TLE9271QX [INFINEON]

The device is designed for various CAN-LIN automotive applications as the main supply forthe microcontroller and as the interface for LIN and CAN bus networks.;
TLE9271QX
型号: TLE9271QX
厂家: Infineon    Infineon
描述:

The device is designed for various CAN-LIN automotive applications as the main supply forthe microcontroller and as the interface for LIN and CAN bus networks.

文件: 总130页 (文件大小:4216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPTIREG™ SBC TLE9271QX  
High-End System Basis Chip Family  
1
Overview  
Features  
Very low quiescent current consumption in SBC Stop and Sleep mode  
SMPS 750 mA (DC/DC buck) voltage regulator 5 V to supply high current load with high efficiency  
DC/DC boost converter for low battery supply voltage  
Low-drop voltage regulator 5 V/100 mA, protected for off-board usage  
High-speed CAN FD transceiver compliant to ISO11898-2:2016 supporting communication up to 5 Mbps  
Up to 2 LIN transceivers LIN2.2, SAE J2602 with programmable TXD timeout feature and LIN Flash mode  
Compliant with “Hardware requirements for LIN, CAN and FlexRay interfaces in automotive applications”  
Revision 1.3, 2012-05-04  
One universal high-voltage wake input for voltage level monitoring  
Configurable wake-up sources including periodic cyclic wake in SBC Normal and Stop mode  
Configurable timeout and window watchdog and reset output  
Fail-safe input to monitor MCU hardware functionality  
Up to three fail-safe outputs (depending on configurations) to activate external loads in case of system  
malfunctions are detected  
Overtemperature and short circuit protection feature  
Software compatible with latest Infineon SBC families  
PG-VQFN-48 leadless exposed-pad power package with Lead Tip Inspection (LTI)  
Green Product (RoHS compliant)  
Potential applications  
Body control modules  
Gateway  
HVAC ECU and control panel  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Datasheet  
www.infineon.com/SBC  
Rev. 2.0  
2022-05-06  
1
OPTIREG™ SBC TLE9271QX  
Overview  
Description  
The TLE9271QX is a monolithic integrated circuit in an exposed pad PG-VQFN-48 (7 mm × 7 mm) leadless  
package with Lead Tip Inspection (LTI) feature supporting Automatic Optical Inspection (AOI).  
The device is designed for various CAN-LIN automotive applications as the main supply for the microcontroller  
and as the interface for LIN and CAN bus networks.  
The System Basis Chip (SBC) provides the main functions for supporting these applications, such as a Switch  
mode power supply regulator (SMPS) for on-board 5 V supply, another 5 V low-dropout voltage regulator with  
off-board protection, e.g. sensor supply, a DC/DC boost converter for low supply voltage, an HS-  
CAN transceiver supporting CAN FD, a LIN transceiver for data transmission and a 16-bit Serial Peripheral  
Interface (SPI) to control and monitor the device. Additional feature include a timeout/window watchdog  
circuit with a reset feature, fail-safe input and fail-safe outputs and undervoltage reset features.  
The device offers low-power modes in order to minimize current consumption on applications that are  
connected permanently to the battery. A wake-up from the low-power mode is possible via a message on the  
buses, via the bi-level sensitive monitoring/wake-up input as well as via cyclic wake.  
The device is designed to withstand the severe conditions of automotive applications.  
Scalable System Basis Chip (SBC) family  
Product family with various products for complete scalable application coverage  
Dedicated datasheets are available for the different product variants  
Complete compatibility (hardware and software) across the family  
TLE9274 with 4 LIN transceivers, SMPS boost with 3 output voltage configurations  
TLE9273 with 4 LIN transceivers, SMPS boost with 2 output voltage configurations  
TLE9272 with 3 LIN transceivers, SMPS boost with 2 output voltage configurations  
TLE9271 with 2 LIN transceivers, SMPS boost with 2 output voltage configurations  
Product variants for 5 V (TLE927xQX) and 3.3 V (TLE927xQXV33) output voltage for main voltage regulator  
Sales Product Name  
OPN  
Package  
Marking  
SP number  
TLE9271QX  
TLE9271QXXUMA2  
SP005729424  
PG-VQFN-48  
TLE9271QX  
Datasheet  
2
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Table of contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
3
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hints for unused pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1  
4.2  
4.3  
4.4  
5
5.1  
System features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
State machine description and SBC mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SBC Init mode and device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SBC Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SBC Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SBC Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SBC Restart mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SBC Fail-Safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SBC Development mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wake features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cyclic wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Internal timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Supervision features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.2  
5.2.1  
5.2.2  
5.3  
6
6.1  
6.2  
DC/DC regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Functional description buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Startup procedure (soft start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Buck regulator status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Functional description boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Boost regulator status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Peak overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Boost switch gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
BSTG short circuit detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Buck and boost in SBC Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.2.1  
6.2.2  
6.2.3  
6.3  
6.3.1  
6.3.2  
6.3.2.1  
6.3.3  
6.3.4  
6.4  
6.4.1  
Datasheet  
3
Rev. 2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
6.4.2  
Buck and boost in SBC Stop mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.4.2.1  
6.4.2.2  
6.4.2.3  
6.4.3  
6.4.3.1  
6.5  
Automatic transition from PFM to PWM in SBC Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Manual transition from PFM to PWM in SBC Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SBC Stop to Normal mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Buck and boost in SBC Sleep and Fail-Safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SBC Sleep/Fail-Safe mode to Normal mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7
Voltage regulator 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.1  
7.2  
7.3  
8
8.1  
8.2  
High-speed CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CAN OFF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CAN Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CAN Receive-Only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
CAN Wake-capable mode (wake-up pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
TXDCAN time-out feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Bus dominant clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
VCAN undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.3  
9
9.1  
9.1.1  
9.2  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
LIN specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
LIN OFF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
LIN Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
LIN Receive-Only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
LIN Wake-Capable mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
TXDLIN Time-out feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Bus dominant clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Slope selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Flash programming via LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Electrical characteristics of the LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.3  
10  
Wake input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Wake input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.1  
10.2  
10.2.1  
10.3  
11  
11.1  
11.2  
Interrupt function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Block and functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
12  
Fail-safe outputs and fail-safe input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Datasheet  
4
Rev. 2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
12.1  
12.2  
12.3  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Fail-safe input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13  
13.1  
Supervision functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Reset function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Reset output description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Reset clamp to high . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Soft reset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Watchdog function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Time-out watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Watchdog setting check sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Watchdog during SBC Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
WD start in SBC Stop mode due to bus wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
VS power on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Undervoltage VLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Buck regulator monitoring features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
VCC1 undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
VCC1 overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
VCC1 short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
SMPS status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
VCC2 undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
VCAN undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Individual thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Temperature prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SBC thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
13.1.1  
13.1.2  
13.1.3  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.2.4  
13.2.4.1  
13.3  
13.4  
13.5  
13.5.1  
13.5.2  
13.5.3  
13.5.4  
13.6  
13.7  
13.8  
13.8.1  
13.8.2  
13.8.3  
13.9  
14  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
SPI description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Failure signalization in the SPI data output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
SPI programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SPI bit mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SPI control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
SPI status information registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
15  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Application diagram with boost module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Application diagram without boost module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
ESD tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Thermal behavior of package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
15.1  
15.2  
15.3  
15.4  
16  
17  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Datasheet  
5
Rev. 2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Block diagram  
2
Block diagram  
VSENSE  
VS  
BSTD  
BSTG  
VCC1  
Buck  
Boost  
BCKSW  
VCC1  
SNSP  
SNSN  
Vint.  
