TLE8250VSJ [INFINEON]

Interface Circuit, PDSO8, SOP-8;
TLE8250VSJ
型号: TLE8250VSJ
厂家: Infineon    Infineon
描述:

Interface Circuit, PDSO8, SOP-8

电信 光电二极管 电信集成电路
文件: 总32页 (文件大小:778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8250V  
High Speed CAN Transceiver  
1
Overview  
Features  
Compliant to ISO11898-2: 2003  
Wide common mode range for electromagnetic immunity (EMI)  
Very low electromagnetic emission (EME)  
Excellent ESD robustness  
Guaranteed and improved loop delay symmetry to support CAN FD data  
frames up to 2 MBit/s for Japanese OEMs  
VIO input for voltage adaption to the microcontroller supply  
Extended supply range on VCC and VIO supply  
CAN short circuit proof to ground, battery and VCC  
TxD time-out function  
Low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients  
Power-save mode  
Transmitter supply VCC can be turned off in power-save mode  
Green Product (RoHS compliant)  
AEC Qualified  
Certified according to latest VeLIO (Vehicle LAN Interoperability & Optimization) test requirements for the  
Japanese market  
Applications  
Engine Control Unit (ECUs)  
Transmission Control Units (TCUs)  
Chassis Control Modules  
Electric Power Steering  
Description  
The TLE8250VSJ is a transceiver designed for HS CAN networks in automotive and industrial applications. As  
an interface between the physical bus layer and the CAN protocol controller, the TLE8250VSJ drives the  
signals to the bus and protects the microcontroller against interferences generated within the network. Based  
on the high symmetry of the CANH and CANL signals, the TLE8250VSJ provides a very low level of  
Data Sheet  
www.infineon.com/transceiver  
1
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Overview  
electromagnetic emission (EME) within a wide frequency range.  
The TLE8250VSJ fulfills or exceeds the requirements of the ISO11898-2.  
The TLE8250VSJ provides a digital supply input VIO and a power-save mode. It is designed to fulfill the  
enhanced physical layer requirements for CAN FD and supports data rates up to 2 MBit/s.  
On the basis of a very low leakage current on the HS CAN bus interface the TLE8250VSJ provides an excellent  
passive behavior in power-down state. These and other features make the TLE8250VSJ exceptionally suitable  
for mixed supply HS CAN networks.  
Based on the Infineon Smart Power Technology SPT, the TLE8250VSJ provides excellent ESD immunity  
together with a very high electromagnetic immunity (EMI). The TLE8250VSJ and the Infineon SPT technology  
are AEC qualified and tailored to withstand the harsh conditions of the automotive environment.  
Two different operating modes, additional fail-safe features like a TxD time-out and the optimized output  
slew rates on the CANH and CANL signals, make the TLE8250VSJ the ideal choice for large HS CAN networks  
with high data transmission rates.  
Type  
Package  
Marking  
8250V  
TLE8250VSJ  
PG-DSO-8  
Data Sheet  
2
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
4.1  
4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
High Speed CAN Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Normal-operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-up and Undervoltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Forced Power-save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Undervoltage on the Digital Supply VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage on the Transmitter Supply VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Voltage Adaption to the Microcontroller Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
5
Fail Safe Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Short Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Unconnected Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TxD Time-out Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Delay Time for Mode Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
5.4  
5.5  
6
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
7
7.1  
7.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Examples for Mode Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode Change while the TxD Signal is “low” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Change while the Bus Signal is dominant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.4  
9
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10  
Data Sheet  
3
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Block Diagram  
2
Block Diagram  
3
5
VCC  
VIO  
Transmitter  
7
1
8
TxD  
CANH  
CANL  
Timeout  
Driver  
Temp-  
protection  
6
Mode  
control  
NEN  
Receiver  
Normal-mode receiver  
4
RxD  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Functional block diagram  
Data Sheet  
4
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
3
4
8
7
6
5
NEN  
CANH  
CANL  
TxD  
GND  
VCC  
RxD  
VIO  
Figure 2  
