120µA,  
depending on dimensioning of external components. In addition the adjustable version  
TLE6389-2 GV can be shut down via the Enable input reducing the input current to  
<2µA. The TLE 6389 step-down controllers drive an external P-channel MOSFET,  
allowing design flexibility for applications up to 12.5W of output power. A high switching  
frequency and operation in continuous-conduction mode allow the use of tiny surface-  
mount inductors. Output capacitor requirements are also reduced, minimizing PC board  
area and system costs. The output voltage is preset at 5V (TLE6389-2 GV50 and  
TLE6389-3 GV50) and adjustable for the TLE6389-2 GV. The version TLE6389-2 GV50  
features a reset function with a threshold between 4.5V and 4.8V, including a small  
hysteresis of typ. 50mV. In the version TLE6389-3 GV50 the device incorporates a reset  
with a typ. 1V hysteresis. Input voltages of all TLE 6389 can be up to 60V.  
1.3  
Pin Configuration (top view)  
ENABLE /  
1
14 CS  
SI_ENABLE  
FB  
VOUT  
GND  
2
3
4
5
6
7
13 VS  
12 GDRV  
11 BDS  
10 RO  
SYNC  
SI_GND  
SI  
9
8
SO  
COMP  
Datasheet Rev. 2.1  
2
2007-08-13  
TLE 6389  
1.4  
Basic block diagram  
ENA  
SI-  
VS  
SI  
BLE  
GND  
RO  
SO  
VOUT  
BDS  
Battery Sense and  
Undervoltage Reset  
Internal Power  
Supply and  
Biasing  
FB  
CS  
PWM / PFM  
Regulator  
G
Driver  
DRV  
COMP  
Clock generator  
Voltage  
Reference  
Block  
SYNC  
TLE 6389GV  
GND  
Datasheet Rev. 2.1  
3
2007-08-13  
TLE 6389  
1.5  
Pin Definitions and Functions  
Symbol Function  
Pin No  
1
ENABLE Active-High enable input (only at adjustable version, TLE6389-2 GV)  
for the device.  
The device is shut down when ENABLE is driven low. In this shut down-  
mode the reference, the output and the external MOSFET are turned off.  
Connect to logic high for normal operation.  
1
2
SI_ENA Active-High enable input (only at 5V version, TLE6389-2 GV50 and  
BLE  
TLE6389-3 GV50) for SI_GND input.  
SI_GND is switched to high impedance when SI_ENABLE is low. High  
level at SI_ENABLE connects SI_GND to GND with low impedance. SO is  
undefined when SI_ENABLE is low.  
FB  
Feedback input.  
1. For adjustable version (-2GV) connect this pin to an external voltage  
divider from the output to GND (see the determining the output voltage,  
application section).  
2. At the 5V fixed output voltage version (-3GV50 and -2GV50) the FB is  
connected internally to an on-chip voltage divider. It does not have to be  
connected externally to the output.  
3
VOUT  
Buck output voltage input.  
Input for the internal supply. Connect always to the output of the buck  
converter (output capacitor).  
4
5
GND  
SYNC  
Ground connection. Analog signal ground.  
Input for external frequency synchronization.  
An external clock signal connected to this pin allows switching frequency  
synchronization of the device. The internal oscillator is clocked then by the  
frequency applied at the SYNC input.  
6
7
SI_GND SI-Ground input.  
Ground connection for SI comparator resistor divider. Depending on  
SI_ENABLE this input is switched to high impedance or low ohmic to GND.  
SI  
Sense comparator input.  
Input of the low-battery comparator. This input is compared to an internal  
1.25V reference where SO gives the result of the comparison. Can be  
used for any comparison, not necessarily as battery sense.  
8
9
COMP  
SO  
Compensation input.  
Connect via RC-compensation network to GND.  
Sense comparator output.  
Open drain output from SI comparator at the adjustable version (TLE6389-  
2 GV),  
Pull down structure with an internal 20kpull up resistor to VOUT at the  
5V version (TLE6389-2 GV50 and TLE6389-3 GV50).  
Datasheet Rev. 2.1  
4
2007-08-13  
TLE 6389  
Pin No  
Symbol Function  
10  
RO  
Reset output.  
Open drain output from undervoltage reset comparator at the adjustable  
version (TLE6389-2 GV),  
Pull down structure with an internal 20kpull up resistor to VOUT at the  
5V version (TLE6389-2 GV50 and TLE6389-3 GV50).  
11  
12  
13  
14  
BDS  
GDRV  
VS  
Buck driver supply input.  
Connect a ceramic capacitor between BDS and VS to generate clamped  
gate-source voltage to supply the driver of the PMOS power stage.  
Gate drive output.  
Connect to the gate of the external P-Channel MOSFET. The voltage at  
GDRV swings between the levels of VS and BDS.  
Device supply input.  
Connect a 220nF ceramic cap close to the pin in addition to the low ESR  
tantalum input capacitance.  
CS  
Current-sense input.  
Connect current-sense resistor between VS and CS. The voltage drop  
over the sense-resistor determines the peak current flowing in the buck  
circuit. The external MOSFET is turned off when the peak current is  
exceeded.  
Datasheet Rev. 2.1  
5
2007-08-13  
TLE 6389  
2
Absolute Maximum Ratings  
Item  
Parameter  
Symbol Limit Values Unit Remarks  
min.  
max.  
Device supply input VS  
Voltage  
2.1  
2.2  
VVS  
IVS  
-0.3  
61  
V
Current  
Current sense input CS  
Voltage  
2.3  
2.4  
VCS  
ICS  
-0.3  
61  
V
|VVS - VCS| < 0.3V  
Current  
Gate drive output GDRV  
2.5  
Voltage  
VGDRV  
– 0.3 61  
V
-0.3V < |VVS -  
V
GDRV| < 6.8V;  
-0.3V < |VBDS  
-
VGDRV| < 6.8V  
2.6  
Current  
IGDRV  
limited internally  
Buck driver supply input BDS  
2.7  
2.8  
Voltage  
VBDS  
– 0.3 61  
V
-0.3V < |VVS -  
V
BDS| < 6.8V  
Current  
IBDS  
Feedback input FB  
Voltage  
2.9  
VFB  
– 0.3 6.8  
V
2.10  
Current  
IFB  
Enable input SI_ENABLE  
TLE6389-2 GV50,  
TLE6389-3 GV50  
2.11  
2.12  
Voltage  
VSI_ENAB – 0.3 61  
LE  
V
Current  
ISI_ENABL  
E
SI-Ground input SI_GND  
2.13  
2.14  
Voltage  
VSI_GND – 0.3 61  
ISI_GND  
V
Current  
Enable input ENABLE  
Voltage  
2.15  
2.16  
VENABLE – 0.3 61  
IENABLE  
V
TLE6389-2 GV  
2007-08-13  
Current  
Datasheet Rev. 2.1  
6
TLE 6389  
2
Absolute Maximum Ratings (cont’d)  
Item  
Parameter  
Symbol Limit Values Unit Remarks  
min. max.  
