TLE7250GVIO [INFINEON]

High Speed CAN Transceiver; 高速CAN收发器
TLE7250GVIO
型号: TLE7250GVIO
厂家: Infineon    Infineon
描述:

High Speed CAN Transceiver
高速CAN收发器

文件: 总23页 (文件大小:1373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE7250GVIO  
High Speed CAN Transceiver  
Data Sheet  
Rev. 1.0, 2012-03-14  
Automotive Power  
TLE7250GVIO  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Fail-safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Short-circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.1  
8.2  
8.3  
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10  
Data Sheet  
2
Rev. 1.0, 2012-03-14  
High Speed CAN Transceiver  
TLE7250GVIO  
1
Overview  
Features  
Fully compliant with ISO 11898-2  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD immunity  
Suitable for 5V and 3.3V microcontroller I/O voltages  
CAN short-circuit proof to ground, battery and VCC  
TxD time-out function  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
CAN data transmission rate up to 1 Mbps  
VIO input for voltage adaptation to the micro controller supply  
Green Product (RoHS-compliant)  
PG-DSO-8  
AEC Qualified  
Description  
The TLE7250GVIO is a transceiver designed for CAN networks in automotive and industrial applications. As an  
interface between the physical bus layer and the CAN protocol controller, the TLE7250GVIO drives the signals to  
the bus and protects the microcontroller against interferences generated within the network. Based on the high  
symmetry of the CANH and CANL signals, the TLE7250GVIO provides a very low level of electromagnetic  
emission (EME) within a wide frequency range. The TLE7250GVIO is integrated in a RoHS-compliant PG-DSO-8  
package and fulfills or exceeds the requirements of ISO11898-2.  
As a successor to the first generation of HS CAN transceivers, the pin assignment and function of the  
TLE7250GVIO is fully compatible with its predecessor model, the TLE6250GV33. The TLE7250GVIO is optimized  
to provide an excellent passive behavior in the power-down state. This feature makes the TLE7250GVIO  
extremely suitable for mixed supply CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE7250GVIO provides excellent ESD immunity  
together with a very high electromagnetic immunity (EMI). The Infineon Smart Power Technology SPT allows  
bipolar and CMOS control circuitry in accordance with DMOS power devices to exist on the same monolithic  
circuit. The TLE7250GVIO and the Infineon SPT technology are AEC qualified and tailored to withstand the harsh  
conditions of the Automotive Environment.  
Two different operating modes, additional fail-safe features like TxD time-out and the optimized output slew rates  
on the CANH and CANL signals make the TLE7250GVIO the ideal choice for large CAN networks with high data  
transmission rates.  
Type  
Package  
Marking  
TLE7250GVIO  
PG-DSO-8  
7250GVIO  
Data Sheet  
3
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Block Diagram  
2
Block Diagram  
3
VCC  
VIO  
Transmitter  
5
7
6
Driver  
1
CANH  
CANL  
Output  
Stage  
TxD  
Temp-  
Protection  
Timeout  
8
NEN  
Mode Control  
Receiver  
VCC/2  
=
Compara-  
tor  
*
4
RxD  
2
GND  
Figure 1  
Block diagram  
Note:In comparison with the TLE6250GV33, the pin 8 (INH) was renamed as NEN, but the function remains  
unchanged. NEN stands for Not ENable.  
Data Sheet  
4
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
8
7
6
5
TxD  
GND  
VCC  
NEN  
CANH  
CANL  
VIO  
RxD  
Figure 2  
Pin configuration  
3.2  
Pin Definitions and Functions  
Table 1  
Pin  
Pin Definition and Functions  