Pin configuration  
3.2  
Pin Definitions  
Table 1  
Pin No.  
1
Pin definitions and functions  
Symbol  
TxD  
Function  
Transmit Data Input;  
internal pull-up to VIO, “low” for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter Supply Voltage;  
100 nF decoupling capacitor to GND required,  
V
CC can be turned off in power-save mode.  
4
5
RxD  
Receive Data Output;  
“low” in dominant state.  
VIO  
Digital Supply Voltage;  
supply voltage input to adapt the logical input and output voltage levels of the  
transceiver to the microcontroller supply,  
100 nF decoupling capacitor to GND required.  
6
CANL  
CANH  
NEN  
CAN Bus Low Level I/O;  
“low” in dominant state.  
7
CAN Bus High Level I/O;  
“high” in dominant state.  
8
Not Enable Input;  
internal pull-up to VIO, “low” for normal-operating mode.  
PAD  
Connect to PCB heat sink area.  
Do not connect to other potential than GND.  
Data Sheet  
5
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
4
Functional Description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. The use of the Controller Area Network (abbreviated CAN) within road vehicles is described by  
the international standard ISO 11898. According to the 7-layer OSI reference model the physical layer of a  
HS CAN bus system specifies the data transmission from one CAN node to all other available CAN nodes within  
the network. The physical layer specification of a CAN bus system includes all electrical and mechanical  
specifications of a CAN network. The CAN transceiver is part of the physical layer specification. Several  
different physical layer standards of CAN networks have been developed in recent years. The TLE8250VSJ is a  
High Speed CAN transceiver without a wake-up function and defined by the international standard ISO 11898-  
2.  
4.1  
High Speed CAN Physical Layer  
VIO  
=
=
Digital supply voltage  
Transmitter supply voltage  
Transmit data input from  
the microcontroller  
TxD  
VCC  
TxD  
VIO  
=
RxD  
=
Receive data output to  
the microcontroller  
CANH =  
CANL =  
Bus level on the CANH  
input/output  
t
t
Bus level on the CANL  
input/output  
CANH  
CANL  
VDiff  
=
Differential voltage  
VCC  
between CANH and CANL  
VDiff = VCANH VCANL  
VDiff  
VCC  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop(H,L)  
tLoop(L,H)  
t
Figure 3  
High speed CAN bus signals and logic signals  
Data Sheet  
6
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
The TLE8250VSJ is a High-Speed CAN transceiver, operating as an interface between the CAN controller and  
the physical bus medium. A HS CAN network is a two wire, differential network which allows data transmission  
rates for CAN FD frames up to 2 MBit/s. Characteristic for HS CAN networks are the two signal states on the  
HS CAN bus: dominant and recessive (see Figure 3).  
VCC, VIO and GND are the supply pins for the TLE8250VSJ. The pins CANH and CANL are the interface to the  
HS CAN bus and operate in both directions, as an input and as an output. RxD and TxD pins are the interface  
to the CAN controller, the TxD pin is an input pin and the RxD pin is an output pin. The NEN pin is the input pin  
for the mode selection (see Figure 4).  
By setting the TxD input pin to logical “low” the transmitter of the TLE8250VSJ drives a dominant signal to the  
CANH and CANL pins. Setting TxD input to logical “high” turns off the transmitter and the output voltage on  
CANH and CANL discharges towards the recessive level. The recessive output voltage is provided by the bus  
biasing (see Figure 1). The output of the transmitter is considered to be dominant, when the voltage difference  
between CANH and CANL is at least higher than 1.5 V (VDiff = VCANH - VCANL).  
Parallel to the transmitter the normal-mode receiver monitors the signal on the CANH and CANL pins and  
indicates it on the RxD output pin. A dominant signal on the CANH and CANL pins sets the RxD output pin to  
logical “low”, vice versa a recessive signal sets the RxD output to logical “high”. The normal-mode receiver  
considers a voltage difference (VDiff) between CANH and CANL above 0.9 V as dominant and below 0.5 V as  
recessive.  
To be conform with HS CAN features, like the bit to bit arbitration, the signal on the RxD output has to follow  
the signal on the TxD input within a defined loop delay tLoop 255 ns.  
The thresholds of the digital inputs (TxD and NEN) and also the RxD output voltage are adapted to the digital  
power supply VIO.  
Data Sheet  
7
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
4.2  
Modes of Operation  
The TLE8250VSJ supports two different modes of operation, power-save mode and normal-operating mode  
while the transceiver is supplied according to the specified functional range. The mode of operation is  
selected by the NEN input pin (see Figure 4).  
power-save mode  