VS2  
FO1  
FO2/FSI  
FO3/TEST  
Fail Safe  
VCC2  
VCC2  
SDI  
SDO  
CLK  
CSN  
SPI  
SBC  
STATE  
CFG  
MACHINE  
INT  
Interrupt  
Control  
Window Watchdog  
RO  
RESET  
GENERATOR  
WK1  
WK  
VCAN  
Vs  
WAKE  
REGISTER  
TXDCAN  
RXDCAN  
CAN cell  
VLIN  
CANH  
CANL  
2
2
2
TXDLIN  
RXDLIN  
LIN1  
LIN cell 1  
LIN cell 2  
TXDLIN  
RXDLIN  
LIN2  
GND  
Figure 1  
Block diagram  
Datasheet  
6
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Pin configuration  
3
Pin configuration  
3.1  
Pin assignment  
CFG 37  
CSN 38  
SDO 39  
SDI 40  
CLK 41  
GND 42  
VCC2 43  
VS2 44  
24 RO  
23 VCC1  
22 RXDCAN  
21 TXDCAN  
20 VCAN  
19 N.U.  
TLE9271QX  
PG-VQFN-48  
18 N.U.  
17 N.U.  
VLIN 45  
16 N.U.  
FO1 46  
FO2/FSI 47  
FO3/TEST 48  
15 RXDLIN2  
14 TXDLIN2  
13 RXDLIN1  
Figure 2  
Pin assignment  
Datasheet  
7
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Pin configuration  
3.2  
Pin definitions and functions  
Table 1  
Pin definitions and functions  
Pin  
Symbol  
Function  
1
LIN1  
LIN bus 1  
Bus line for the LIN interface, according to ISO 9141 and LIN specification 2.1 as  
well as SAE J2602-2  
2
3
GND  
LIN2  
Ground  
LIN1 and LIN2 common ground  
LIN bus 2  
Bus line for the LIN interface, according to ISO 9141 and LIN specification 2.1 as  
well as SAE J2602-2  
4
5
N.C.  
N.C.  
Not connected  
Not bonded internally  
Not connected  
Not bonded internally  
6
7
GND  
N.C.  
Ground  
Not connected  
Not bonded internally  
8
GND  
Ground  
9
CANH  
CANL  
GND  
CAN high bus pin  
CAN low bus pin  
10  
11  
Ground  
CAN common ground  
12  
13  
14  
15  
16  
TXDLIN1  
RXDLIN1  
TXDLIN2  
RXDLIN2  
N.U.  
Transmit LIN1  
Receive LIN1  
Transmit LIN2  
Receive LIN2  
Not used  
Used for internal testing purpose. Do not connect, leave open  
17  
18  
19  
N.U.  
N.U.  
N.U.  
Not used  
Used for internal testing purpose. Do not connect, leave open  
Not used  
Used for internal testing purpose. Do not connect, leave open  
Not used  
Used for internal testing purpose. Do not connect, leave open  
20  
21  
22  
23  
VCAN  
Supply input for internal HS-CAN module  
Transmit CAN  
TXDCAN  
RXDCAN  
VCC1  
Receive CAN  
Buck regulator  
Input feedback for buck regulator  
Datasheet  
8
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Pin configuration  
Table 1  
Pin  
Pin definitions and functions  
Symbol  
Function  
24  
RO  
Reset output  
Active LOW, internal pull-up  
25  
26  
INT  
Interrupt output  
Active LOW output  
GND  
Ground  
Buck regulator ground  
27  
28  
BCKSW  
VS  
Buck regulator switch node output  
Buck supply voltage  
Connected to battery voltage or boost output voltage with reverse protection  
diode. Use a filter for EMC in case the boost is not used  
29  
VS  
Buck supply voltage  
Connected to battery voltage or boost output voltage with reverse protection  
diode. Use a filter for EMC in case the boost is not used  
30  
31  
32  
33  
VSENSE  
N.C.  
Sense input voltage for boost  
Boost regulator feedback input. Connect with VS  
Not connected  
Not bonded internally  
SNSN  
SNSP  
Ground  
Boost regulator ground  
Boost transistor source  
Source connection for external MOSFET, sense resistor connection. Connect to  
GND if boost regulator is not used  
34  
35  
BSTG  
BSTD  
Boost transistor gate  
Gate connection for external MOSFET. Connect to GND or leave open if boost  
regulator is not used  
Boost transistor drain  
Drain connection for external MOSFET. Connect to VS if boost regulator is not  
used  
36  
37  
WK  
Wake input  
CFG  
Hardware initialization pin  
External pull-up to VCC1 needed. Refer to Chapter 15  
38  
39  
CSN  
SDO  
SPI Chip select not input  
SPI Data output  
Out of SBC (=MISO)  
40  
SDI  
SPI Data input  
Into SBC (=MOSI)  
41  
42  
43  
CLK  
SPI Clock input  
Ground  
GND  
VCC2  
Voltage regulator output 2  
Datasheet  
9
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Pin configuration  
Table 1  
Pin  
Pin definitions and functions  
Symbol  
Function  
44  
VS2  
Supply voltage for VCC2  
Connected to battery voltage with reverse protection diode and filter against  
EMC.  
45  
VLIN  
Reference voltage for LIN  
Connected to battery voltage with reverse protection diode and filter  
against EMC  
46  
47  
FO1  
Fail output 1  
Active LOW, open drain  
FO2/FSI  
Fail output 2 - Side indicator  
Side indicator 1.25 Hz 50% duty cycle output; active LOW, open drain  
FSI  
Fail-safe input (default configuration); connect to GND if not used  
48  
FO3/TEST  
Fail output 3 - Pulsed lighted output  
Break/rear light 100 Hz 20% duty cycle output; active LOW, open-drain  
TEST  
Connect to GND to activate SBC Development mode; integrated pull-up resistor.  
Connect to VS with a pull-up resistor or leave open for normal operation  
Exposed GND  
pad  
Connect the exposed pad to GND. It is recommended to connect the exposed pad  
to a heat sink1)  
1) The exposed die pad at the bottom of the package allows better power dissipation of heat from the SBC via the PCB.  
The exposed die pad is not connected to any active part of the IC. However it should be connected to GND for the best  
EMC performance.  