Symbol  
Function  
1
TxD  
Transmit Data Input;  
internal pull-up to VIO, “low” for “dominant” state.  
2
3
GND  
Ground  
VCC  
Transceiver Supply Voltage;  
100 nF decoupling capacitor to GND required.  
4
5
RxD  
Receive Data Output;  
“low” in “dominant” state.  
VIO  
Digital Supply Voltage Input;  
supply voltage input to adapt the logical input and output voltage levels of the  
transceiver to the microcontroller supply.  
100 nF decoupling capacitor to GND required.  
6
7
8
CANL  
CANH  
NEN  
CAN Bus Low Level I/O;  
“low” in “dominant” state.  
CAN Bus High Level I/O;  
“high” in “dominant” state.  
Not Enable Input1);  
internal pull-up to VIO, “low” for normal-operating mode.  
1) The designation of pin 8 is different in the TLE7250GVIO and its predecessor, the TLE6250GV33. The function of pin 8  
remains the same.  
Data Sheet  
5
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Functional Description  
4
Functional Description  
CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control applications.  
The use of the Control Area Network (abbreviated CAN) within road vehicles is described by the international  
standard ISO 11898. According to the 7-layer OSI reference model, the physical layer of a CAN bus system  
specifies the data transmission from one CAN node to all other available CAN nodes within the network. The  
physical layer specification of a CAN bus system includes all electrical and mechanical specifications of a CAN  
network. The CAN transceiver is part of the physical layer specification. Several different physical layer standards  
of CAN networks have been developed in recent years. The TLE7250GVIO is a High Speed CAN transceiver  
without a dedicated wake-up function. High-speed CAN transceivers without a wake-up function are defined by  
the international standard ISO 11898-2.  
4.1  
High Speed CAN Physical Layer  
TxD  
VIO  
t
VIO  
VCC  
=
Digital supply  
High Speed CAN  
power supply  
Input from the  
microcontroller  
Output to the  
=
VCC  
CAN_H  
CAN_L  
TxD  
RxD  
=
=
microcontroller  
Voltage on the CANH  
input/output  
Voltage on the CANL  
input/output  
CANH =  
CANL =  
VDIFF  
=
Differential voltage  
between CANH and CANL  
V
DIFF = VCANH VCANL  
t
VDIFF  
“dominant“  
“recessive“  
V
DIFF = ISO level “dominant“  
V
DIFF = ISO level “recessive“  
t
RxD  
VIO  
t
Figure 3  
High Speed CAN bus signals and logic signals  
Data Sheet  
6
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Functional Description  
The TLE7250GVIO is a High Speed CAN transceiver, operating as an interface between the CAN controller and  
the physical bus medium. A HS CAN network is a two-wire, differential network, which allows data transmission  
rates up to 1 Mbps. The characteristics of a HS CAN network are the two signal states on the CAN bus: “dominant”  
and “recessive” (see Figure 3).  
The CANH and CANL pins are the interface to the CAN bus and both pins operate as an input and output. The  
RxD and TxD pins are the interface to the microcontroller. The TxD pin is the serial data input from the CAN  
controller, and the RxD pin is the serial data output to the CAN controller. As shown in Figure 1, the HS CAN  
transceiver TLE7250GVIO includes a receiver and a transmitter unit, allowing the transceiver to send data to the  
bus medium and monitor the data from the bus medium at the same time. The HS CAN transceiver TLE7250GVIO  
converts the serial data stream available on the transmit data input TxD, into a differential output signal on the  