Sense comparator input SI  
2.17  
2.18  
Voltage  
Current  
VSI  
ISI  
– 0.3 61  
V
Sense comparator output SO  
2.19  
2.20  
Voltage  
Current  
VSO  
ISO  
– 0.3 6.8  
V
limited internally  
Buck output voltage input VOUT  
2.21  
2.22  
Voltage  
VVOUT  
VVOUT  
– 0.3 15  
– 0.3 6.8  
V
V
TLE6389-2 GV  
TLE6389-2 GV50,  
TLE6389-3 GV50  
Voltage  
2.23  
Current  
IVOUT  
mA  
Compensation input COMP  
2.24  
2.25  
Voltage  
VCOMP  
ICOMP  
– 0.3 6.8  
V
mA  
Current  
Reset output RO  
Voltage  
2.26  
2.27  
VRO  
IRO  
– 0.3 6.8  
V
mA  
Current  
limited internally  
Frequency synchronization input SYNC  
2.28  
2.29  
Voltage  
VSYNC  
ISYNC  
– 0.3 6.8  
V
mA  
Current  
ESD-Protection  
2.30  
2.31  
2.32  
Electrostatic discharge VESD  
–1.5  
-2  
1.5  
2
kV  
kV  
V
HBM1),  
voltage  
pin VOUT  
VESD  
HBM1), all pins  
except VOUT  
CDM2)  
VESDCDM –500 500  
Datasheet Rev. 2.1  
7
2007-08-13  
TLE 6389  
2
Absolute Maximum Ratings (cont’d)  
Item  
Parameter  
Symbol Limit Values Unit Remarks  
min.  
max.  
Temperatures  
2.33  
2.34  
1)  
Junction temperature  
Storage temperature  
Tj  
Tstg  
-40  
-50  
150  
150  
°C  
°C  
ESD susceptibility HBM according to EIA/JESD 22-A 114B.  
ESD susceptibility CDM according to JESD 22-C101.  
2)  
Note: Stresses above the ones listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Note: Integrated protection functions are designed to prevent IC destruction under fault  
conditions described in the data sheet. Fault conditions are considered as  
“outside” normal operating range. Protection functions are not designed for  
continuous repetitive operation.  
Datasheet Rev. 2.1  
8
2007-08-13  
TLE 6389  
3
Operating Range  
Parameter  
Item  
Symbol Limit Values Unit Remarks  
min.  
5
7
max.  
60  
15  
3.1  
3.2  
Supply voltage range  
Output voltage adjust  
range TLE 6389-2 GV  
VVS  
VOUT  
V
V
TLE 6389-2 GV  
3.3  
3.4  
3.5  
3.6  
Sense Resistor  
RSENSE 10  
47  
mCalculation see  
section 7  
PMOS, on+off delay  
ton+off  
delay  
-
tmin-  
ns  
tmin= VVOUT  
(VVS*fSW)  
/
300 1)  
Buck driver supply  
capacitor  
Buck inductance  
CBDS  
220  
47  
-
nF  
µH  
L1  
L1  
-
recommended  
value  
3.7  
3.8  
3.9  
Buck inductance  
Buck output capacitor COUT  
Junction temperature  
Thermal Resistance  
Junction ambient  
Junction pin  
22  
100  
-
150  
µH  
µF  
°C  
100  
– 40  
Tj  
3.10  
3.11  
1)  
Rthj-a  
Rthj-p  
140  
50  
K/W Footprint only  
K/W –  
A too high PMOS on+off delay might cause an instable output voltage  
Note: Within the functional range the IC operates as described in the circuit description.  
The electrical characteristics are specified within the conditions given in the  
related electrical characteristics table.  
Datasheet Rev. 2.1  
9
2007-08-13  
TLE 6389  
4
Electrical Characteristics  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Current Consumption1) TLE6389-2 GV50 and TLE6389-3 GV50  
4.1  
4.2  
Current  
IVS  
80  
150 µA  
VVS = 48V;  
PFM mode;  
consumption of VS  
70  
85  
30  
µA  
µA  
VVS = 13.5V;  
PFM mode;  
Tj = 25 °C  
4.3  
4.4  
Current  
consumption of  
SI_ENABLE  
Current  
consumption of  
VOUT  
ISI_ENABL  
E
9
VVS = 48V;  
VSI_ENABLE = 48V;  
PFM mode;  
IVOUT  
95  
130 µA  
VSI_ENABLE = L;  
VVOUT = 5.5V;  
VVS=13.5V;  
PFM mode;  
Tj = 25°C  
4.5  
4.6  
140 220 µA  
VSI_ENABLE = H;  
VVOUT = 5.5V;  
VVS = 13.5V;  
VSI > VSI, high  
;
PFM mode;  
Current  
consumption of SI  
ISI  
0.2 0.5  
µA  
VVS = 13.5V;  
VSI_ENABLE = H;  
VSI = 10V ;  
PFM mode;  
Datasheet Rev. 2.1  
10  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Current Consumption1) TLE6389-2 GV (variable)  
4.7  
Current  
consumption of VS  
IVS  
80  
150 µA  
VVS = 48V;  
VENABLE = H;  
PFM mode;  
VOUT > 7V  
4.8  
Current  
consumption of VS  
70  
85  
µA  
VVS = 13.5V;  
VENABLE = H;  