Datasheet  
10  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Pin configuration  
3.3  
Hints for unused pins  
It must be ensured that the correct configurations are also selected, i.e. in case functions are not used that  
they are disabled via SPI:  
WK: connected to GND and disable the WK input via SPI  
LINx, RXDLINx, TXDLINx, RXDCAN, TXDCAN, CANH, CANL: leave all pins open  
BSTD: connect to VS in case the boost regulator is not used and keep disabled  
BSTG: connect to GND or leave open in case the boost regulator is not used and keep disabled  
SNSP, SNSN: connect to GND in case the boost regulator is not used  
RO / FOx: leave open  
INT: leave open  
TEST: connect to GND during power-up to activate SBC Development mode; connect to VS or leave open  
for normal user mode operation  
VCC2: leave open and keep disabled  
VCAN: connect to VCC1  
N.C.: not connected, not bonded internally, leave open  
Unused pins routed to an external connector which leaves the ECU should feature a zero ohm jumper  
(depopulated if unused) or ESD protection  
Datasheet  
11  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings1)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Supply voltage VS pin  
Supply voltage VS2 pin  
Supply voltage VS pin  
VS, max  
VS2, max  
VS, max  
-0.3  
-0.3  
-0.3  
28  
28  
40  
V
V
V
P_4.1.1  
P_4.1.25  
Loaddump, max. P_4.1.2  
400 ms  
Supply voltage VS2 pin  
VS2, max  
-0.3  
40  
V
Loaddump, max. P_4.1.26  
400 ms  
LIN supply voltage VLIN pin VLIN, max  
-0.3  
-0.3  
40  
28  
V
V
P_4.1.12  
P_4.1.19  
Boost drain voltage  
BSTD pin  
VBSTD, max  
Boost drain voltage  
BSTD pin  
VBSTD, max  
-0.3  
40  
V
Loaddump, max. P_4.1.20  
400 ms  
Boost gate voltage BSTG pin VBSTG, max  
-0.3  
-0.3  
-0.3  
40  
40  
40  
V
V
V
P_4.1.21  
P_4.1.22  
P_4.1.23  
P_4.1.24  
P_4.1.3  
Supply voltage SNSP pin  
Sense voltage VSENSE pin  
Buck switch BCKSW pin  
VSNSP, max  
VSENSE, max  
VBCKSW, max -0.3  
VS + 0.3 V  
Buck regulator feedback,  
pin VCC1  
VCC1, max  
-0.3  
5.5  
V
Voltage regulator 2 output, VCC2, max  
-0.3  
40  
V
P_4.1.5  
pin VCC2  
Wake input  
VWK, max  
VFOx, max  
-0.3  
-0.3  
40  
40  
V
V
P_4.1.6  
P_4.1.7  
Fail pins FO1, FO2/FSI,  
FO3/TEST  
Configuration pin CFG  
VCFG, max  
-0.3  
VCC1  
V
P_4.1.8  
+ 0.3  
LINx, CANH, CANL  
VBUS, max  
VDIFF  
-27  
-5  
40  
10  
V
V
V
P_4.1.9  
V
diff = CANH - CANL  
P_4.1.28  
P_4.1.10  
Logic input voltage  
VI, max  
-0.3  
VCC1  
+ 0.3  
Datasheet  
12  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
Table 2  
Absolute maximum ratings1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Logic output voltage  
VO, max  
-0.3  
VCC1  
+ 0.3  
V
P_4.1.27  
P_4.1.11  
VCAN Input voltage  
Temperatures  
VVCAN, max  
-0.3  
5.5  
V
Junction temperature  
Storage temperature  
ESD susceptibility  
ESD resistivity to GND  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.13  
P_4.1.14  
Tstg  
VESD  
VESD  
-2  
-8  
2
8
kV  
kV  
HBM2)  
HBM3)2)  
P_4.1.15  
P_4.1.16  
ESD resistivity to GND,  
CANH, CANL, LINx  
ESD resistivity to GND  
VESD  
-500  
500  
750  
V
V
CDM4)  
CDM4)  
P_4.1.17  
P_4.1.18  
ESD resistivity pin 1, 12, 13, VESD1,12,13,24, -750  
24, 25, 36, 37, 48 (corner  
25,36,37,48  
pins) to GND  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF).  
3) For ESD GUN resistivity, tested at 6 kV (according to IEC61000-4-2 “gun test” (330 , 150 pF)), it is shown in  
application information and test report, provided from IBEE, is available.  
4) ESD susceptibility, Charged Device Model “CDM” according to ANSI/ESDA/JEDEC JS-002.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
datasheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Datasheet  
13  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
4.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Supply voltage  
VS,func  
VPOR  
28  
V
V
see  
P_4.2.1  
POR  
Chapter 13.9  
LIN supply voltage (VLIN pin) VREF,LIN  
5.5  
4.75  
10  
18  
5.25  
22  
4
V
P_4.2.2  
P_4.2.3  
P_4.2.6  
P_4.2.4  
CAN supply voltage  
CFG external pull-up  
SPI frequency  
VCAN  
RCFG  
fSPI  
V
k  
MHz see  
Chapter 14.7 for  
fSPI,max  
Junction temperature  
Tj  
-40  
150  
°C  
P_4.2.5  
1) Including power-on reset, overvoltage and undervoltage protection.  
Note: Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Device behavior outside of specified functional range  
28 V < VS,func < 40 V: Device will still be functional; the specified electrical characteristics may not be ensured  
anymore. The buck and VCC2 will work, however, a thermal shutdown may occur due to high power  
dissipation. The specified SPI communication speed is ensured. The absolute maximum ratings are not  
violated, however the device is not intended for continuous operation of VS > 28 V. Operating the device at  
high junction temperatures for prolonged periods of time may reduce the life of the device  
18 V < VLIN < 28 V: The LIN transceiver is still functional. However, the communication may fail due to out-  
of-LIN-spec operation  
V
LIN,UVD < VLIN < 5.5 V: The LIN transceiver is still functional. However, the communication may fail due to  
out-of-LIN-spec operation  
CAN < 4.75 V: The undervoltage bit VCAN_UV will be set in the SPI register BUS_STAT_1 and the transmitter  
V
will be disabled as long as the UV condition is present  
5.25 V < VCAN < 5.50 V: CAN transceiver still functional. However, the communication may fail due to out-of-  
spec operation  
VPOR,f < VS < 5.5 V: Device will be still functional; the specified electrical characteristics may not be ensured  
anymore:  
The voltage regulators will enter the low-drop operation mode  
A VCC1_UV reset could be triggered depending on the Vrtx settings  
The LIN transmitter will be disabled if VLIN < VLIN,UVD is reached and VLIN_UV bit on SUP_STAT is set  
FOx outputs will remain ON if they were enabled  
The specified SPI communication speed is ensured  
Datasheet  
14  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
4.3  
Thermal resistance  
Table 4  
Thermal resistance1)  
Symbol  
Parameter  
Values  
Typ.  
6
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Junction to soldering point RthJSP  
Junction to ambient RthJA  
K/W Exposed Pad  
P_4.3.1  
P_4.3.2  
2)  
33  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board for 1.5 W. Board: 76.2 x 114.3 x 1.5 mm3  
with 2 inner copper layers (35 µm thick), with a thermal via array under the exposed pad contacting the first inner  
copper layer and 300 mm2 cooling area on the bottom layer (70 µm). For more details, refer to Chapter 15.4.  
Datasheet  
15  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
4.4  
Current consumption  
Table 5  
Current consumption  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Max.  
SBC Normal mode  
Normal mode current  
consumption  
INormal  
5
10  
mA  
µA  
5.5 V < VS < 28 V  
no load on VCC1  
Tj = -40°C to +150°C  
VCC2 / CAN / LIN / BOOST  
= OFF  
P_4.4.1  
P_4.4.2  
SBC Stop mode  
Stop mode current  
consumption  
IStop,25  
50  
65  
1)2) Tj = 25°C  
Buck module in PFM  
no load on VCC1  
VCC2 = OFF;  
CAN / LINx = OFF  
Watchdog = OFF  
WK enabled  
BOOST = OFF  
1)2)3) Tj = 85°C;  
Stop mode current  
consumption  
IStop,85  
95  
70  
µA  
µA  
P_4.4.3  
P_4.4.4  
Buck module in PFM  
no load on VCC1  
VCC2 = OFF;  
CAN / LINx = OFF  
Watchdog = OFF  
WK enabled  
BOOST = OFF  
1)2) Tj = 25°C  
Buck module in PFM  
no load on VCC1  
VS2 = VS  
Stop mode current  
consumption,  
VCC2 enabled  
IStop,VCC2,25  
95  
VCC2 = ON (no load); CAN  
/ LINx = OFF  
Watchdog = OFF  
WK enabled  
BOOST = OFF  
Datasheet  
16  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
Table 5  
Current consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
65  
Unit Note or Test Condition Number  
Min.  
Max.  