VCC = “don’t care”  
VIO > VIO(UV,R)  
NEN = 1  
NEN = 0  
NEN = 1  
normal-operating  
mode  
VCC > VCC(UV,R)  
VIO > VIO(UV,R)  
NEN = 0  
Figure 4  
Mode state diagram  
4.2.1  
Normal-operating Mode  
In normal-operating mode the transmitter and the receiver of the HS CAN transceiver TLE8250VSJ are active  
(see Figure 1). The HS CAN transceiver sends the serial data stream on the TxD input pin to the CAN bus. The  
data on the CAN bus is displayed at the RxD pin simultaneously. A logical “low” signal on the NEN pin selects  
the normal-operating mode, while the transceiver is supplied by VCC and VIO (see Table 2 for details).  
4.2.2  
Power-save Mode  
The power-save mode is an idle mode of the TLE8250VSJ with optimized power consumption. In power-save  
mode the transmitter and the normal-mode receiver are turned off. The TLE8250VSJ can not send any data to  
the CAN bus nor receive any data from the CAN bus.  
The RxD output pin is permanently “high” in the power-save mode.  
A logical “high” signal on the NEN pin selects the power-save mode, while the transceiver is supplied by the  
digital supply VIO (see Table 2 for details).  
In power-save mode the bus input pins are not biased. Therefore the CANH and CANL input pins are floating  
and the HS CAN bus interface has a high resistance.  
The undervoltage detection on the transmitter supply VCC is turned off, allowing to switch off the VCC supply in  
power-save mode.  
Data Sheet  
8
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
4.3  
Power-up and Undervoltage Condition  
By detecting an undervoltage event, either on the transmitter supply VCC or the digital supply VIO, the  
transceiver TLE8250VSJ changes the mode of operation. Turning off the digital power supply VIO, the  
transceiver powers down and remains in the power-down state. While switching off the transmitter supply VCC  
,
the transceiver either changes to the forced power-save mode, or remains in power-save mode (details see  
Figure 5).  
normal-operating  
mode  
VIO “on”  
VCC “on”  
NEN “0”  
VIO “on”  
VCC “on”  
NEN “0”  
NEN VCC  
VIO  
0
“on” “on”  
VIO “on”  
VCC “off”  
NEN “0”  
VIO “on”  
VCC “on”  
NEN “0”  
power-down  
state  
forced power-save  
mode  
VIO “on”  
VCC “off”  
NEN “0”  
NEN VCC  
“X” “X”  
VIO  
NEN VCC  
VIO  
“off”  
0
“off” “on”  
VIO “on”  
VCC “X”  
NEN “1”  
VIO “on”  
VCC “X”  
NEN “1”  
power-save  
mode  
VIO “on”  
VCC “X”  
NEN “1”  
NEN VCC  
“X”  
VIO  
1
“on”  
Figure 5  
Power-up and undervoltage  
Modes of operation  
Table 2  
Mode  
NEN  
VIO  
VCC  
Bus Bias  
Transmitter  
Normal-mode Low-power  
Receiver  
Receiver  
Normal-operating “low”  
Power-save  
“on”  
“on”  
“X”  
VCC/2  
“on”  
“off”  
“off”  
“off”  
“on”  
not available  
not available  
not available  
not available  
“high” “on”  
floating  
floating  
floating  
“off”  
Forced power-save “low”  
Power-down state “X1)”  
1) “X”: Don’t care  
“on”  
“off”  
“off”  
“X”  
“off”  
“off”  
Data Sheet  
9
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
4.3.1  
Power-down State  
Independent of the transmitter supply VCC and of the NEN input pin, the TLE8250VSJ is in power-down state  
when the digital supply voltage VIO is turned off (see Figure 5).  
In the power-down state the input resistors of the receiver are disconnected from the bus biasing VCC/2. The  
CANH and CANL bus interface of the TLE8250VSJ is floating and acts as a high-impedance input with a very  
small leakage current. The high-ohmic input does not influence the recessive level of the CAN network and  
allows an optimized EME performance of the entire HS CAN network (see also Table 2).  
4.3.2  
Forced Power-save Mode  
The forced power-save mode is a fail-safe mode to avoid any disturbance on the HS CAN bus, while the  
TLE8250VSJ faces a loss of the transmitter supply VCC  
.
In forced power-save mode, the transmitter and the normal-mode receiver are turned off and therefore the  
transceiver TLE8250VSJ can not disturb the bus media.  
The RxD output pin is permanently set to logical “high”. The bus biasing is floating (details see Table 2).  
The forced power-save mode can only be entered when the transmitter supply VCC is not available, either by  
powering up the digital supply VIO only or by turning off the transmitter supply in normal-operating mode.  
While the transceiver TLE8250VSJ is in forced power-save mode, switching the NEN input to logical “high”  
triggers a mode change to power-save mode (see Figure 5).  
4.3.3  
Power-up  
The HS CAN transceiver TLE8250VSJ powers up if at least the digital supply VIO is connected to the device. By  
default the device powers up in power-save mode, due to the internal pull-up resistor on the NEN pin to VIO.  
In case the device needs to power-up to normal-operating mode, the NEN pin needs to be pulled active to  