PFM mode;  
Tj = 25 °C;  
VOUT > 7V  
4.9  
Current  
2
µA  
µA  
VENABLE=0V;  
Tj < 105°C  
VVS = 48V;  
VENABLE = H;  
PFM mode;  
consumption of VS  
4.10  
Current  
consumption of  
ENABLE  
IEN  
9
30  
4.11  
4.12  
4.13  
Current  
IVOUT  
140 220 µA  
VOUT = 8V;  
VVS = 13.5V;  
VENABLE = H;  
VSI > VSI, high  
PFM mode;  
consumption of  
VOUT  
;
Current  
consumption of SI  
ISI  
0.2 0.5  
0.2 0.5  
µA  
µA  
VVS = 13.5V;  
VENABLE = H;  
VSI = 10V ;  
PFM mode;  
Tj = 25°C  
Current  
consumption of FB  
IFB  
VVS = 13.5V;  
VFB = 1.25V;  
VENABLE = H;  
PFM mode;  
Tj = 25°C  
Datasheet Rev. 2.1  
11  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Buck Controller  
4.14  
Output voltage  
VVOUT  
4.85 5.00 5.15 V  
TLE6389-2 GV50,  
TLE6389-3 GV50;  
VVS=13.5V& 48V;  
PWM mode  
IOUT = 0.5 to 2A;  
RSENSE = 22m;  
RM1 = 0.25;  
RL1 = 0.1;  
4.15  
4.16  
4.75 5.00 5.25 V  
TLE6389-2 GV50,  
TLE6389-3 GV50;  
VVS = 24V;PFM;  
IOUT = 15mA;  
RSENSE = 22m;  
RM1 = 0.25;  
RL1 = 0.1;  
3.8  
V
TLE6389-3 GV50;  
VVS decreasing  
from 5.8V to 4.2V;  
ILOAD = 0mA to  
500mA;  
RSENSE = 22m;  
RM1 = 0.4;  
RL1 = 0.1;  
4.17  
4.18  
FB threshold  
voltage  
Output voltage  
VFB, th  
VVOUT  
1.225 1.25 1.275  
V
TLE6389-2 GV  
9.7  
10.0 10.3 V  
TLE6389-2 GV;  
Calibrated divider,  
see section 7.3;  
VVS = 13.5V & 48V;  
IOUT = 0.5 to 2A;  
PWM Mode;  
RSENSE = 22m;  
RM1 = 0.25;  
RL1 = 0.1;  
Datasheet Rev. 2.1  
12  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
4.19  
Output voltage  
VVOUT  
9.5  
10.0 10.5 V  
TLE6389-2 GV;  
Calibrated divider,  
see section 7.3;  
VVS = 24V;  
IOUT = 15mA;  
PFM Mode;  
RSENSE = 22m;  
RM1 = 0.25;  
RL1 = 0.1;  
4.20  
4.21  
Buck output  
voltage adjust  
range  
VVOUT  
VFB,  
th  
7
V
V
TLE6389-2 GV,  
supplied by VS  
only, complete  
current to supply  
the IC drawn from  
VS,  
no reset function 2)  
Buck output  
voltage adjust  
range  
VVOUT  
7
15  
TLE6389-2 GV,  
current to supply  
the IC drawn from  
VS and VOUT, as  
specified, 2)  
4.22  
4.23  
Buck output  
VVOUT  
0.97*  
VOUT  
1.03*  
VOUT  
TLE6389-2 GV,  
voltage accuracy  
PWM mode 2)  
_nom  
_nom  
Buck output  
voltage accuracy  
VVOUT  
0.95*  
VOUT  
1.05*  
VOUT  
TLE6389-2 GV,  
PFM mode 2)  
_nom  
_nom  
Datasheet Rev. 2.1  
13  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
35  
Unit Test Condition  
4.24  
Line regulation  
| ∆VVOUT  
|
|
mV  
mV  
%
TLE6389-2 GV50,  
TLE6389-3 GV50,  
VVS = 9V to 16V;  
IOUT = 1A;  
RSENSE = 22mΩ;  
PWM mode  
4.25  
4.26  
Line regulation  
Line regulation  
| ∆VVOUT  
50  
TLE6389-2 GV50,  
TLE6389-3 GV50,  
VVS = 16V to 32V;  
IOUT = 1A;  
RSENSE = 22mΩ;  
PWM mode  
VVOUT  
/
2.5  
TLE6389-2 GV,  
VVS = 12V to 36V;  
VVOUT=10V  
VVOUT  
IOUT = 1A;  
RSENSE = 22mΩ;  
PWM mode  
Datasheet Rev. 2.1  
14  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
40  
Unit Test Condition  
4.27  
Load regulation  
VVOUT  
ILOAD  
/
mV/ TLE6389-2 GV50,  
A
TLE6389-3 GV50,  
IOUT = 0.5A to 2A;  
VVS = 5.8V & 48V;  
RSENSE = 22mΩ  
4.28  
4.29  
4.30  
4.31  
8*  
mV/ TLE6389-2 GV,  
VOUT  
A
IOUT = 0.5 to 2A;  
/
VVS= 13.5V & 48V;  
RSENSE = 22mΩ  
_nom  
V
Gate driver,  
PMOS off  
VVS –  
VGDRV  
0
0.2  
8.2  
4
V
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
Gate driver,  
PMOS on  
VVS –  
VGDRV  
6
V
V
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF3)  
Gate driver,  
UV lockout  
VVS –  
VBDS  
2.75  
Decreasing (VVS-  
VBDS) until GDRV  
is permanently at  
VS level  
4.32  
4.33  
4.34  
Gate driver,  
peak charging  
current  
IGDRV  
IGDRV  
tr  
1
A
PMOS dependent;  
2)  
Gate driver,  
peak discharging  
current  
1
A
PMOS dependent;  
2)  
Gate driver,  
gate voltage, rise  
time  
45  
60  
ns  
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
Datasheet Rev. 2.1  
15  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