CAN bus, provided by the CANH and CANL pins. The receiver stage of the TLE7250GVIO monitors the data on  
the CAN bus and converts them to a serial, single-ended signal on the RxD output pin. A logical “low” signal on  
the TxD pin creates a “dominant” signal on the CAN bus, followed by a logical “low” signal on the RxD pin (see  
Figure 3). The feature of broadcasting data to the CAN bus and listening to the data traffic on the CAN bus  
simultaneously is essential to support the bit-to-bit arbitration within CAN networks.  
The voltage levels for HS CAN transceivers are defined by the ISO 11898-2 and the ISO 11898-5 standards.  
Whether a data bit is “dominant” or “recessive” depends on the voltage difference between the CANH and CANL  
pins: VDIFF = VCANH - VCANL  
.
In comparison with other differential network protocols, the differential signal on a CAN network can only be larger  
than or equal to 0 V. To transmit a “dominant” signal to the CAN bus, the differential signal VDIFF is larger than or  
equal to 1.5 V. To receive a “recessive” signal from the CAN bus, the differential VDIFF is smaller than or equal to  
0.5 V.  
“Partially-supplied” High Speed CAN networks are those where the CAN bus nodes of one common network have  
different power supply conditions. Some nodes are connected to the common power supply, while other nodes  
are disconnected from the power supply and in power-down state. Regardless of whether the CAN bus subscriber  
is supplied or not, each subscriber connected to the common bus media must not interfere with the  
communication. The TLE7250GVIO is designed to support “partially-supplied” networks. In the power-down state,  
the receiver input resistors are switched off and the transceiver input has a high resistance.  
The voltage level at the digital input TxD and the digital output RxD is determined by the power supply level at the  
VIO pin. Depending on the voltage level at the VIO pin, the signal levels on the logic pins (NEN, TxD and RxD) are  
compatible with microcontrollers having 5 V or 3.3 V I/O supply. Usually, the VIO power supply of the transceiver  
is connected to same power supply as the I/O power supply of the microcontroller.  
Data Sheet  
7
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Functional Description  
4.2  
Modes of Operation  
Two different modes of operation are available on the TLE7250GVIO. Each mode has specific characteristics in  
terms of quiescent current or data transmission. The digital input pin NEN is used for mode selection. Figure 4  
illustrates the different mode changes depending on the status of the NEN pin. After supplying VCC and VIO to the  
HS CAN transceiver, the TLE7250GVIO starts in stand-by mode. The internal pull-up resistor at the NEN pin sets  
the TLE7250GVIO to stand-by mode by default. If the microcontroller is up and running, the TLE7250GVIO can  
switch to any mode of operation within the time period for mode change tMode  
.
start–up  
supply VCC  
and VIO  
VCC < VCC(UV)  
VIO < VIO(UV)  
undervoltage  
detection on VCC  
and VIO  
power-down  
stand-by mode  
NEN = 1  
NEN = 0  
NEN = 1  
normal-operating  
mode  
NEN = 0  
Figure 4  
Modes of operation  
The TLE7250GVIO has 2 major modes of operation:  
Stand-by mode  
Normal-operating mode  
Table 2  
Mode  
Modes of Operation  
NEN Bus Bias Comments  
Normal-operating “low”  
mode  
VCC/2  
The transmitter is active.  
The receiver is active.  
Stand-by  
“high”  
GND  
The transmitter is disabled.  
The receiver is disabled.  
VCC off  
“low”  
or  
floating  
The transmitter is disabled.  