Stop mode current  
consumption,  
cyclic wake  
IStop,C25  
85  
µA  
1)2) Tj = 25°C  
P_4.4.5  
Buck module in PFM  
no load on VCC1  
VCC2 = OFF;  
CAN / LINx = OFF  
Watchdog = ON  
WK enabled  
BOOST = OFF  
SBC Sleep mode  
Sleep mode current  
consumption  
ISleep,25  
30  
80  
50  
50  
µA  
µA  
µA  
1) Tj = 25°C  
VCC1,VCC2 = OFF  
CAN / LINx = OFF,  
WK enabled  
1)3) Tj = 85°C  
VCC1,VCC2 = OFF  
CAN / LINx = OFF  
WK enabled  
P_4.4.6  
P_4.4.13  
P_4.4.7  
Sleep mode current  
consumption  
ISleep,85  
Sleep mode current  
consumption,  
ISleep,VCC2,25  
75  
1) Tj = 25°C  
VCC1= OFF  
VCC2 enabled  
VS2 = VS  
VCC2 = ON (no load)  
CAN / LINx = OFF  
WK enabled  
Incremental current consumption  
Current consumption for ICAN,rec  
CAN, recessive state  
2
3
1
3
mA  
mA  
mA  
VCAN = VCC2  
P_4.4.8  
P_4.4.14  
P_4.4.9  
SBC Normal mode  
CAN Normal mode  
VTXDCAN = 5 V  
no RL on CAN  
Current consumption for ICAN,dom  
CAN, dominant state  
4.5  
2
3)VCAN = 5V  
SBC Normal mode  
CAN Normal mode  
VTXDCAN = GND  
no RL on CAN  
1) VCAN = VCC2  
SBC Normal / Stop mode  
CAN Receive-Only mode  
VTXDCAN = 5 V  
Current consumption for ICAN,RevOnly  
CAN module,  
Receive-Only mode  
no RL on CAN  
Datasheet  
17  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
General product characteristics  
Table 5  
Current consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
4.5  
Unit Note or Test Condition Number  
Min.  
Max.  
Current consumption for ICAN,wake  
CAN module wake  
6
µA  
1) SBC Stop/Sleep/Fail- P_4.4.10  
Safe mode;  
capability  
CAN wake capable;  
LIN1…4 = OFF  
Current consumption  
per LIN module,  
recessive state  
ILIN,rec  
0.1  
1.0  
0.1  
1.0  
1.5  
0.2  
mA  
mA  
mA  
SBC Normal mode  
LIN Normal mode;  
VTXDLIN = VCC1;  
no RL on LIN  
3)SBC Normal mode  
LIN Normal mode;  
VTXDLIN = GND;  
no RL on LIN  
P_4.4.15  
P_4.4.16  
P_4.4.17  
Current consumption  
per LIN module,  
dominant state  
ILIN,dom  
Current consumption  
per LIN module,  
ILIN,RcVOnly  
3)SBC Normal / Stop  
mode  
Receive-Only mode  
LIN Receive-Only mode;  
VTXDLIN = VCC1; no RL  
on LIN  
Current consumption  
per LIN module wake  
capability  
ILIN,wake  
IWK,wake  
IBOOST,ON  
0.2  
0.2  
5
2
µA  
µA  
mA  
1)SBC Stop/Sleep/Fail-  
Safe mode;  
CAN wake capable; LIN  
wake capable  
P_4.4.11  
P_4.4.12  
P_4.4.18  
WK pin current  
consumption wake  
capable  
2
SBC Normal/Stop/  
Sleep/Fail-Safe mode;  
WK wake capable;  
LIN1…4, CAN = OFF  
3) SBC Normal/Stop  
mode  
Additional VS current  
consumption with boost  
module active  
10  
VBSTx < VS < VBST,thx  
BOOST = ON  
1) Current consumption for CAN,LIN transceivers and WK input to be added if set to be wake capable or receiver only.  
2) If the buck regulator is working in PWM, the P_4.4.1 has to be added.  
3) Specified by design; not subject to production test.  
Datasheet  
18  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
5
System features  
This chapter describes the system features and behavior of the TLE9271QX:  
State machine and SBC mode control  
Device configurations  
State of supply and peripherals  
Wake features  
Supervision and diagnosis functions  
The System Basis Chip (SBC) offers six operating modes:  
SBC Init mode: power-up of the device and after soft reset  
SBC Normal mode: the main operating mode of the device  
SBC Stop mode: the first-level power saving mode with the main voltage regulator VCC1 enabled  
SBC Sleep mode: the second-level power saving mode with VCC1 disable  
SBC Restart mode: an intermediate mode after a wake event from SBC Sleep or SBC Fail-Safe mode or after  
a failure (e.g. WD failure, VCC1 undervoltage reset) to bring the microcontroller into a defined state via a  
reset. Once the failure condition is not present anymore, the device will automatically change to SBC  
Normal mode after a delay time (tRD1  
)
SBC Fail-Safe mode: a safe-state mode after critical failures (e.g. TSD2 thermal shutdown, VCC1 short to  
GND) to bring the system into a safe state and to ensure a proper restart of the system. VCC1 is disabled.  
This is a permanent state until either a wake event (via CAN, LINx or WK pin) occurs and the  
overtemperature condition is not present anymore  
A special mode called SBC Development mode is available during software development or debugging of the  
system. All of the operating modes mentioned above can be accessed in this mode. However, the watchdog  
counter is stopped and does not need to be triggered. This mode can be accessed by setting the TEST pin to  
GND during SBC Init mode.  
The System Basis Chip is controlled via a 16-bit SPI interface. A detailed description can be found in  
Chapter 14. The configuration as well as the diagnosis is handled via the SPI. The SPI mapping of the high-end  
SBC family TLE927xQX is compatible with the latest Infineon SBC devices.  
5.1  
State machine description and SBC mode control  
The different SBC modes are selected via SPI by setting the respective SBC MODE bits in the register  
M_S_CTRL. The SBC MODE bits are cleared when going trough SBC Restart mode, so the current SBC mode is  
always shown.  
The Figure 3 shows the SBC state diagram.  
Datasheet  
19  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
First battery connection  
SBC Soft Reset  
SBC Init Mode *  
(Long open window)  
VCC1  
ON  
VCC2  
OFF  
Boost  
OFF  
WD  
config.  
* The SBC Development Mode  
is a super set of state machine  
where the WD timer is stopped.  
Otherwise, there are no  
Any SPI  
command  
Cyc.Wake  
OFF  
FO  
inact.  
CAN  
OFF  
LINx  
OFF  
differences in behavior.  
SBC Normal Mode  
VCC1  
VCC2  
1) Boost  
WD  
WD trig  
ON  
OFF/ON conf./OFF config.  
Cyc.Wake  
config.  
FO  
CAN  
LINx  
config.  
act./Inact. config.  
SPI cmd  
SPI cmd  
SPI cmd  
.
.
Reset is released  
WD starts with long open window  
Automatic  
SBC Stop Mode  
1) Boost  
SBC Sleep Mode  
VCC1  
ON  
VCC2  
WD  
VCC1  
OFF  
VCC2  
OFF/ON  
Boost  
OFF  
WD  
OFF  
VCC1 over voltage  
(if VCC1_OV_RST set)  
OFF/ON fixed/OFF fixed/OFF  
4) CAN  
Wake  
LINx  
Wake  
Cyc.Wake  
fixed  
FO  
act./Inact.  
CAN  
fixed  
LINx  
fixed  
Cyc.Wake  
OFF  
FO  
act./Inact.  
cap./OFF cap./OFF  
CAN, WK, LIN1..4 wake-up  
event  
SBC Restart Mode  
(RO pin is asserted)  
WD Failure  
(Config 1/3)  
VCC1  
ON/  
ramping  
VCC2  
OFF  
2) CAN  
woken/  
OFF  
1) Boost  
fixed/OFF  
2) LINx  
woken/  
OFF  
WD  
OFF  
VCC1  
Undervoltage  
Cyc.Wake  
OFF  
FO  
act./Inact.  