logical “low” and the supplies VIO and VCC have to be connected.  
By supplying only the digital power supply VIO the TLE8250VSJ powers up either in forced power-save mode  
or in power-save mode, depending on the signal of the NEN input pin (see Figure 5).  
Data Sheet  
10  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
4.3.4  
Undervoltage on the Digital Supply VIO  
If the voltage on VIO supply input falls below the threshold VIO < VIO(UV,F), the transceiver TLE8250VSJ powers  
down and changes to the power-down state.  
The undervoltage detection on the digital supply VIO has the highest priority. It is independent of the  
transmitter supply VCC and also independent of the currently selected operating mode. An undervoltage event  
on VIO always powers down the TLE8250VSJ.  
transmitter supply voltage VCC = “don’t care”  
VIO  
VIO undervoltage monitor  
VIO(UV,R)  
hysteresis  
VIO(UV,H)  
VIO undervoltage monitor  
VIO(UV,F)  
tDelay(UV) delay time undervoltage  
t
any mode of operation  
power-down state  
stand-by mode  
NEN  
“high” due the internal  
pull-up resistor1)  
“X” = don’t care  
t
1) assuming no external signal applied  
Figure 6  
Undervoltage on the digital supply VIO  
4.3.5  
Undervoltage on the Transmitter Supply VCC  
In case the transmitter supply VCC falls below the threshold VCC < VCC(UV,F), the transceiver TLE8250VSJ changes  
the mode of operation to forced power-save mode. The transmitter and also the normal-mode receiver of the  
TLE8250VSJ are powered by the VCC supply. In case of an insufficient VCC supply, the TLE8250VSJ can neither  
transmit the CANH and CANL signals correctly to the bus, nor can it receive them properly. Therefore the  
TLE8250VSJ blocks the transmitter and the receiver in forced power-save mode (see Figure 7).  
The undervoltage detection on the transmitter supply VCC is only active in normal-operating mode (see  
Figure 5).  
Data Sheet  
11  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Functional Description  
digital supply voltage VIO = “on”  
VCC  
V
CC undervoltage monitor  
VCC(UV,R)  
hysteresis  
VCC(UV,H)  
V
CC undervoltage monitor  
VCC(UV,F)  
tDelay(UV) delay time undervoltage  
t
t
normal-operating mode  
forced stand-by mode  
normal-operating mode  
NEN  
Assuming the NEN remains “low”. The “low” signal is driven by the external microcontroller  
Figure 7  
Undervoltage on the transmitter supply VCC  
4.3.6  
Voltage Adaption to the Microcontroller Supply  
The HS CAN transceiver TLE8250VSJ has two different power supplies, VCC and VIO. The power supply VCC  
supplies the transmitter and the normal-mode receiver. The power supply VIO supplies the digital input and  
output buffers and it is also the main power domain for the internal logic.  
To adjust the digital input and output levels of the TLE8250VSJ to the I/O levels of the external microcontroller,  
connect the power supply VIO to the microcontroller I/O supply voltage (see Figure 13).  
Note:  
In case the digital supply voltage VIO is not required in the application, connect the digital supply  
voltage VIO to the transmitter supply VCC  
.
Data Sheet  
12  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Fail Safe Functions  
5
Fail Safe Functions  
5.1  
Short Circuit Protection  
The CANH and CANL bus outputs are short circuit proof, either against GND or a positive supply voltage. A  
current limiting circuit protects the transceiver against damages. If the device is heating up due to a  
continuous short on the CANH or CANL, the internal overtemperature protection switches off the bus  
transmitter.  
5.2  
Unconnected Logic Pins  
All logic input pins have an internal pull-up resistor to VIO. In case the VIO supply is activated and the logical pins  
are open, the TLE8250VSJ enters into the power-save mode by default. In power-save mode the transmitter of  
the TLE8250VSJ is disabled and the bus bias is floating.  
5.3  
TxD Time-out Function  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously “low”. A continuous “low” signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example. In normal-operating mode, a  
logical “low” signal on the TxD pin for the time t > tTxD enables the TxD time-out feature and the TLE8250VSJ  
disables the transmitter (see Figure 8). The receiver is still active and the data on the bus continues to be  
monitored by the RxD output pin.  
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
TxD  
RxD  
t
t
Figure 8  
TxD time-out function  
Figure 8 illustrates how the transmitter is deactivated and activated again. A permanent “low” signal on the  
TxD input pin activates the TxD time-out function and deactivates the transmitter. To release the transmitter  
after a TxD time-out event the TLE8250VSJ requires a signal change on the TxD input pin from logical “low” to  
logical “high”.  
Data Sheet  