The receiver is disabled.  
“high”  
Data Sheet  
8
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Functional Description  
4.3  
Normal-operating Mode  
In the normal-operating mode, the HS CAN transceiver TLE7250GVIO sends the serial data stream on the TxD  
pin to the CAN bus. The data on the CAN bus is displayed at the RxD pin simultaneously. In normal-operating  
mode, all functions of the TLE7250GVIO are active:  
The transmitter is active and drives data from the TxD to the CAN bus.  
The receiver is active and provides the data from the CAN bus to the RxD pin.  
The bus biasing is set to VCC/2.  
The undervoltage monitoring at the power supply VCC and at the power supply VIO is active.  
To enter the normal-operating mode, set the NEN pin to logical “low” (see Table 2 or Figure 4). The NEN pin has  
an internal pull-up resistor to the power-supply VIO.  
4.4  
Stand-by Mode  
The stand-by mode is an idle mode of the TLE7250GVIO with optimized power consumption. In the stand-by  
mode, the TLE7250GVIO can not send or receive any data. The transmitter and the receiver unit are disabled.  
Both CAN bus pins, CANH and CANL are connected to GND via the input resistors.  
The transmitter is disabled.  
The receiver is disabled.  
The input resistors of the receiver are connected to GND.  
The undervoltage monitoring at the power supply VCC and at the power supply VIO is active.  
To enter the stand-by mode, set the pin NEN to logical “high” (see Table 2 or Figure 4). The NEN pin has an  
internal pull-up resistor to the power-supply VIO. If the stand-by mode is not used in the final application, the NEN  
pin needs to be connected to GND.  
4.5  
Power-down State  
The power-down state means that the TLE7250GVIO is not supplied. In power-down state, the differential input  
resistors of the receiver are switched off. The CANH and CANL bus interface of the TLE7250GVIO act as high-  
impedance input with a very small leakage current. The high-ohmic input does not influence the “recessive” level  
of the CAN network and allows an optimized EME performance of the entire CAN network.  
Data Sheet  
9
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Fail-safe Functions  
5
Fail-safe Functions  
5.1  
Short-circuit Protection  
The CANH and CANL bus outputs are short-circuit proof, either against GND or a positive supply voltage. A  
current limiting circuit protects the transceiver against damage. If the device heats up due to a continuous short  
on the CANH or CANL, the internal overtemperature protection switches off the bus transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VIO. In case the VIO supply is activated and the logical pins  
are open or floating, the TLE7250GVIO enters the stand-by mode by default. In stand-by mode, the transmitter of  
the TLE7250GVIO is disabled, the bus bias is connected to GND and the HS CAN TLE7250G transceiver does  
not influence the data on the CAN bus.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the TxD  
pin is continuously “low”. A continuous “low” signal on the TxD pin can have its root cause in a locked-up  
microcontroller or in a short on the printed circuit board for example. In the normal-operating mode, a logical “low”  
signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE7250GVIO disables the  
transmitter (see Figure 5). The receiver is still active and the data on the bus continues to be monitored by the  
RxD output pin.  
t > tTxD  
TxD time-out released  
TxD time-out  
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 5  
TxD Time-out function  