4.35  
Gate driver,  
gate voltage, fall  
time  
tf  
50  
65  
ns  
VENABLE/SI_ENABLE  
= 5 V  
CBDS = 220 nF  
CGDRV = 4.7nF  
4.36  
Peak current limit VLIM  
=
50  
70  
90  
mV  
threshold voltage  
VVS –  
VCS  
4.37  
4.38  
Oscillator  
frequency  
Maximum duty  
cycle  
Minimum on time  
SYNC capture  
range  
SYNC trigger level VSYNC,h 4.0  
high  
SYNC trigger level  
low  
fOSC  
290 360 420 kHz PWM mode only  
dMAX  
100  
%
PWM mode only  
PWM mode only  
4.39  
4.40  
tMIN  
fsync  
220 400 ns  
250  
530 kHz PWM mode only  
2)  
4.41  
4.42  
V
2)  
0.8  
V
Reset Generator  
4.43  
4.44  
4.45  
Reset threshold  
VVOUT, RT 3.5  
4.5  
3.65 3.8  
4.65 4.8  
V
TLE6389-3 GV50;  
VOUT decreasing  
TLE6389-3 GV50;  
VOUT increasing  
V
V
V
Reset headroom  
Reset threshold  
VRT,HEAD 80  
mV  
TLE6389-2 GV50;  
VOUT(VS=6V,  
ILOAD=1A)  
-VVOUT,RT  
4.46  
4.47  
VVOUT, RT 4.5  
4.65 4.8  
50  
V
TLE6389-2 GV50;  
V
VOUT increasing/  
decreasing  
Reset threshold  
hysteresis  
VVOUT,  
RT  
mV  
TLE6389-2 GV50  
2)  
Datasheet Rev. 2.1  
16  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
1.12  
Unit Test Condition  
4.48  
4.49  
4.50  
Reset threshold  
VFB, RT  
V
TLE6389-2 GV;  
VOUT decreasing  
TLE6389-2 GV;  
VOUT increasing  
V
1.17  
V
V
Reset output pull  
up resistor  
RRO  
10  
20  
40  
kΩ  
TLE6389-2 GV50,  
TLE6389-3 GV50;  
Internally  
connected to VOUT  
4.51  
Reset output High VRO, H  
voltage  
0.8*  
VVOUT  
V
TLE6389-2 GV50,  
TLE6389-3 GV50;  
IRO=0mA  
4.52  
4.53  
4.54  
Reset output Low VRO,L  
voltage  
0.2 0.4  
V
IRO, L=1mA;  
2.5V < VVOUT < VRT  
Reset output Low VRO,L  
voltage  
0.2 0.4  
V
IRO, L=0.2mA;  
1V < VVOUT < 2.5V  
TLE6389-2 GV  
TLE6389-3 GV50  
Reset delay time  
trd  
17  
70  
21  
82  
25  
ms  
4.55  
4.56  
Reset delay time  
trd  
100 ms  
TLE6389-2 GV50  
2)  
Reset reaction time trr  
10  
µs  
Overvoltage Lockout  
4.57  
Overvoltage  
threshold  
VVOUT, OV  
VOUT  
_nom  
V
+0.1  
V
TLE6389-2 GV50,  
TLE6389-3 GV50;  
VVOUT increasing  
/
4.58  
Overvoltage  
threshold  
VFB, OV  
VFB,t  
h_nom  
/V  
+0.0  
2
V
TLE6389-2 GV;  
V
VOUT increasing  
Datasheet Rev. 2.1  
17  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
ENABLE Input  
4.59  
4.60  
Enable ON-  
VENABLE, 4.5  
ON  
V
V
threshold  
Enable OFF-  
threshold  
VENABLE,  
OFF  
0.8  
SI_ENABLE Input  
4.61  
4.62  
Enable ON-  
VENABLE, 4.5  
ON  
V
V
threshold  
Enable OFF-  
threshold  
VENABLE,  
OFF  
0.8  
SI_GND Input  
4.63  
Switch ON  
resistance  
RSW  
50  
100 230  
VSI_ENABLE = 5V;  
ISI_GND = 3mA;  
Battery Voltage Sense  
4.64  
4.65  
4.66  
Sense threshold  
VSI, low  
VSI, high  
VSI, hys  
1.22 1.25 1.28 V  
VVS decreasing  
VVS increasing  
Sense threshold  
1.33  
V
Sense threshold  
hysteresis  
50  
10  
80  
120 mV  
4.67  
Sense output pull RSO  
up resistor  
20  
40  
kΩ  
TLE6389-2 GV50,  
TLE6389-3 GV50;  
Internally con-  
nected to VVOUT  
4.68  
4.69  
Sense out output  
High voltage  
VSO,H  
VSO,L  
0.8*  
VVOUT  
V
V
ISO,H =0mA  
Sense out output  
Low voltage  
0.2 0.4  
ISO,L = 1mA;  
2.5V < VVOUT  
;
VSI < 1.13 V  
4.70  
0.4  
VVOUT  
/V  
V
ISOL=0.2mA;  
1V < VVOUT < 2.5V;  
VSI < 1.13 V  
Datasheet Rev. 2.1  
18  
2007-08-13  
TLE 6389  
4
Electrical Characteristics (cont’d)  
5V < VVS < 48V; -40°C < Tj < 150°C;  
All voltages with respect to ground; positive current defined flowing into the pin; unless otherwise specified  
Item  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min. typ. max.  
Thermal Shutdown  
2)  
4.71  
Thermal shutdown TjSD  
150 175 200 °C  
junction  
temperature  
2)  
4.72  
Temperature  
hysteresis  
T  
30  
K
1)  
The device current measurements for IVS and IFB exclude MOSFET driver currents.  
Not subject to production test - specified by design  
For 4V < VVS < 6V: VGDRV 0V.  