13  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Fail Safe Functions  
5.4  
Overtemperature Protection  
The TLE8250VSJ has an integrated overtemperature detection to protect the TLE8250VSJ against thermal  
overstress of the transmitter. The overtemperature protection is active in normal-operating mode and  
disabled in power-save mode. In case of an overtemperature condition, the temperature sensor will disable  
the transmitter (see Figure 1) while the transceiver remains in normal-operating mode.  
After the device has cooled down the transmitter is activated again (see Figure 9). A hysteresis is implemented  
within the temperature sensor.  
TJSD (shut down temperature)  
cool down  
TJ  
˂T  
switch-on transmitter  
t
CANH  
CANL  
t
TxD  
t
RxD  
t
Figure 9  
Overtemperature protection  
5.5  
Delay Time for Mode Change  
The HS CAN transceiver TLE8250VSJ changes the mode of operation within the time window tMode. During the  
mode change the RxD output pin is permanently set to logical “high” and does not reflect the status on the  
CANH and CANL input pins (see as an example Figure 14 and Figure 15).  
Data Sheet  
14  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
General Product Characteristics  
6
General Product Characteristics  
6.1  
Absolute Maximum Ratings  
Table 3  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage VCC  
Digital supply voltage VIO  
-0.3  
-0.3  
-40  
-40  
-40  
6.0  
6.0  
40  
V
V
V
V
V
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
P_6.1.5  
CANH DC voltage versus GND VCANH  
CANL DC voltage versus GND VCANL  
40  
Differential voltage between VCAN_Diff  
40  
CANH and CANL  
Voltages at the input pins:  
NEN, TxD  
VMAX_IN  
-0.3  
-0.3  
6.0  
V
V
P_6.1.6  
P_6.1.7  
Voltages at the output pin:  
RxD  
VMAX_OUT  
VIO  
Currents  
RxD output current  
Temperatures  
IRxD  
-20  
20  
mA  
P_6.1.8  
Junction temperature  
Storage temperature  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_6.1.9  
TS  
P_6.1.10  
ESD immunity at CANH, CANL VESD_HBM_CAN -10  
versus GND  
10  
2
kV  
kV  
V
HBM  
P_6.1.11  
P_6.1.12  
P_6.1.13  
(100 pF via 1.5 k)2)  
ESD immunity at all other  
pins  
VESD_HBM_ALL -2  
VESD_CDM -750  
HBM  
(100 pF via 1.5 k)2)  
ESD immunity to GND  
750  
CDM3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001  
3) ESD susceptibility, Charge Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal-operating range. Protection  
functions are not designed for continuos repetitive operation.  
Data Sheet  
15  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
General Product Characteristics  
6.2  
Functional Range  
Table 4  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Supply Voltages  
Transmitter supply voltage VCC  
4.5  
3.0  
5.5  
5.5  
V
V
P_6.2.1  
P_6.2.2  
Digital supply voltage  
Thermal Parameters  
Junction temperature  
VIO  
1)  
Tj  
-40  
150  
°C  
P_6.2.3  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
6.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 5  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
K/W 2) TLE8250VSJ  
Number  
P_6.3.2  
Min. Typ. Max.  
Thermal Resistances  
Junction to Ambient PG-  
DSO-8  
RthJA  
130  
Thermal Shutdown (junction temperature)  
Thermal shutdown  
temperature  
TJSD  
150  
175  
10  
200  
°C  
K
P_6.3.3  
P_6.3.4  
Thermal shutdown  
hysteresis  
ΔT  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board. The product  
(TLE8250VSJ) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Data Sheet  
16  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Functional Device Characteristics  
Table 6  
Electrical characteristics  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at ICC  
CC normal-operating  
mode  
2.6  
38  
4
mA recessive state,  
P_7.1.1  
P_7.1.2  
P_7.1.3  
V
VTxD = VIO, VNEN = 0 V;  
Current consumption at ICC  
60  
1
mA dominant state,  
VCC normal-operating  
VTxD = VNEN = 0 V;  
mode  
Current consumption at IIO  
VIO normal-operating  
mode  
mA VNEN = 0 V;  
Current consumption at ICC(PSM)  
VCC power-save mode  
5
5
8
µA VTxD = VNEN = VIO;  
P_7.1.4  
P_7.1.5  
Current consumption at IIO(PSM)  
VIO power-save mode  
µA VTxD = VNEN = VIO,  
0 V < VCC < 5.5 V;  
Supply Resets  
V
CC undervoltage monitor VCC(UV,R)  
3.8  
4.0  
4.3  
V
P_7.1.6  
P_7.1.7  
P_7.1.8  
P_7.1.9  
P_7.1.10  
P_7.1.11  
rising edge  
VCC undervoltage monitor VCC(UV,F)  
falling edge  
3.65 3.85 4.3  
V
1)  
VCC undervoltage monitor VCC(UV,H)  
hysteresis  
150  
2.5  
2.3  
200  
mV  
V
VIO undervoltage monitor VIO(UV,R)  
rising edge  
2.0  
1.8  
3.0  
3.0  
VIO undervoltage monitor VIO(UV,F)  
falling edge  
V
1)  
VIO undervoltage monitor VIO(UV,H)  
hysteresis  
mV  
µs  
VCC and VIO undervoltage tDelay(UV)  
100  
1) (see Figure 6 and Figure 7); P_7.1.12  
delay time  
Data Sheet  