SBC Fail-Safe Mode  
TSD2 event  
VCC1  
OFF  
VCC2  
OFF  
Boost  
OFF  
WD  
OFF  
VCC1 Short  
to GND  
CAN, WK, LINx wake-up event  
CAN  
wake  
capable  
LINx  
wake  
capable  
Cyc.Wake  
OFF  
FO  
active  
1) The Boost regulator activation depends from the VS value.  
2) See chapter CAN and LIN for detailed behaviour in SBC Restart Mode  
3) See Chapter 5.1.5 and 12.1 for detailed FOx behavior  
4) Must be set to CAN wake capable / CAN OFF mode before entering SBC sleep mode  
Figure 3  
State diagram showing the SBC operating modes  
5.1.1  
SBC Init mode and device configuration  
The SBC Init mode is the mode where the hardware configuration of the SBC is stored and where the  
microcontroller finishes the initialization phase. During the SBC Init mode, the SBC can be configured in  
normal operation or in SBC Development mode (see also Chapter 5.1.7).  
The hardware configuration is done monitoring the level of FO3/TEST pin. The pin FO3/Test is set as an input  
and one internal pull-up resistor is activated (RTEST). The Table 6 shows possible hardware configurations.  
Datasheet  
20  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
Table 6  
SBC configuration  
Configuration Description  
FO3/Test pin TEST  
CFG2_ STATE  
Config 0  
SBC Development mode: no reset is triggered 0  
1
X
in case of a watchdog trigger failure. After the  
power-up, one arbitrary SPI command must  
be sent  
Config 1  
Config 3  
After missing the WD trigger for the first time, Open or  
the state of VCC1 remains unchanged, FOx pins > VTEST,H  
are active, SBC Restart mode  
0
0
1
0
After missing the WD trigger for the second  
time, the state of VCC1 remains unchanged,  
FOx pins are active, SBC Restart mode  
Open or  
> VTEST,H  
An external pull-up resistor on CFG pin (RCFG) is needed for proper SBC configuration. The config 1 or 3 is  
selectable via SPI using CFG2 bit on HW_CTRL register.  
The timing diagram for hardware configuration is shown in Figure 4.  
The SBC starts up in SBC Init mode after crossing the VPOR,r threshold (see also Chapter 13.3) or after a  
software reset command. As soon as the VCC1 voltage reaches the rising reset threshold VRT1,r, the  
configuration selection monitoring period starts for tRD1 (Reset delay time). After this time, the reset pin is  
released and the window watchdog starts with a long open window tLW  
.
VS  
VPOR,r  
t
t
VCC1  
VRT1,r  
RO  
t
tRD1  
Configuration selection monitoring period  
Figure 4  
Hardware configuration selection timing diagram  
During the long open window, the microcontroller needs to finish its startup and initialization sequence. From  
this transition mode, the SBC can be set, via SPI command, to SBC Normal mode.  
Any SPI command will bring the SBC to SBC Normal mode even if it is an illegal SPI command (Chapter 14.2).  
Datasheet  
21  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
No watchdog trigger during the long open window, will cause a watchdog failure and the device will enter in  
SBC Restart mode as shown in Table 6 and one reset event is generated.  
In case of 3 consecutive reset events due to WD failures, it is possible not to generate additional reset by  
setting the MAX_3_RST on WD_CTRL and the SBC will remain in SBC Normal or Stop mode (SBC Restart mode  
not entered anymore). If the MAX_3_RST is set to 0, one reset event is generated for each missing watchdog  
trigger.  
Wake-up events are ignored during SBC Init mode and will therefore be lost.  
Notes  
1. Any SPI command will bring the SBC to SBC Normal mode even if it is an illegal SPI command  
(see Chapter 14.2).  
2. For a safe start-up, it is recommended to use the first SPI commands to trigger and to configure the  
watchdog.  
3. At power up no VCC1_UV will be issued nor will the FOx be triggered as long as VCC1 is below VRT1,r threshold  
and below the VS threshold for VS under voltage time out VS,UV_TO. The RO pin will be kept low as long as VCC1  
is below the selected VRT1,r threshold. When VCC1 is above the VRT1,r threshold, the RO is released after tRD1  
(Reset delay time).  
5.1.2  
SBC Normal mode  
The SBC Normal mode is the standard operating mode for the SBC. All configurations have to be done in  
SBC Normal mode before entering a low-power mode. A wake-up event on CAN, LIN1, LIN2 and WK will create  
an interrupt on pin INT however, no changes of SBC mode will occur. The configuration options are listed  
below:  
VCC1 is active (buck regulator in PWM mode)  
Boost regulator can be configured and enabled or disabled. The module will start to work as soon as the  
VS value is dropping below the selected threshold. For additional information, refer to Chapter 6.3  
VCC2 can be switched ON or OFF (default off)  
CAN is configurable (OFF coming from SBC Init mode; OFF or wake capable coming from SBC Restart mode,  
see also Chapter 5.1.5)  
LIN is configurable (OFF coming from SBC Init mode; OFF or wake capable coming from SBC Restart mode,  
see also Chapter 5.1.5)  
Wake pin shows the input level and can be selected to be wake capable  
Cyclic wake can be configured with timer1  
Watchdog is configurable  
FO1 and FO3 are OFF and FSI is active by default. FSI can be configured to be fail-safe output (see also  
Chapter 12.2). Coming from SBC Restart mode, the FOx can be active or inactive (see also Chapter 12.1)  
In SBC Normal mode, there is the possibility of testing the FO outputs, i.e. to verify if setting the FOx pins to  
low will create the intended behavior within the system. The FO outputs can be enabled and then disabled  
again by the microcontroller by setting the FO_ON SPI bit. The feature is only intended for testing purposes.  
5.1.3  
SBC Stop mode  
The SBC Stop mode is the first level technique to reduce the overall current consumption. In this mode  
VCC1 regulator is still active and supplying the microcontroller, which can enter into a power down mode.  
Datasheet  
22  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
The VCC2 could be enabled or disabled, CAN and LIN can be configured as Receive-Only mode, or wake  
capable or disable. All kind of settings have to be done before entering SBC Stop mode. In SBC Stop mode any  
kind of SPI WRITE commands are ignored and the SPI_FAIL bit is set, except for changing to SBC Normal  
mode, triggering a SBC soft reset, refreshing the watchdog, write the SYS_STAT_CTRL register as well as  
reading and clearing the SPI status registers. A wake-up event on CAN, LIN1, LIN2 and WK will create an  
interrupt on pin INT - however, no change of SBC mode will occur. The configuration options are listed below:  
VCC1 is ON (buck regulator in PFM mode)  
Boost regulator is fixed as configured in SBC Normal mode. The module will start to work as soon as the  
VS value drops below the selected threshold  
VCC2 is fixed as configured in SBC Normal mode  
CAN is fixed as configured in SBC Normal mode  
LIN is fixed as configured in SBC Normal mode  
WK is fixed as configured in SBC Normal mode  
Cyclic wake is fixed as configured in SBC Normal mode  
Note: It is not possible to switch directly from SBC Stop mode to SBC Sleep mode. Doing so will also set the  
SPI_FAIL flag and will bring the SBC into Restart mode.  
5.1.4  
SBC Sleep mode  
The SBC Sleep mode is the second level technique to reduce the overall current consumption to a minimum  
needed to react on wake-up events. In this mode, VCC1 regulator is OFF and not supplying the microcontroller  
anymore.The VCC2 supply can be configured to stay enabled. A wake-up event on CAN, LIN1, LIN2 or WK pin  
return the device to SBC Normal mode via SBC Restart mode and signal the wake source.  