2)  
3)  
Datasheet Rev. 2.1  
19  
2007-08-13  
TLE 6389  
5
Typical Performance Characteristics  
Current consumption IVS vs. temperature Tj Current consumption IVOUT vs. temperature  
at enabled device and VVS=13.5V  
Tj at enabled device and VVOUT=5.5V  
90  
180  
IVS  
IVOUT  
µA  
80  
µA  
170  
70  
60  
50  
40  
30  
20  
160  
150  
140  
130  
120  
110  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Current consumption IVS vs. temperature Tj Current consumption IVOUT vs. temperature  
at enabled device and VVS=48V  
Tj at enabled device and VVOUT=10V(-2GV)  
110  
160  
IVS  
IVOUT  
µA  
µA  
100  
150  
90  
80  
70  
60  
50  
40  
140  
130  
120  
110  
100  
90  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Datasheet Rev. 2.1  
20  
2007-08-13  
TLE 6389  
Internal oscillator frequency fOSC  
vs. temperature Tj  
Peak current limit threshold voltage VLIM  
vs. temperature Tj  
380  
110  
fOSC  
VLIM  
kHz  
370  
mV  
100  
360  
350  
340  
330  
320  
310  
90  
80  
70  
60  
50  
40  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Minimum on time tMIN (blanking)  
vs. temperature Tj  
Gate driver supply VVS - VBDS  
vs. temperature Tj  
350  
8.6  
tMIN  
VVS-VBDS  
ns  
V
325  
8.4  
300  
275  
250  
225  
200  
175  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Datasheet Rev. 2.1  
21  
2007-08-13  
TLE 6389  
Output voltage VVOUT vs. temperature Tj in Lower Reset threshold VFB,RT  
PFM mode (VVS=24V,ILoad=15mA,-3GV50) vs. temperature Tj (-2GV)  
5.15  
VVOUT  
1.14  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
VFB,RT  
V
V
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Lower Reset threshold VVOUT, RT  
vs. temperature Tj (-3GV50)  
Internal pull up resistors RRO and RSO  
vs. temperature Tj (-3GV50)  
3.72  
45  
VVOUT,RT  
RRO  
V
kΩ  
RSO  
3.70  
40  
35  
30  
25  
20  
15  
10  
k
3.68  
3.66  
3.64  
3.62  
3.60  
3.58  
-50  
-20  
10  
40  
70  
100 130 160  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
Tj  
°C  
°C  
Datasheet Rev. 2.1  
22  
2007-08-13  
TLE 6389  
Lower Sense threshold VSI, low  
vs. temperature Tj  
Output Voltage vs. Load Current,  
TLE6389-2 GV50  
7
1.28  
TLE 6389-2 GV50  
VOUT  
VSI,low  
RSENSE = 50mΩ  
VVS = 13.5V  
V
6
V
App. Circuit Fig. 3  
1.27  
5
4
3
2
1
0
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
-50  
-20  
10  
40  
70  
100 130 160  
Tj  
A
°C  
Output Current vs. Load Current,  
On resistance of SI_GND switch RSW  
vs. temperature Tj  
TLE6389-3 GV50  
280  
7
TLE 6389-3 GV50  
RSW  
VOUT  
RSENSE = 50mΩ  
VVS = 13.5V  
V
App. Circuit Fig. 3  
240  
6
5
4
3
2
1
0
200  
160  
120  
80  
40  
0
-50  
-20  
10  
40  
70  
100 130 160  
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
Tj  
°C  
A
Datasheet Rev. 2.1  
23  
2007-08-13  
TLE 6389  
Output Voltage vs Load Current  
1.4  
TLE 6389-2 GV  
SENSE = 50mΩ  
VOUT  
R
VOUT,nom  
V
VS = 13.5V  
App. Circuit Fig. 3  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75  
ILOAD  
A
Datasheet Rev. 2.1  
24  
2007-08-13  
TLE 6389  
6
Detailed circuit description  
In the following, some internal blocks of the TLE6389 are described in more detail. For  
the right choice of the external components please refer to the section application  
information.  
6.1  
PFM/PWM Step-down regulator  
To meet the strict requirements in terms of current consumption demanded by all Body-  
and 42V PowerNet applications a special PFM (Pulse Frequency Modulation) - PWM  
(Pulse Width Modulation) control scheme for highest efficiency is implemented in the  
TLE 6389 regulators. Under light load conditions the output voltage is able to increase  
slightly and at a certain threshold the controller jumps into PFM mode. In this PFM  
operation the PMOS is triggered with a certain on time (depending on input voltage,  
output voltage, inductance- and sense resistor value) whenever the buck output voltage  
decreases to the so called WAKE-threshold. The switching frequency of the step down  
regulator is determined in the PFM mode by the load current. It increases with increasing  
load current and turns finally to the fixed PWM frequency at a certain load current  
depending on the input voltage, current sense resistor and inductance. The diagram  
below shows the buck regulation circuit of the TLE 6389 .  
VS  
CS  
VFB, OV  
VREF  
VREF  
VDIODE  
+
-
+
-
+
-
Current-  
sense  
Over-  
Over-  
Voltage  
Lockout  
Temp.  
Amplifier  
Shutdown  
VS  
Blanking  
VREF  
VFB  
+
-
>1  
R
S
+
GDRV  
&
Q
Error  
PWM  
Comparator  
Amplifier  
Level-  
shift  
Wake-  
Comparator  
Slope-  
compensation  
VREF  
BDS  
PFM  
-
VFB, WK  
MUX  
PWM  
SYNC  
MODE  
Oscillator  
Figure 1 Buck control scheme  
The TLE 6389 uses a slope-compensated peak current mode PWM control scheme in  
which the feedback or output voltage of the step down circuit and the peak current of the  
current through the PMOS are compared to form the OFF signal for the external PMOS.  
Datasheet Rev. 2.1  
25  
2007-08-13  
TLE 6389  
The ON-trigger is set periodically by the internal oscillator when acting in PWM mode  
and is given by the output of the WAKE-comparator when operating in PFM mode. The  
Multiplexer (MUX) is switched by the output of the MODE-detector which distinguishes  
between PFM and PWM by tracking the output voltage (goto PFM) and by tracking the  
gate trigger frequency (goto PWM). In PFM mode the peak current limit is reduced to  
prevent overshoots at the output of the buck regulator. In order to avoid a gate turn off  
signal due to the current peak caused by the parasitic capacitance of the catch diode the  
blanking filter is necessary. The blanking time is set internally to 200ns and determines  
(together with the PMOS turn on and turn off delay) the minimum duty cycle of the  
device. In addition to the PFM/PWM regulation scheme an overvoltage lockout and  
thermal protection are implemented to guarantee safe operation of the device and of the  
supplied application circuit.  
6.2  
Battery voltage sense  
To detect undervoltage conditions at the battery a sense comparator block is available  
within the TLE 6389. The voltage at the SI input is compared to an internal reference of  
typ. 1.25V. The output of the comparator drives a NMOS structure giving a low signal at  
SO as soon as the voltage at SI decreases below this threshold. In the 5V fixed version  
an internal pull up resistor is connected from the drain of the NMOS to the output of the  
buck converter, in the variable version SO is open drain.  
The sense in voltage divider can be switched to high impedance by a low signal at the  
SI_ENABLE to avoid high current consumption to GND (TLE6389-2 GV50 and  
TLE6389-3 GV50 only).  
Of course the sense comparator can be used for any input voltage and does not have to  
be used for the battery voltage sense only.  