Figure 5 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the TxD  
input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter after a TxD  
time-out event, the TLE7250GVIO requires a signal change on the TxD input pin from logical “low” to logical “high”.  
5.4  
Undervoltage Detection  
The HS CAN transceiver TLE7250GVIO is provided with undervoltage detection at the power supply VCC and at  
the power supply VIO. In case of undervoltage at VCC or VIO, the undervoltage detection changes the operating  
mode of TLE7250GVIO to the stand-by mode, regardless of the logical signal on the NEN pin (see Figure 6). If  
the transceiver TLE7250GVIO recovers from the undervoltage condition, the operating mode is restored to the  
programmed mode by the NEN pin.  
Data Sheet  
10  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Fail-safe Functions  
hysteresis  
VCC(UV,H)  
Supply voltage VCC  
power-down reset  
level VCC(UV)  
delay time undervoltage  
recovery  
tDelay(UV)  
NEN = 0  
normal-operating  
mode  
stand-by  
mode  
normal-operating mode1)  
Supply voltage VIO  
hysteresis  
VIO(UV,H)  
power-down reset  
level VIO(UV)  
delay time undervoltage  
recovery  
tDelay(UV)  
NEN = 0  
normal-operating  
mode  
stand-by  
mode  
normal-operating mode1)  
1) Assuming the logical signal on the pin NEN keeps its values during the undervoltage  
event. In this case NEN remains “low“.  
Figure 6  
Undervoltage detection at the VCC or VIO Pins  
Data Sheet  
11  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Fail-safe Functions  
5.5  
Overtemperature Protection  
Overtemperature event  
Cool Down  
TJSD  
(shut-down temperature)  
TJ  
ΔT  
switch-on transmitter  
t
t
CANH  
CANL  
TxD  
RxD  
t
t
Figure 7  
Overtemperature protection  
The TLE7250GVIO has an integrated overtemperature detection circuit to protect the device against thermal  
overstress of the transmitter. In case of an overtemperature condition, the temperature sensor will disable the  
transmitter (see Figure 1). After the device cools down, the transmitter is activated again (see Figure 7).  
A hysteresis is implemented within the temperature sensor.  
Data Sheet  
12  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings of Voltage, Current and Temperatures1)  
All voltages with respect to ground; positive current flowing into the pin;  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
Min.  
Max.  
Voltage  
6.1.1 Supply voltage  
VCC  
VIO  
-0.3  
-0.3  
-40  
6.0  
6.0  
40  
V
V
V
6.1.2 Logic supply voltage  
6.1.3 CANH DC voltage against VCANH  
GND  
6.1.4 CANL DC voltage against VCANL  
-40  
-40  
-0.3  
-0.3  
40  
V
V
V
V
GND  
6.1.5 Differential voltage  
between CANH and CANL  
VCAN diff  
40  
6.1.6 Logic voltage at logic input VMax_In  
6.0  
VIO  
pins NEN, TxD  
6.1.7 Logic voltage at logic output VMax_Out  
pin RxD  
Temperature  
6.1.8 Junction temperature  
6.1.9 Storage temperature  
ESD Immunity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
TS  
6.1.10 ESD immunity at CANH,  
CANL against GND  
VESD_HBM_CAN -8  
8
kV  
kV  
V
HBM  
(100pF via 1.5 kΩ)2)  
6.1.11 ESD immunity at all other VESD_HBM_All -2  
2
HBM  
(100pF via 1.5 kΩ)2)  
CDM3)  
pins  
6.1.12 ESD immunity to GND  
(all pins)  
VESD_CDM  
-750  
750  
1) Not subject to production test, specified by design  
2) ESD susceptibility Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the associated electrical characteristics table.  
Data Sheet  
13  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Pos.  
Operating Range  
Parameter  
Symbol  
Limit Values  