The configuration options are listed below:  
VCC1 is OFF  
Boost regulator is OFF  
VCC2 is fixed as configured in SBC Normal mode  
Can must be set to CAN wake capable / CAN off before entering SBC Sleep mode  
LIN is fixed as configured in SBC Normal mode  
WK is fixed as configured in SBC Normal mode  
It is not possible to switch off all wake sources in SBC Sleep mode. When a CAN or LIN transceiver is in its  
Normal or Receive-Only mode, it counts as a wake source. In that case it changes automatically to wake  
capable when the SBC enters SBC Sleep mode.  
All settings must be made before entering SBC Sleep mode. If SPI configurations were sent to the SBC in  
SBC Sleep mode, the commands are ignored and there is no response from the SBC.  
In order to enter SBC Sleep mode successfully, all wake source signaling flags from WK_STAT_1 and  
WK_STAT_2 need to be cleared. Otherwise, the device will immediately wake-up from SBC Sleep mode by  
going via SBC Restart to Normal mode.  
Note: As soon as the sleep command is sent, the reset will go low to avoid any undefined behavior between SBC  
and microcontroller.  
Datasheet  
23  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
5.1.5  
SBC Restart mode  
There are multiple reasons to enter the SBC Restart mode. The purpose of the SBC Restart mode is to reset the  
microcontroller:  
From SBC Normal and Stop mode:  
Undervoltage on VCC1  
Overvoltage on VCC1 (if VCC1_OV_ RST is set)  
Incorrect Watchdog triggering  
From SBC Sleep and Fail-Safe mode:  
Wake-up event on CAN or LINx or WK  
After TDS2 (only from SBC Fail-Safe mode. See also Chapter 13.8)  
Table 7 contains detailed descriptions of the reason to restart.  
Table 7  
Reasons for restart - state of SPI status bits after return to Normal mode  
Event DEV_STAT WD_FAIL VCC1_UV VCC1_OV VCC1_SC  
SBC mode  
Normal mode Watchdog failure  
01  
01  
01  
10  
01  
01  
01  
01  
01 or 10  
0
1
0
0
0
1
0
x
0
1
x
x
0
1
x
x
x
x
x
x
x
Normal mode VCC1 undervoltage reset  
Normal mode VCC1 overvoltage reset  
xx  
xx  
Sleep mode  
Stop mode  
Stop mode  
Stop mode  
Wake-up event  
00  
Watchdog failure  
01 or 10  
VCC1 undervoltage reset  
VCC1 overvoltage reset  
xx  
xx  
Fail-Safe mode Wake-up event  
see “Reasons for Fail-safe, Table 8”  
It is possible to change the entering into SBC Restart mode due to watchdog trigger failure using MAX_3_RST  
on WD_CTRL register. If the MAX_3_RST is set, after three consecutive resets, no further reset events are  
generated in case of missing watchdog trigger (see also Chapter 13.2).  
From SBC Restart mode, the SBC automatically enters to SBC Normal mode, i.e. the mode is left automatically  
by the SBC without any microcontroller influence once the reset condition is no longer present and when the  
reset delay time (tRD1) has expired. The Reset output (RO) is released at the transition.  
Entering or leaving SBC Restart mode will not disable the fail outputs.  
The following functions are activated / deactivated in SBC Restart mode:  
VCC1 is ON or ramping up  
Boost regulator is fixed as configured in SBC Normal mode. The module will start to work as soon as the  
VS value drops below the selected threshold  
VCC2 will be disabled if it was activated  
CAN is “woken” due to a wake-up event or OFF depending on previous SBC and transceiver mode (see also  
Chapter 8). It is wake capable when it was in CAN Normal, Receive-Only or wake capable mode before  
SBC Restart mode  
LINx are “woken” due to a wake-up event or OFF depending on previous SBC and transceiver mode (see  
also Chapter 9). It is wake capable when it was in LINx Normal, Receive-Only or wake capable mode before  
SBC Restart mode  
Datasheet  
24  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
RO is pulled low during SBC Restart mode  
SPI communication is ignored by the SBC, i.e. it is not interpreted  
SBC Restart mode is signalled in the SPI register DEV_STAT by DEV_STAT bits  
Note: The VCC1 overvoltage reset is by default disabled. To enable it, the VCC1_OV_ RST has to be set. For  
additional information, refer to Chapter 13.5.2.  
5.1.6  
SBC Fail-Safe mode  
The purpose of this mode is to bring the system in a safe status after a failure condition by turning off the  
VCC1 regulator and the RO will be LOW. After a wake-up event, the system can restart.  
The Fail-Safe mode is automatically reached in case of following events:  
Overtemperature (TSD2) (see also Chapter 13.8)  
VCC1 is shorted to GND (see also Chapter 13.5.3)  
In this case, the default wake sources are activated and the voltage regulators are switched OFF.  
The mode will be maintained for at least typical 1s (tTSD2) for a TSD2 event and typical 100 ms (tFS,min) for the  
other failure events to avoid any fast toggling behavior. All wake sources will be disabled during this time but  
wake-up events will be stored. Stored wake-up events and wake-up events after this minimum waiting time  
will lead to SBC Restart mode. Leaving the SBC Fail-Safe mode will not result in deactivation of the FOx pins.  
The following functions are influenced during SBC Fail-Safe mode:  
FO outputs are activated (see also Chapter 12)  
VCC1 is OFF  
Boost regulator is OFF  
VCC2 is OFF  
CAN is wake capable  
LINx are wake capable  
WK is wake capable  
Cyclic wake is disabled, static sense is active with default filter time  
SPI communication is disabled because VCC1 is OFF  
Table 8  
Mode  
Reasons for fail-safe - state of SPI status bits after return to Normal mode  
Config Event  
1, 3 TSD2  
1, 3, 4 VCC1 short to GND  
DEV_STAT TSD2  
WD_FAIL  
VCC1_UV  
VCC1_SC  
Normal  
Normal  
01  
01  
01  
01  
1
x
1
x
xx  
xx  
xx  
xx  
x
1
x
1
0
1
0
1
Stop mode 1, 3  
Stop mode 1, 3  
TSD2  
VCC1 short to GND  
Datasheet  
25  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
5.1.7  
SBC Development mode  
The SBC Development mode is used during development phase of the application, especially for software  
development. The mode is reached by setting the FO3/TEST pin to LOW when the device is in SBC Init mode  
and by sending an arbitrary SPI command. The SBC Init mode is reached after the power-up.  
When sending a software reset, it is no longer possible to enter SBC Development mode.  
The software reset is the SPI command that set the MODE bits in M_S_CTRL register.  
SBC Development mode can only be left by a power-down while FO3/TEST pin is high or open, or by setting  
the MODE bits on M_S_CTRL SBC Software Reset regardless of the state of FO3/TEST.  
In this mode, the watchdog does not need to be triggered. No reset is triggered because of watchdog failure.  
When the FO3/TEST pin is left open, or connected to VS during the start-up, the SBC starts into normal  
operation. The FO3 pin has an integrated pull-up resistor, RTEST, (switched ON only during SBC Init mode) to  
prevent the SBC device from starting in SBC Development mode during normal life of the vehicle.  
Datasheet  
26  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
5.2  
Wake features  
The following wake sources are implemented in the device:  
Static Sense: WK input is permanently active (see Chapter 10)  
Cyclic Wake: internal wake source controlled via internal timer (see Chapter 5.2.1)  
CAN wake: wake-up via CAN pattern (see Chapter 8)  
LIN wake: wake-up via LIN bus (see Chapter 9)  
The wake source must be set before entering in SBC Sleep mode. In case of critical situation when the device  
will be set into SBC Fail-Safe mode, all default wake sources will be activated.  