17  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Receiver Output RxD  
“High” level output  
current  
IRD,H  
IRD,L  
2
-4  
4
-2  
mA VRxD = VIO - 0.4 V, VDiff < 0.5 V; P_7.1.13  
“Low” level output  
current  
mA VRxD = 0.4 V, VDiff > 0.9 V;  
P_7.1.14  
Transmission Input TxD  
“High” level input voltage VTxD,H  
threshold  
0.5  
× VIO × VIO  
0.7  
V
V
recessive state;  
dominant state;  
P_7.1.15  
P_7.1.16  
“Low” level input voltage VTxD,L  
0.3  
0.4  
threshold  
× VIO × VIO  
Pull-up resistance  
Input hysteresis  
Input capacitance  
RTxD  
10  
25  
450  
50  
kΩ  
mV  
pF  
P_7.1.17  
P_7.1.18  
P_7.1.19  
P_7.1.20  
1)  
VHYS(TxD)  
CTxD  
1)  
10  
16  
TxD permanent dominant tTxD  
4.5  
ms normal-operating mode;  
time-out  
Not Enable Input NEN  
“High” level input voltage VNEN,H  
threshold  
0.5  
× VIO × VIO  
0.7  
V
V
power-save mode;  
P_7.1.21  
P_7.1.22  
“Low” level input voltage VNEN,L  
0.3  
0.4  
normal-operating mode;  
threshold  
× VIO × VIO  
Pull-up resistance  
Input capacitance  
Input hysteresis  
RNEN  
10  
25  
50  
10  
kΩ  
pF  
P_7.1.23  
P_7.1.24  
P_7.1.25  
1)  
CNEN  
1)  
VHYS(NEN)  
200  
mV  
Data Sheet  
18  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Bus Receiver  
2)  
Differential receiver  
threshold dominant  
normal-operating mode  
VDiff_D  
0.75 0.9  
V
P_7.1.26  
P_7.1.27  
P_7.1.28  
P_7.1.29  
2)  
Differential receiver  
threshold recessive  
normal-operating mode  
VDiff_R  
0.5  
0.66  
V
1)2)  
Differential range  
dominant  
Normal-operating mode  
VDiff_D_Range 0.9  
8.0  
0.5  
V
1)2)  
Differential range  
recessive  
VDiff_R_Range -3.0  
V
Normal-operating mode  
Common mode range  
CMR  
-12  
12  
V
VCC = 5 V;  
1)  
P_7.1.30  
P_7.1.31  
Differential receiver  
hysteresis  
VDiff,hys  
90  
mV  
normal-operating mode  
CANH, CANL input  
resistance  
Ri  
10  
20  
- 1  
20  
40  
30  
60  
1
krecessive state;  
krecessive state;  
P_7.1.32  
P_7.1.33  
P_7.1.34  
P_7.1.35  
P_7.1.36  
Differential input  
resistance  
RDiff  
Input resistance deviation ΔRi  
between CANH and CANL  
%
1) recessive state;  
1)  
Input capacitance CANH, CIn  
CANL versus GND  
20  
10  
40  
20  
pF  
pF  
V
V
= VIO;  
= VIO;  
TxD  
TxD  
1)  
Differential input  
capacitance  
CIn_Diff  
Data Sheet  
19  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Bus Transmitter  
CANL/CANH recessive  
output voltage  
normal-operating mode  
VCANL/H  
VDiff_NM  
VCANL  
VCANH  
VDiff  
2.0  
2.5  
3.0  
50  
V
VTxD = VIO,  
no load;  
P_7.1.37  
P_7.1.38  
P_7.1.39  
P_7.1.40  
P_7.1.41  
CANH, CANL recessive  
output voltage difference  
normal-operating mode  
-500  
0.5  
mV VTxD = VIO,  
no load;  
CANL dominant  
output voltage  
normal-operating mode  
2.25  
4.5  
3.0  
V
V
V
VTxD = 0 V;  
VTxD = 0 V;  
CANH dominant  
output voltage  
normal-operating mode  
2.75  
1.5  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
according to ISO 11898-2  
VTxD = 0 V, 50 < RL < 65 ,  
4.75 < VCC < 5.25 V;  
VDiff = VCANH - VCANL  
CANH, CANL dominant  
output voltage difference  
normal-operating mode  
VDiff = VCANH - VCANL  
VDiff_EXT  
1.4  
3.3  
5.0  
5.5  
V
V
V
VTxD = 0 V, 45 < RL < 70 ,  
4.75 < VCC < 5.25 V;  
P_7.1.42  
P_7.1.43  
P_7.1.44  
Differential voltage  
dominant high extended  
bus load  
VDiff_HEX_BL 1.5  
VTxD = 0 V,  
RL = 2240,  
4.75 V < VCC < 5.25 V, static  
Normal-operating mode  
behavior;1)  
Driver dominant  
symmetry  
VSYM  
4.5  
5
VCC = 5.0 V, VTxD = 0 V;  
normal-operating mode  
V
SYM = VCANH + VCANL  
CANL short circuit current ICANLsc  
40  
75  
100  
-40  
5
mA VCANLshort = 18 V, VCC = 5.0 V, P_7.1.45  
t < tTxD, VTxD = 0 V;  
CANH short circuit current ICANHsc  
-100 -75  
mA VCANHshort = -3 V, VCC = 5.0 V,  
t < tTxD, VTxD = 0 V;  
P_7.1.46  
Leakage current, CANH  
Leakage current, CANL  
ICANH,lk  
-5  
-5  
µA VCC = VIO = 0 V,  
0 V < VCANH < 5 V,  
P_7.1.47  
VCANH = VCANL  
;
ICANL,lk  
5
µA VCC = VIO = 0 V,  
0 V < VCANL < 5 V,  
P_7.1.48  
V
CANH = VCANL;  
Data Sheet  
20  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Dynamic CAN-Transceiver Characteristics  
Propagation delay  
TxD-to-RxD “low”  
(“recessive to dominant)  
tLoop(H,L)  
tLoop(L,H)  
td(L),T  
170  
170  
90  
230  
230  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
P_7.1.49  
P_7.1.50  
P_7.1.51  
P_7.1.52  
P_7.1.53  
P_7.1.54  
Propagation delay  
TxD-to-RxD “high”  
(dominant to recessive)  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
C
RxD = 15 pF;  
Propagation delay  
TxD “low” to bus  
dominant  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Propagation delay  
TxD “high” to bus  
recessive  
td(H),T  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
C
RxD = 15 pF;  
Propagation delay  
bus dominant to RxD  
“low”  
td(L),R  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
C
RxD = 15 pF;  