6.3  
Undervoltage Reset  
The output voltage is monitored continuously by the internal undervoltage reset  
comparator. As soon as the output voltage decreases below the thresholds given in the  
characteristics the NPN structure pulls RO low (latched). In the 5V fixed version an  
internal pull up resistor is connected from the collector of the NPN to the output of the  
buck converter, in the variable version RO is open collector.  
At power up RO is kept low until the output voltage has reached its reset threshold and  
stayed above this threshold for the power on reset delay time.  
Datasheet Rev. 2.1  
26  
2007-08-13  
TLE 6389  
7
Application information  
Note: The following information is given as a hint for the implementation of the device  
only and shall not be regarded as a description or warranty of a certain  
functionality, condition or quality of the device.  
7.1  
General  
The TLE 6389 step-down DC-DC controllers are designed primarily for use in  
Automotive applications where high input voltage range requirements have to be met.  
Using an external P-MOSFET and current-sense resistor allows design flexibility and the  
improved efficiencies associated with high-performance P-channel MOSFETs. The  
unique, peak current-limited, PWM/PFM control scheme gives these devices excellent  
efficiency over wide load ranges, while drawing around 100µA current from the battery  
under no load condition. This wide dynamic range optimizes the TLE 6389 for  
automotive applications, where load currents can vary considerably as individual circuit  
blocks are turned on and off to conserve energy. Operation to a 100% duty cycle allows  
the lowest possible dropout voltage, maintaining operation during cold cranking. High  
switching frequencies and a simple circuit topology minimize PC board area and  
component costs.  
7.2  
Typical application circuits  
Note: These are very simplified examples of an application circuit. The function must be  
verified in the real application  
.
RSENSE  
47mΩ  
=
M1  
VIN  
L1 = 47 µH  
VOUT  
IOUT  
CIN1  
100 µF  
=
COUT  
100 µF  
=
CBDS  
220 nF  
=
D1  
M1: Infineon BSO613SPV  
11  
BDS  
VS  
14  
CS  
12  
GDRV  
2
InfineonBSP613P  
D1: MotorolaMBRD360  
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
3
9
8
FB  
13  
7
VOUT  
RSI1  
400kΩ  
=
C
220nF  
=
IN2  
TLE6389-2 GV50  
TLE6389-3 GV50  
SO  
SI  
C : Electrolythic  
IN1  
COMP  
C : Ceramic  
COINU2T : Low ESR Tantalum  
RSI2  
=
SI_GND SI_ENABLE  
SYNC GND RO  
10  
2.2nF 680Ω  
100kΩ  
6
1
5
4
ON OFF  
Figure 2 Application circuit TLE6389-2 GV50 and TLE6389-3 GV50  
Datasheet Rev. 2.1  
27  
2007-08-13  
TLE 6389  
RSENSE  
47mΩ  
=
M1  
VIN  
L1 = 47 µH  
VOUT  
to e.g. 5V rail  
RSO  
RRO  
CIN1  
100 µF  
=
COUT  
100 µF  
=
=
=
CBDS  
220 nF  
=
D1  
20kΩ  
RFB1=  
M1: InfineonBSO613SPV  
Infineon BSP613P  
330kΩ  
11  
BDS  
VS  
14  
CS  
12  
GDRV  
3
D1: Motorola MBRD360  
L1: EPCOS B82479-A1473-M  
Coilcraft DO3340P-473  
VOUT  
13  
7
SO  
9
toµC  
RSI1  
400kΩ  
=
C
220nF  
=
IN2  
FB  
COMP  
TLE6389-2 GV  
2
8
C : Electrolythic  
2.2nF  
680Ω  
IN1  
SI  
SI_GND ENABLE  
C : Ceramic  
COINU2T: Low ESR Tantalum  
RSI2  
=
SYNC GND  
RO  
10  
RFB2  
=
100kΩ  
6
1
5
4
47kΩ  
ON OFF  
toµC  
Figure 3 Application circuit TLE6389-2 GV  
7.3  
Output voltage at adjustable version - feedback divider  
The output voltage is sensed either by an internal voltage divider connected to the VOUT  
pin (TLE6389-2 GV50 and TLE6389-3 GV50, fixed 5V versions) or an external divider  
from the Buck output voltage to the FB pin (TLE6389-2 GV, adjustable version). Pin  
VOUT has to be connected always to the Buck converter output regardless of the  
selected output voltage for the -2GV version.  
To determine the resistors of the feedback divider for the desired output voltage VOUT at  
the TLE6389-2 GV select RFB2 between 5kand 500kand obtain RFB1 with the  
following formula:  
VOUT  
VFB, th  
RFB1 = RFB2 ---------------- 1  
VFB is the threshold of the error amplifier with its value of typical 1.25V which shows that  
the output voltage can be adjusted in a range from 1.25V to 15V. However the integrated  
Reset function will only be operational if the output voltage level is adjusted to >7V.  
Also the current consumption will be increased in PFM mode in the range between  
1.25V and 7V.  
Datasheet Rev. 2.1  
28  
2007-08-13  
TLE 6389  
7.4  
SI_Enable  
Connecting SI_ENABLE to 5V causes SI_GND to have low impedance. Thus the SI  
comparator is in operation and can be used to monitor the battery voltage. SO output  
signal is valid. Connecting SI_ENABLE to GND causes SI_GND to have high  
impedance. Thus the SI comparator is not able to monitor the battery voltage. SO output  
signal is invalid.  
7.5  
Battery sense comparator - voltage divider  
The formula to calculate the resistor divider for the sense comparator is basically the  
same as for the feedback divider in section before. With the selected resistor RSI2, the  
desired threshold of the input voltage VIN, UV and the lower sense threshold VSI, low the  
resistor RSI1 is given to:  
VIN, UV  
VSI, low  
RSI1 = RSI2 ------------------ 1  
For high accuracy and low ohmic resistor divider values the On-resistance of the  
SI_GND NMOS (typ. 100) has to be added to RSI2.  
7.6  
Undervoltage reset - delay time  
The diagram below shows the typical behavior of the reset output in dependency on the  
input voltage VIN, the output voltage VVOUT or VFB.  
Datasheet Rev. 2.1  
29  
2007-08-13  
TLE 6389  
VIN  
< trr  
t
VVOUT  
VFB  
VVOUT, RT  
VFB,RT  
trr  
t
trd  
trd  
trd  
VRO  
trd  
t
thermal  
under  
over  
load  
shutdown  
voltage  
Figure 4 Reset timing  
7.7 100% duty-cycle operation and dropout  
The TLE 6389 operates with a duty cycle up to 100%. This feature allows to operate with  
the lowest possible drop voltage at low battery voltage as it occurs at cold cranking. The  
MOSFET is turned on continuously when the supply voltage approaches the output  
voltage level, conventional switching regulators with less than 100% duty cycle would fail  
in that case.  