Max.  
Unit  
Conditions  
Min.  
Supply Voltage  
6.2.1  
6.2.2  
Transceiver supply voltage  
Logical supply voltage  
4.75  
3.00  
5.25  
5.25  
V
V
VCC  
VIO  
Thermal Parameter  
6.2.3 Junction temperature  
1)  
Tj  
-40  
150  
°C  
1) Not subject to production test, specified by design  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the associated electrical characteristics table.  
6.3  
Thermal Characteristics  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information,  
please visit www.jedec.org.  
Table 5  
Pos.  
Thermal Resistance1)  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
Min.  
Typ.  
Max.  
Thermal Resistance  
2)  
6.3.1 Junction to ambient1)  
RthJA  
130  
K/W  
Thermal Shut-down Junction Temperature  
6.3.2 Thermal shut-down  
temperature  
TJSD  
150  
175  
10  
200  
°C  
K
6.3.3 Thermal shut-down  
hysteresis  
ΔT  
1) Not subject to production test, specified by design  
2) The RthJA value specified, is according to Jedec JESD51-2,-7 at natural convection on the FR4 2s2p board; The product  
(TLE7250GVIO) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu).  
Data Sheet  
14  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical Characteristics  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.25 V; RL = 60 Ω; -40 °C < Tj < +150 °C; all voltages with respect to ground;  
positive current flowing into the pin; unless otherwise specified.  
Pos. Parameter  
Symbol Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
Current Consumption  
7.1.1 Current consumption at VCC  
ICC  
2
6
mA “recessive” state;  
V
TxD = VIO  
mA “dominant” state;  
TxD = “low”  
7.1.2 Current consumption at VCC  
7.1.3 Current consumption at VIO  
ICC  
35  
0.2  
4
60  
1
V
IIO  
mA normal-operating mode;  
NEN = “low”  
7.1.4 Current consumption  
stand-by mode  
ICC(STB)  
IIO(STB)  
15  
10  
μA VCC = VIO = 5 V,  
TxD = VIO, NEN = VIO  
7.1.5 Current consumption  
stand-by mode  
2
μA VCC = VIO = 5 V,  
TxD = VIO, NEN = VIO  
Supply Reset  
7.1.6 VCC undervoltage monitor  
VCC(UV)  
1.3  
3.2  
4.3  
V
1)  
7.1.7 VCC undervoltage monitor  
VCC(UV,H)  
400  
mV  
hysteresis  
7.1.8 VIO undervoltage monitor  
VIO(UV)  
1.0  
2.4  
3.0  
V
1)  
7.1.9 VIO undervoltage monitor  
VIO(UV,H)  
200  
mV  
hysteresis  
7.1.10 VCC and VIO undervoltage  
tDelay(UV)  
50  
μs  
1) (see Figure 6)  
delay time  
Receiver Output: RxD  
7.1.11 “High” level output current  
IRD,H  
IRD,L  
2
-4  
4
-2  
mA  
V
V
RxD = VIO - 0.4 V,  
DIFF < 0.5 V  
7.1.12 “Low” level output current  
mA VRxD = 0.4 V,  
DIFF > 0.9 V  
V
Transmission Input: TxD  
7.1.13 “High” level input voltage  
threshold  
VTD,H  
VTD,L  
0.5 × 0.7 ×  
V
V
“recessive” state  
“dominant” state  
VIO  
VIO  
7.1.14 “Low” level input voltage  
threshold  
0.3 × 0.4 ×  
VIO  
10  
VIO  
25  
800  
7.1.15 TxD pull-up resistance  
7.1.16 TxD input hysteresis  
RTD  
50  
kΩ  
mV  
ms  
1)  
VHYS(TxD)  
tTxD  
7.1.17 TxD permanent “dominant”  
disable time  
0.3  
1.0  
Data Sheet  
15  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.25 V; RL = 60 Ω; -40 °C < Tj < +150 °C; all voltages with respect to ground;  
positive current flowing into the pin; unless otherwise specified.  
Pos. Parameter  
Symbol Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
Not Enable Input NEN  
7.1.18 “High” level input voltage  
threshold  
VNEN,H  
VNEN,L  
0.5 × 0.7 ×  
V
V
stand-by mode  
VIO  
VIO  
7.1.19 “Low” level input voltage  
threshold  
0.3 × 0.4 ×  
normal-operating mode  
VIO  
10  
VIO  
7.1.20 NEN pull-up resistance  
7.1.21 NEN input hysteresis  