5.2.1  
Cyclic wake  
The cyclic wake feature is intended to reduce the quiescent current of the device and application.  
For the cyclic wake feature, timer 1 is configured as internal wake-up source and will periodically trigger an  
interrupt in SBC Normal and Stop mode based on the setting of TIMER1_CTRL.  
The correct sequence to configure the cyclic wake is shown in Figure 5.  
The sequence is as follows:  
Configure the respective period of timer1 in the register TIMER1_CTRL  
Enable timer1 as a wake-up source in the register WK_CTRL_1  
Cyclic Wake Configuration  
Periods: 10, 20, 50, 100, 200ms, 1s, 2s  
Select Timer Period in TIMER1_CTRL  
Select Timer1 as a wake source in  
No interrupt will be generated,  
if the timer is not enabled as a wake source  
WK_CTRL_1  
Cyclic Wake starts automatically  
INT is pulled low at the end of every  
period  
Figure 5  
Cyclic wake: configuration and sequence  
The cyclic wake function will start as soon as the timer1 is enabled as wake-up source. An interrupt is  
generated at the end of every period.  
Datasheet  
27  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
System features  
5.2.2  
Internal timer  
The integrated timer is typically used to wake up the microcontroller periodically (cyclic wake).  
The following periods can be selected via the register TIMER1_CTRL:  
Period: 10 ms / 20 ms / 50 ms / 100 ms / 200 ms / 1 s / 2 s  
5.3  
Supervision features  
The device offers various supervision features to support functional safety requirements. Refer to Chapter 13  
for more information.  
Datasheet  
28  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6
DC/DC regulators  
6.1  
Block description  
The SMPS module in the TLE9271QX is implemented as a cascade of a step-up pre-regulator followed by a  
step-down post-regulator. The step-up pre-regulator (DC/DC boost converter) provides a VS level which  
permits the step-down post-regulator (DC/DC buck converter) to regulate without entering a low-drop  
condition.  
The SMPS module is active in SBC Normal, Stop and Restart mode. In SBC Sleep and Fail-Safe mode, the SMPS  
module is disabled.  
Comparator  
VSENSE  
D1  
L1  
D2  
Vbat  
SPI  
VSUP  
VS  
Boost  
Converter  
C1  
C2  
C3  
BSTD  
BSTG  
T1  
SNSP  
SNSN  
Rsense  
Feedforward  
Buck  
Converter  
L2  
BCKSW  
C4  
C5  
GND  
Bandgap  
Reference  
VCC1  
Soft Start  
Ramp  
Generator  
Figure 6  
DC/DC block diagram  
Functional features  
5 V SMPS (DC/DC) buck converter with integrated high-side and low-side power switching transistor  
SMPS (DC/DC) boost converter as pre-regulator for low VSUP supply voltage (down to 3 V) with  
configurable output voltage via SPI  
Fixed switching frequency for buck and boost converter in SBC Normal mode in PWM (Pulse Width  
Modulation)  
PFM (Pulse Frequency Modulation) for buck converter in SBC Stop mode to reduce the quiescent current  
Datasheet  
29  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
Automatic transition PFM to PWM in SBC Stop mode  
Soft start-up  
Edge shaping for better EMC performances for buck and boost regulator  
Undervoltage monitoring on VCC1 with adjustable reset level (refer to Chapter 13.5.1)  
Overvoltage detection on VCC1 (refer to Chapter 13.5.2)  
Buck short circuit detection  
Boost current peak detection with external shunt resistor  
6.2  
Functional description buck converter  
SPI  
Logic  
L1  
VS  
D1  
Vbat  
VSUP  
Feedforward  
C1  
C2  
C3  
Buck  
Converter  
L2  
BCKSW  
C4  
C5  
GND  
Bandgap  
Reference  
VCC1  
Soft Start  
Ramp  
Generator  
Figure 7  
Buck block diagram  
The DC/DC buck converter is intended as post-regulator (VCC1) and it provides a step down converter function  
transferring energy from VS to a lower output voltage with high efficiency (typically more than 80%). The  
output voltage is 5 V in a current range up to 750 mA. It is regulated via a digital loop with a precision of ±2%.  
It requires an external inductor and capacitor filter on the output switching pin (BCKSW). The buck regulator  
has two integrated power switches. The compensation of the regulation loop is done internally and no  
additonal external components are needed.  
A typical application example and external components proposal is available in Chapter 15.  
The buck converter is active in SBC Normal, Stop and Restart mode and it is disabled in SBC Sleep and Fail-  
Safe mode.  
Depending on the SBC mode, the buck converter works in two different modes:  
PWM mode (Pulse Width Modulation): This mode is available in SBC Normal mode, SBC Restart mode and  
SBC Stop mode (only for automatic or manual PFM to PWM transitions. Please refer to Chapter 6.4.2).  
In PWM, the buck converter operates with a fix switching frequency (fBCK). The duty cycle is calculated  
internally based on input voltage, output voltage and output current. The precision is ±2% or ±3% based  
Datasheet  
30  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
on input supply and output current range (refer to Figure 13 for more information). In PWM mode, the  
buck converter is capable of a 100% duty cycle in case of low VS conditions. In order to reduce EMC, edge  
shaping feature has been implemented to control the activation and deactivation of the two power  
switches  
PFM mode (Pulse Frequency Modulation): This mode is activated automatically when the SBC Stop mode  
is entered. The PFM mode is an asynchronous mode. PFM mode does not have a controller switching  
frequency. The switching frequency depends on conditions of the buck regulator such as the following:  
input supply voltage, output voltage, output current and external components. A typical timing diagram is  
shown in Figure 8. The buck converter in PFM mode has a tolerance of ±4%. The transition from PFM mode  
to PWM mode is described in Chapter 6.4.2  
Tristate  
HS  
LS  
Tristate  
Feedback Voltage VCC 1  
LVL  
UCL  
LCL  
Coil Current  
start biasing  
&
oscillator  
OFF  
ON  
OFF  
ON  
PFM active  
Iq  
Iq  
Quiescent Current  
Figure 8  
Typical PFM timing diagram  
6.2.1  
Startup procedure (soft start)  
The startup procedure (soft start) permits to achieve the buck regulator output voltage avoiding large  
overshoot on the output voltage. This feature is activated during the power-up, from SBC Sleep to Restart  
mode and from SBC Fail-Safe to SBC Restart mode.  
When the buck regulator is activated, it starts with a minimum duty cycle and the regulation loop maintains it  
for a limited number of switching periods. After this first phase, the duty cycle is increased by a fixed value and  
kept for a limited number of switching periods. This procedure is repeated until the target output voltage  
value of the buck regulator is reached. As soon as the buck regulator output voltage is reached, the regulation  
loop starts to operate normally using PWM mode adjusting the duty cycle according the buck input and output  
voltages and the buck regulator output current.  
6.2.2  
Buck regulator status register  
The register SMPS_STAT contains information about the open or short conditions on BCKSW pin and if the  
buck regulator is outside the 12% nominal output voltage range. No SBC mode or configuration is triggered if  
one bit is set in the SMPS_STAT register.  
Datasheet  
31  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6.2.3  
External components  
The buck converter needs one inductor and output capacitor filter. The inductor has a fixed value of 47 µH.  
Secondary parameter such as saturation current must be selected based on the maximum current capability  
needed in the application.  