The drop- or dropout voltage is defined as the difference between the input and output  
voltage levels when the input is low enough to drop the output out of regulation. Dropout  
depends on the MOSFET drain-to-source on-resistance, the current-sense resistor and  
the inductor series resistance. It is proportional to the load current:  
Vdrop = ILOAD (RDS(ON)PMOS + RSENSE + RINDUCTANCE  
)
Datasheet Rev. 2.1  
30  
2007-08-13  
TLE 6389  
7.8  
SYNC Input and Frequency Control  
The TLE 6389’s internal oscillator is set for a fixed PWM switching frequency of 360kHz  
or can be synchronized to an external clock at the SYNC pin. When the internal clock is  
used SYNC has to be connected to GND. SYNC is a negative-edge triggered input that  
allows synchronization to an external frequency ranging between 270kHz and 530kHz.  
When SYNC is clocked by an external signal, the converter operates in PWM mode until  
the load current drops below the PWM to PFM threshold. Thereafter the converter  
continues operation in PFM mode.  
7.9  
Shutdown Mode  
Connecting ENABLE to GND places the TLE6389-2 GV in shutdown mode. In  
shutdown, the reference, control circuitry, external switching MOSFET, and the oscillator  
are turned off and the output falls to 0V. Connect ENABLE to voltages higher than 4.5V  
for normal operation. As this input operates analog the voltage applied at this pin should  
have a slope of 0.5V/3µs to avoid undefined states within the device.  
7.10  
Buck converter circuit  
A typical choice of external components for the buck converter circuit is given in figure  
2 and 3. For basic operation of the buck converter the input capacitors CIN1, CIN2, the  
driver supply capacitor CBDS, the sense resistor RSENSE, the PMOS device, the catch  
diode D1, the inductance L1 and the output capacitor COUT are necessary. In addition for  
low electromagnetic emission a Pi-filter at the input and/or a small resistor in the path  
between GDRV and the gate of the PMOS may be necessary.  
7.10.1  
Buck inductance (L1) selection in terms of ripple current:  
The internal PWM/PFM control loop includes a slope compensation for stable operation  
in PWM mode. This slope compensation is optimized for inductance values of 47µH and  
Sense resistor values of 47mfor the 5V output voltage versions. When choosing an  
inductance different from 47µH the Sense resistor has to be changed also:  
RSENSE  
3----  
------------------- = ( 0 , 5 . . . 1 , 0 10  
H
L1  
Increasing this ratio above 1000 /H may result in sub harmonic oscillations as well-  
known for peak current mode regulators without integrated slope compensation.  
Datasheet Rev. 2.1  
31  
2007-08-13  
TLE 6389  
To achieve the same effect of slope compensation in the adjustable voltage version also  
the inductance in µH is given by  
4  
H
4  
H
--------  
--------  
2,0 × 10  
VOUT  
R
< L1 < 4,0 × 10  
VOUT  
R
SENSE  
SENSE  
VΩ  
VΩ  
The inductance value determines together with the input voltage, the output voltage and  
the switching frequency the current ripple which occurs during normal operation of the  
step down converter. This current ripple is important for the all over ripple at the output  
of the switching converter.  
(VIN VOUT) VOUT  
I = ------------------------------------------------------  
fSW VIN L1  
In this equation fsw is the actual switching frequency of the device, given either by the  
internal oscillator or by an external source connected to the SYNC pin. When picking  
finally the inductance of a certain supplier (Epcos, Coilcraft etc.) the saturation current  
has to be considered. The saturation current value of the desired inductance has to be  
higher than the maximum peak current which can appear in the actual application.  
7.10.2  
Determining the current limit  
The peak current which the buck converter is able to provide is determined by the peak  
current limit threshold voltage VLIM and the sense resistor RSENSE. With a maximum peak  
current given by the application (IPEAK, PWM=ILOAD+0.5I) the sense resistor is calculated  
to  
VLIM  
RSENSE = ------------------------------------  
2 IPEAK, PWM  
The equation above takes account for the foldback characteristic of the current limit as  
shown in the Fig. ’Output Voltage vs. Load Current’ on page 24/25 by introducing a factor  
of 2. It must be assured by correct dimensioning of RSENSE that the load current doesn’t  
reach the foldback part of the characteristic curve.  
Datasheet Rev. 2.1  
32  
2007-08-13  
TLE 6389  
7.10.3  
PFM and PWM thresholds  
The crossover thresholds PFM to PWM and vice versa strongly depend on the input  
voltage VIN, the Buck converter inductance L1, the sense resistor value RSENSE and the  
turn on and turn off delays of the external PMOS.  
For more details on the PFM to PWM and PWM to PFM thresholds please refer to the  
application note “TLE6389 - Determining PFM/PWM current thresholds”.  
7.10.4  
Buck output capacitor (COUT) selection:  
The choice of the output capacitor effects straight to the minimum achievable ripple  
which is seen at the output of the buck converter. In continuous conduction mode the  
ripple of the output voltage can be estimated by the following equation:  
1
VRipple = I  
R
ESRCOUT + -----------------------------------  
8 fSW COUT  
From the formula it is recognized that the ESR has a big influence in the total ripple at  
the output, so low ESR tantalum capacitors are recommended for the application.  
One other important thing to note are the requirements for the resonant frequency of the  
output LC-combination. The choice of the components L and C have to meet also the  
specified range given in section 3 otherwise instabilities of the regulation loop might  
occur.  
7.10.5  
Input capacitor (CIN1) selection:  
At high load currents, where the current through the inductance flows continuously, the  
input capacitor is exposed to a square wave current with its duty cycle VOUT/VI. To  
prevent a high ripple to the battery line a capacitor with low ESR should be used. The  
maximum RMS current which the capacitor has to withstand is calculated to:  
2  
VOUT  
IRMS = ILOAD -------------- 1 +  
VIN  
1
I  
-- -----------------------  
LOAD  
3
2 I  
For low ESR an e.g. Al-electrolytic capacitance in parallel to an ceramic capacitance  
could be used.  