Bus Receiver  
RNEN  
25  
50  
kΩ  
1)  
VHYS(NEN)  
200  
mV  
7.1.22 Differential receiver threshold VDIFF,(D)  
0.75  
0.65  
0.9  
V
normal-operating mode  
normal-operating mode  
1) normal-operating mode  
1) normal-operating mode  
“dominant”  
7.1.23 Differential receiver threshold VDIFF,(R)  
0.5  
0.9  
-1.0  
“recessive”  
7.1.24 Differential receiver input  
range “dominant”  
Vdiff,rdN  
Vdiff,drN  
CMR  
5.0  
0.5  
V
V
7.1.25 Differential receiver input  
range “recessive”  
7.1.26 Common mode range  
-12  
12  
V
V
1)  
CC = 5 V  
7.1.27 Differential receiver hysteresis Vdiff,hys  
7.1.28 CANH, CANL input resistance Ri  
100  
20  
40  
mV  
10  
20  
-3  
30  
60  
3
kΩ “recessive” state  
kΩ “recessive” state  
7.1.29 Differential input resistance  
Rdiff  
7.1.30 Input resistance deviation  
between CANH and CANL  
ΔRi  
%
1) “recessive” state  
7.1.31 Input capacitance CANH,  
CANL versus GND  
CIN  
20  
10  
40  
20  
pF 1) VTxD = VIO,  
pF 1) VTxD = VIO,  
7.1.32 Differential input capacitance CInDiff  
Bus Transmitter  
7.1.33 CANL/CANH “recessive”  
output voltage  
VCANL/H  
2.0  
2.5  
3.0  
50  
V
no load;  
VTxD = VIO  
7.1.34 CANH, CANL “recessive”  
output voltage difference  
Vdiff  
-500  
0.5  
mV no load;  
VTxD = VIO  
7.1.35 CANL “dominant” output  
voltage  
VCANL  
VCANH  
Vdiff  
2.25  
4.5  
3.0  
V
V
V
VTxD = 0 V,  
50 Ω < RL < 65 Ω  
7.1.36 CANH “dominant” output  
voltage  
2.75  
1.5  
VTxD = 0 V,  
50 Ω < RL < 65 Ω  
7.1.37 CANH, CANL “dominant”  
output voltage difference  
Vdiff = VCANH - VCANL  
VTxD = 0 V,  
50 Ω < RL < 65 Ω  
Data Sheet  
16  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.25 V; RL = 60 Ω; -40 °C < Tj < +150 °C; all voltages with respect to ground;  
positive current flowing into the pin; unless otherwise specified.  
Pos. Parameter  
Symbol Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
7.1.38 Driver symmetry  
VSYM  
4.5  
5.5  
V
VTxD = 0 V, VCC = 5 V,  
50 Ω < RL < 65 Ω  
mA VTxD = 0 V, VCC = 5 V, t < tTxD  
CANLshort = 18 V  
mA VTxD = 0 V, VCC = 5 V, t < tTxD  
VSYM = VCANH + VCANL  
7.1.39 CANL short-circuit current  
7.1.40 CANH short-circuit current  
7.1.41 Leakage current CANH  
7.1.42 Leakage current CANL  
ICANLsc  
ICANHsc  
ICANH,lk  
ICANL,lk  
40  
80  
-80  
0
100  
-40  
5
,
V
-100  
-5  
,
V
CANHshort = 0 V  
μA  
μA  
V
CC = 0 V, VCANH = VCANL  
,
,
0 V < VCANH < 5 V  
-5  
0
5
VCC = 0 V, VCANH = VCANL  
0 V < VCANL < 5 V  
CL = 100 pF,  
Dynamic CAN Transceiver Characteristics  
7.1.43 Propagation delay  
TxD-to-RxD “low”  
td(L),TR  
30  
30  
180  
200  
255  
255  
ns  
ns  
V
CC = 5 V, CRxD = 15 pF  
(“recessive” to “dominant”)  
7.1.44 Propagation delay  
TxD-to-RxD “high”  
td(H),TR  
CL = 100 pF,  
CC = 5 V, CRxD = 15 pF  
V
(“dominant” to “recessive”)  
7.1.45 Propagation delay  
TxD “low” to bus “dominant”  
7.1.46 Propagation delay  
TxD “high” to bus “recessive”  
7.1.47 Propagation delay  
bus “dominant” to RxD “low”  
7.1.48 Propagation delay  
bus “recessive” to RxD “high”  
7.1.49 Time for mode change  
td(L),T  
td(H),T  
td(L),R  
td(H),R  
tMode  
100  
90  
ns  
ns  
ns  
ns  
μs  
1) CL = 100 pF,  
CC = 5 V, CRxD = 15 pF  
1) CL = 100 pF,  
CC = 5 V, CRxD = 15 pF  
1) CL = 100 pF,  
CC = 5 V, CRxD = 15 pF  
1) CL = 100 pF,  
V
V
80  
V
110  
V
CC = 5 V, CRxD = 15 pF  
1)  
10  
1) Not subject to production test, specified by design  
Data Sheet  
17  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Electrical Characteristics  
7.2  
Diagrams  
5
VIO  
100 nF  
7
6
CANH  
CANL  
1
8
TxD  