Propagation delay  
bus recessive to RxD  
“high”  
td(H),R  
90  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF;  
Delay Times  
Delay time for mode  
change  
tMode  
20  
µs  
1) (see Figure 14 and  
Figure 15);  
P_7.1.55  
Data Sheet  
21  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
Table 6  
Electrical characteristics (cont’d)  
4.5 V < VCC < 5.5 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40 °C < Tj < 150 °C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
CAN FD Characteristics  
Received recessive bit  
width  
at 2 MBit/s  
tBit(RxD)_2MB 430  
500  
500  
530  
530  
20  
ns  
ns  
ns  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 12);  
P_7.1.56  
Transmitted recessive bit tBit(Bus)_2MB 450  
width  
at 2 MBit/s  
CL = 100 pF,  
P_7.1.57  
P_7.1.58  
4.75 V < VCC < 5.25 V,  
CRxD = 15 pF, tBit = 500 ns,  
(see Figure 12);  
Receiver timing symmetry ΔtRec_2MB  
at 2 MBit/s  
-45  
CL = 100 pF,  
4.75 V < VCC < 5.25 V,  
ΔtRec = tBit(RxD) - tBit(Bus)  
C
RxD = 15 pF, tBit = 500 ns,  
(see Figure 12);  
1) Not subject to production test, specified by design.  
2) In respect to common mode range.  
Data Sheet  
22  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
7.2  
Diagrams  
5
VIO  
100 nF  
7
6
CANH  
CANL  
1
8
TxD  
NEN  
CL  
RL  
4
3
RxD  
VCC  
CRxD  
GND  
2
100 nF  
Figure 10  
Test circuits for dynamic characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
t
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
0.5 V  
td(H),R  
td(L),R  
tLoop(H,L)  
tLoop(L,H)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 11  
Timing diagrams for dynamic characteristics  
Data Sheet  
23  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Electrical Characteristics  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop(H,L)  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop(L,H)  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 12  
Recessive bit time - five dominant bits followed by one recessive bit  
Data Sheet  
24  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Application Information  
8
Application Information  
8.1  
ESD Robustness according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The  
results and test conditions are available in a separate test report.  
Table 7  
ESD robustness according to IEC61000-4-2  
Result Unit  
Performed Test  
Remarks  
Electrostatic discharge voltage at pin CANH and +8  
kV  
1)Positive pulse  
CANL versus GND  
Electrostatic discharge voltage at pin CANH and -8  
kV  
1)Negative pulse  
CANL versus GND  
1) ESD susceptibility “ESD GUN” according to GIFT / ICT paper: “EMC Evaluation of CAN Transceivers, version 03/02/IEC  
TS62228”, section 4.3. (DIN EN61000-4-2)  
Tested by external test facility (IBEE Zwickau, EMC test report no. TBD).  
Data Sheet  
25  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Application Information  
8.2  
Application Example  
VBAT  
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
CANH  
CANL  
EN  
100 nF  
3
VCC  
100 nF  
22 uF  
VIO  
5
8
1
4
120  
Ohm  
TLE8250VSJ  
VCC  
Out  
Out  
In  
NEN  
7
6
CANH  
CANL  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
optional:  
common mode choke  
GND  
GND  
2
I
Q1  
Q2  
22 uF  
TLE4476D  
GND  
100 nF  
EN  
3
VCC  
100 nF  
22 uF  
VIO  
100 nF  
5
8
1
4
TLE8250VSJ  
VCC  
Out  
Out  
In  
NEN  
7
6
CANH  
CANL  
TxD  
RxD  
Microcontroller  
e.g. XC22xx  
optional:  
common mode choke  
GND  
120  
Ohm  
GND  
2
CANH  
CANL  
example ECU design  
Figure 13  
Application circuit  
Data Sheet  
26  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Application Information  
8.3  
Examples for Mode Changes  
The mode change is executed independently of the signal on the HS CAN bus. The CANH, CANL inputs may  
be either dominant or recessive. They can be also permanently shorted to GND or VCC  
.
A mode change is performed independently of the signal on the TxD input. The TxD input may be either  
logical “high” or “low”.  
Analog to that, changing the NEN input pin to logical “high” changes the mode of operation to the power-save  
mode independent on the signals at the CANH, CANL and TxD pins.  
Note:  
In case the TxD signal is “low” setting the NEN input pin to logical “low” changes the operating mode  
of the device to normal-operating mode and drives a dominant signal to the HS CAN bus.  
Note:  
The TxD time-out is only effective in normal-operating mode. The TxD time-out timer starts when the  
TLE8250VSJ enters normal-operating mode and the TxD input is set to logical “low”.  
Data Sheet  
27  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Application Information  
8.3.1  
Mode Change while the TxD Signal is “low”  
The example in Figure 14 shows a mode change to normal-operating mode while the TxD input is logical  