Datasheet Rev. 2.1  
33  
2007-08-13  
TLE 6389  
7.10.6  
Freewheeling diode / catch diode (D1)  
For lowest power loss in the freewheeling path Schottky diodes are recommended. With  
those types the reverse recovery charge is negligible and a fast hand over from  
freewheeling to forward conduction mode is possible. Depending on the application (12V  
battery systems) 40V types could be also used instead of the 60V diodes. Also for high  
temperature operation select a Schottky-diode with low reverse leakage.  
A fast recovery diode with recovery times in the range of 30ns can be also used if smaller  
junction capacitance values (smaller spikes) are desired.  
7.10.7  
Buck driver supply capacitor (CBDS)  
The voltage at the ceramic capacitor is clamped internally to 7V, a ceramic type with a  
minimum of 220nF and voltage class 16V would be sufficient.  
7.10.8  
Input pi-filter components for reduced EME  
At the input of Buck converters a square wave current is observed causing  
electromagnetical interference on the battery line. The emission to the battery line  
consists on one hand of components of the switching frequency (fundamental wave) and  
its harmonics and on the other hand of the high frequency components derived from the  
current slope. For proper attenuation of those interferers a π-type input filter structure is  
recommended which is built up with inductive and capacitive components in addition to  
the Input caps CIN1 and CIN2. The inductance can be chosen up to the value of the Buck  
converter inductance, higher values might not be necessary, the additional capacitance  
should be a ceramic type in the range up to 100nF.  
Inexpensive input filters show due to their parasitrics a notch filter characteristic, which  
means basically that the low pass filter acts from a certain frequency as a high pass filter  
and means further that the high frequency components are not attenuated properly. To  
slower down the slopes at the gate of the PMOS switch and get down the emission in the  
high frequency range a small gate resistor can be put between GDRV and the PMOS  
gate.  
7.10.9  
Frequency compensation  
The external frequency compensation pin should be connected via a 2.2nF (>10V)  
ceramic capacitor and a 680 (1/8W) resistor to GND. This node should be kept free  
from switching noise.  
Datasheet Rev. 2.1  
34  
2007-08-13  
TLE 6389  
7.11  
Components recommendation - overview  
Device Type  
Supplier  
various  
various  
EPCOS  
EPCOS  
Coilcraft  
Coilcraft  
Coilcraft  
Infineon  
Infineon  
Infineon  
various  
Motorola  
Motorola  
various  
EPCOS  
various  
Remark  
CIN1  
CIN2  
L1  
Electrolytic /Foil type  
100µF, 60V  
Ceramic  
220nF, 60V  
B82464-A4473  
B82479-A1473-M  
DO3340P-473  
DO5022P-683  
DS5022P-473  
BSO 613SPV  
BSP 613P  
47µH, 1.6A, 145mΩ  
47µH, 3.5A, 47mΩ  
47µH, 3.8A, 110mΩ  
68µH, 3.5A, 130mΩ  
47µH, 4.0A, 97mΩ  
M1  
60V, 3.44A, 130m, NL  
60V, 2.9A, 130m, NL  
60V, 9A, 250m, LL  
220nF, 16V  
SPD09P06PL  
Ceramic  
CBDS  
D1  
MBRD360  
Schottky, 60V, 3A  
Schottky, 40V, 3A  
Schottky, 40V, 3A  
Low ESR Tantalum, 100µF, 10V  
see 7.10.9.  
MBRD340  
SS34  
COUT  
B45197-A2107  
Ceramic  
CCOMP  
7.12  
Layout recommendation  
The most sensitive points for Buck converters - when considering the layout - are the  
nodes at the input, output and the gate of the PMOS transistor and the feedback path.  
For proper operation and to avoid stray inductance paths the external catch diode, the  
Buck inductance and the input capacitor CIN1 have to be connected as close as possible to  
the PMOS device. Also the GDRV path from the controller to the MosFet has to be as short  
as possible. Best suitable for the connection of the cathode of the catch diode and one  
terminal of the inductance would be a small plain located next to the drain of the PMOS.  
The GND connection of the catch diode must be also as short as possible. In general the  
GND level should be implemented as surface area over the whole PCB as second layer,  
if necessary as third layer. The feedback path has to be well grounded also, a ceramic  
capacitance might help in addition to the output cap to avoid spikes.  
To obtain the optimum filter capability of the input pi-filter it has to be located also as  
close as possible to the input. To filter the supply input of the device (VS) the ceramic cap  
should be connected directly to the pin.  
As a guideline an EMC optimized application board / layout is available.  
Datasheet Rev. 2.1  
35  
2007-08-13  
TLE 6389  
8
Package Outlines  
0.35 x 45˚  
C
1)  
-0.2  
4
B
1.27  
±0.25  
0.64  
0.1  
+0.10 2)  
0.41  
±0.2  
-0.06  
6
M
0.2 A B 14x  
M
0.2  
C
14  
8
1
7
1)  
8.75-0.2  
A
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01230  
Dimensions in mm  
Figure 5  
Outline PG-DSO-14-1 (Plastic Green Dual Small Outline)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products  
and to be compliant with government regulations the device is available as a green  
product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable  
for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Datasheet Rev. 2.1  
36  
2007-08-13  
TLE 6389  
9
Revision History  
Version  
Rev. 2.0  
Rev. 2.1  
Date  
Changes  
2006-08-24 Final Datasheet TLE 6389-2/-3  
2007-08-13 Initial version of RoHS-compliant derivate of TLE 6389-2/-3  
– page 1: AEC certified statement added  
– page 1 and page 36: RoHS compliance statement and  
green product feature added  
– page 1 and page 36: Package changed to RoHS  
compliant version  
– Legal Disclaimer updated  
Datasheet Rev. 2.1  
37  
2007-08-13  
Edition 2007-08-13  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2007 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE63893GV50XUMA2

Switching Controller,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389G33

Step - Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389G33-1

Step - Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389G50

Step - Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389G50-1

Step - Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389G50NTMA1

Switching Controller, Current-mode, 420kHz Switching Freq-Max, PDSO14, PLASTIC, DSO-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389GV

Step - Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389GVT

Switching Controller, Current-mode, 420kHz Switching Freq-Max, PDSO14, PLASTIC, DSO-14

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6389_07

Step-Down DC/DC Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON

TLE6710Q

Power Management Circuit,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
INFINEON