NEN  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 8  
Simplified test circuit  
VTxD  
VIO  
GND  
VDIFF  
t
t
td(L),T  
td(H),T  
0.9V  
0.5V  
td(H),R  
td(L),R  
td(L),TR  
td(H),TR  
VRxD  
VIO  
0.7 x VIO  
0.3 x VIO  
GND  
t
Figure 9  
Timing diagram for dynamic characteristics  
Data Sheet  
18  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Application Information  
8
Application Information  
8.1  
ESD Immunity According to IEC61000-4-2  
Tests for ESD immunity according to IEC61000-4-2, “GUN test” (150 pF, 330 Ω), have been performed. The  
results and test conditions are available in a separate test report.  
Table 7  
ESD Immunity according to IEC61000-4-2  
Test performed  
Result  
Unit  
Remarks  
Electrostatic discharge voltage at CANH and  
CANL pins against GND  
+8  
kV  
1)Positive pulse  
Electrostatic discharge voltage at CANH and  
CANL pins against GND  
-8  
kV  
1)Negative pulse  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/ IEC  
TS 62228”, section 4.3. (DIN EN 61000-4-2)  
Tested by external test house (IBEE Zwickau, EMC test report no.: 05-12-11).  
Data Sheet  
19  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH CANL  
EN  
100 nF  
3
VCC  
100 nF  
22 uF  
VIO  
5
8
1
4
TLE7250GVIO  
VCC  
Out  
NEN  
7
6
CANH  
CANL  
Out  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
In  
Optional:  
Common Mode Choke  
GND  
GND  
2
Example ECU Design  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
VIO  
100 nF  
5
8
1
4
TLE7250GVIO  
VCC  
Out  
NEN  
TxD  
RxD  
7
6
CANH  
CANL  
Out  
In  
Microcontroller  
e.g. XC22xx  
Optional:  
Common Mode Choke  
GND  
GND  
2
Figure 10 Simplified application for the TLE7250GVIO  
8.3  
Further Application Information  
Please contact us for information regarding the FMEA pin.  
For further information you may visit http://www.infineon.com/transceiver  
Data Sheet  
20  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Package Outlines  
9
Package Outlines  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
0.25  
0.64  
+0.1 2)  
0.41  
0.2  
-0.06  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
4
1
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01181  
Figure 11 PG-DSO-8 (Plastic dual small outline PG-DSO-8-16)  
Green Product (RoHS-compliant)  
The device has been designed as a green product to meet the world-wide customer requirements for environment-  
friendly products and to be compliant with government regulations. Green products are RoHS-compliant (i.e Pb-  
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Data Sheet  
21  
Rev. 1.0, 2012-03-14  
TLE7250GVIO  
Revision History  
10  
Revision History  
Revision  
Date  
Changes  
Data Sheet Rev. 1.0 created  
1.0  
2012-03-01  
Data Sheet  
22  
Rev. 1.0, 2012-03-14  
Edition 2012-03-14  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2006 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE7250GVIOXUMA2

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250GXUMA1

Interface Circuit, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLE7250LE

Material Content Data Sheet
INFINEON

TLE7250LEXUMA1

Interface Circuit, PDSO8, TSON-8
INFINEON

TLE7250LE_15

Material Content Data Sheet
INFINEON

TLE7250SJ

Material Content Data Sheet
INFINEON

TLE7250SJXUMA1

Interface Circuit, PDSO8, DSO-8
INFINEON

TLE7250SJ_15

Material Content Data Sheet
INFINEON

TLE7250V

High Speed CAN-Transceiver
INFINEON

TLE7250VLE

Material Content Data Sheet
INFINEON

TLE7250VLEXUMA1

Interface Circuit, PDSO8, TSON-8
INFINEON

TLE7250VLE_15

Material Content Data Sheet
INFINEON