“low”. The HS CAN signal is recessive, assuming all other HS CAN bus subscribers are also sending a recessive  
bus signal.  
While the transceiver TLE8250VSJ is in power-save mode, the transmitter and the normal-mode receiver are  
turned off. The TLE8250VSJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN  
bus. Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD  
input signal remains logical “low”. The transmitter and the normal-mode receiver remain disabled until the  
mode transition is completed. In normal-operating mode the transmitter and the normal-mode receiver are  
active. The “low” signal on the TxD input drives a dominant signal to the HS CAN bus and the RxD output  
becomes logical “low” following the dominant signal on the HS CAN bus.  
Changing the NEN pin back to logical “high”, disables the transmitter and normal-mode receiver again. The  
RxD output pin is blocked and set to logical “high” with the start of the mode transition. The TxD input and the  
transmitter are blocked and the HS CAN bus becomes recessive.  
Note: The signals on the HS CAN bus are “recessive”, the “dominant” signal is  
generated by the TxD input signal  
t = tMode  
t = tMode  
NEN  
TxD  
t
t
VDiff  
t
t
RxD  
power-save  
transition  
normal-operating  
transition  
power-save mode  
normal-mode  
receiver disabled  
RxD output  
blocked  
normal-mode receiver  
active  
RxD output  
blocked  
normal-mode receiver  
disabled  
TxD input and transmitter  
blocked  
TxD input and transmitter  
active  
TxD input and transmitter blocked  
Figure 14  
Example for a mode change while the TxD is “low”  
Data Sheet  
28  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Application Information  
8.3.2  
Mode Change while the Bus Signal is dominant  
The example in Figure 15 shows a mode change while the bus is dominant and the TxD input signal is set to  
logical “high”.  
While the transceiver TLE8250VSJ is in power-save mode, the transmitter and the normal-mode receiver are  
turned off. The TLE8250VSJ drives no signal to the HS CAN bus nor does it receive any signal from the HS CAN  
bus. Changing the NEN to logical “low” turns the mode of operation to normal-operating mode, while the TxD  
input signal remains logical “high”. The transmitter and the normal-mode receiver remain disabled until the  
mode transition is completed. In normal-operating mode the transmitter of TLE8250VSJ remains recessive,  
because of the logical “high” signal on the TxD input. The normal-mode receiver becomes active and the RxD  
output signal changes to logical “low” following the dominant signal on the HS CAN bus.  
Changing the NEN pin back to logical “high”, disables the transmitter and normal-mode receiver again. The  
RxD output pin is blocked and set to logical “high” with the start of the mode transition.  
Note: The “dominant” signal on the HS CAN bus is set by another HS CAN bus  
subscriber.  
t = tMode  
t = tMode  
NEN  
TxD  
t
t
VDiff  
t
t
RxD  
power-save mode  
transition  
normal-operating  
transition  
power-save mode  
normal-mode receiver  
disabled  
RxD output  
blocked  
normal-mode receiver  
active  
RxD output  
blocked  
normal-mode receiver  
disabled  
TxD input and transmitter  
active  
TxD input and transmitter blocked  
TxD input and transmitter blocked  
Figure 15  
Example for a mode change while the HS CAN is dominant  
8.4  
Further Application Information  
Please contact us for information regarding the pin FMEA.  
Existing application note.  
For further information you may visit: http://www.infineon.com/  
Data Sheet  
29  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Package Outline  
9
Package Outline  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
1
4
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
Figure 16  
PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
30  
Rev. 1.0  
2016-07-15  
TLE8250V  
High Speed CAN Transceiver  
Revision History  
10  
Revision History  
Revision  
1.0  
Date  
Changes  
2016-07-15 Data Sheet created.  
Data Sheet  
31  
Rev. 1.0  
2016-07-15  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-07-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE8250XSJ

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8250_16

High Speed CAN Transceiver
INFINEON

TLE8251V

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJ

High Speed CAN Transceiver with Bus Wake-up
INFINEON

TLE8251VSJXUMA1

Interface Circuit, PDSO8, SOP-8
INFINEON

TLE8261-2E

Universal System Basis Chip
INFINEON

TLE8261E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8261EXUMA1

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8261EXUMA3

Interface Circuit, PDSO36, GREEN, PLASTIC, DSO-36
INFINEON

TLE8262-2E

Universal System Basis Chip
INFINEON

TLE8262E

Universal System Basis Chip HERMES Rev. 1.0
INFINEON

TLE8263-2E

Universal System Basis Chip
INFINEON