The output capacitors filter are 47 µF (typically, an electrolytic capacitor) in parallel with 10 µF (ceramic  
capacitor). This configuration is intended for buck regulator functionality and keeps the total ESR lower than  
1 in all temperature range. For additional information, refer to Chapter 15.1.  
Datasheet  
32  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6.3  
Functional description boost  
Comparator  
VSENSE  
VS  
D1  
L1  
D2  
Vbat  
VSUP  
SPI  
Boost  
Converter  
C1  
C2  
C3  
BSTD  
BSTG  
T1  
SNSP  
SNSN  
Rsense  
VS  
Figure 9  
Boost block diagram  
The boost converter is intended as pre-regulator and it provides a step up converter function. It transfers  
energy from an input supply VSUP (battery voltage after the reverse protection circuit) to a higher output  
voltage (VS) with high efficiency (typically more than 80%).  
The regulator integrates the gate driver for external power switching and external passive components are  
necessary in particular: input buffer capacitor on the battery voltage, inductor, power switching transistor,  
sense resistor for overcurrent detection, freewheeling diode and filter capacitor. A typical application  
example is available in Chapter 15.  
In SBC Normal mode and in SBC Stop mode, the boost regulator can be enabled via SPI (register HW_CTRL,  
bit BOOST_EN). The boost output voltage has to be selected using BOOST_V bit. The BOOST_V on HW_CTRL  
permits to select the minimum VBST1_1 or the output voltage VBST2_1  
.
The activation thresholds vary according to the output voltage selected. Table 9 shows the possible activation  
thresholds and the hysteresis including the respective SPI setting.  
Table 9  
Boost activation thresholds  
Boost output voltage Activation threshold Hysteresis  
SPI setting  
VBST1_1  
VBST2_1  
VBST,TH1  
VBST,TH2  
VBST,HYS1  
VBST,HYS2  
BOOST_V = 1  
BOOST_V = 0  
If the boost regulator is enabled, it switches ON automatically when VSENSE falls below the threshold voltage  
BST,TH1 or VBST,TH2 and switches OFF when crossing the threshold plus respective hysteresis. The bit BST_ACT  
V
is set and can be cleared only if VSENSE is above the VBST,TH1 or VBST,TH2  
.
Figure 10 shows the typical timing for enabling the boost converter.  
Datasheet  
33  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
VSUP  
VS  
VBST,THx  
VBST,HYSx  
0
1
0
BST_ACT  
BSTG  
Figure 10 Boost converter activation  
The boost regulator works in PWM mode with a fixed frequency (fBST) and a tolerance of ±5%.  
If the boost is enabled in SBC Stop mode, the SBC quiescent current is increased.  
6.3.1  
Boost regulator status register  
The register SMPS_STAT contains information about the open or short conditions on boost pin’s including  
loss of GND detection. No SBC mode or configuration is triggered if one bit is set on SMPS_STAT register.  
6.3.2  
External components  
The boost converter requires a number of external components such as the following: input buffer capacitor  
on the battery voltage, inductor, power switching transistor, sense resistor for overcurrent detection,  
freewheeling diode and filter capacitors.  
For recommend devices and values, refer to Chapter 15.1.  
The recommended inductor value is 22 µH. The secondary parameters (e.g. saturation current) have to be  
selected according to the maximum current capability required by the application.  
The characterization is performed with the suggested external power MOSFET Infineon BSS606N. Other  
MOSFETs can be used. However, the functionality has to be checked in the application considering the gate  
driver current capability (Chapter 6.3.3 and Chapter 6.3.4) and maximum output current requirements.  
6.3.2.1 Peak overcurrent detection  
The boost converter implement one peak overcurrent detection using one external shunt resistor. For typical  
application, refer to Chapter 15.1.  
As soon as the boost converter detects one peak overcurrent, the regulation loop reduces the duty cycle in  
order to reduce the peak current on the external MOSFET.  
The shunt resistor can be calculated based on VTH,SNS and using Equation (6.1).  
VTH ,SNS  
(6.1)  
RSENSE  
=
IOC , peak  
Datasheet  
34  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
Example: for an overcurrent peak detection of 2.1 A, the resistor is typically 0.1 .  
6.3.3  
Boost switch gate driver  
The gate driver for the external boost switch is implemented with several phases with different characteristics.  
Charging: Phases PH1 and PH2 uses a current source to charge the gate in a controlled way. The following  
phases PH3 and PH4 involve a pull up resistor to an internal 5 V supply to bring the gate voltage to the final  
value and keep it there during the whole ON-phase of the PWM cycle.  
Discharging: Phases PH5 and PH6 uses current sources to discharge the gate in a controlled way. The following  
phases PH7 and PH0 involve a pull down resistor to GND.  
The current sources are optimized for operation with the MOSFET BSS606N.  
Due to the phases which involve the pull up/down resistors it is possible to use also MOSFETs with higher gate  
charge compared to BSS606N. The MOSFET selection is limited by the short circuit detection feature  
described in Chapter 6.3.4.  
PWM  
Phase  
PH0 PH1 PH2 PH3  
Current source  
PH4  
PH5 PH6 PH7 PH0  
Operation type  
Pull up  
Current source  
Pull down  
Gate voltage  
blanked  
active  
blanked  
Short to GND  
blanked  
active  
Short to supply  
t
Figure 11 Phases of the boost switch gate driver  
6.3.4  
BSTG short circuit detection  
If the gate driver is not able to charge / discharge the gate connected to pin BSTG within a certain time, a short  
at this pin is assumed and the driver is switched off for the current PWM cycle to protect the chip from damage.  
For detecting short to GND (during PWM on) or short to supply (during PWM off) the following voltage  
threshold is used:  
Criteria for short to GND during PH4: VBSTG < VBSTG,sc  
Criteria for short to supply during PH0: VBSTG > VBSTG,sc  
Datasheet  
35  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
The short detection feature is blanked during the charging in PH1, PH2, PH3 and during discharging in phases  
PH5, PH6, PH7.  
When a short is detected also the bit BST_GSH in the status register SMPS_STAT is set.  
6.4  
Power scenarios  
The chapter describes the features and performance of the buck and boost regulators according to SBC mode.  
6.4.1  
Buck and boost in SBC Normal mode  
In SBC Normal mode, the buck regulator operates in PWM mode with fixed switching frequency. The  
microcontroller and other loads on the ECU are typically supplied with a 5V output voltage. All supervision  
functions for buck regulator are available in SBC Normal mode (for more details, refer to Chapter 13.5.1,  
Chapter 13.5.2, Chapter 13.5.3 and Chapter 13.8).  
6.4.2  
Buck and boost in SBC Stop mode operation  
The SBC Stop mode operation is intended to reduce the total amount of quiescent current while still providing  
supply for microcontroller. In order to achieve this, the buck regulator automatically changes the modulation  
from PWM (Pulse Width Modulation) to PFM (Pulse Frequency Modulation) when entering SBC Stop mode. In  
case the boost regulator in SBC Stop mode is enabled and running, it operates only in PWM mode.  
6.4.2.1 Automatic transition from PFM to PWM in SBC Stop mode  
In SBC Stop mode, the buck converter operates in PFM mode by default to reduce current consumption. If  
more current is needed, an automatic transition from PFM to PWM modulation is implemented. When the  
buck regulator output current exceeds the IPFM-PWM,TH threshold, the buck module changes the modulation to  
PWM and an INT event is generated. In addition, the PFM_PWM bit on WK_STAT_1 is set.  
In order to set the buck modulation again in PFM, it is necessary to write a Stop mode command to M_S_CTRL  
register. This command has to be sent when the required buck output current is below the IPFM-PWM,TH  
threshold.  
When entering SBC Stop mode, the automatic transition from PFM to PWM mode is activated after the time  
tlag, which is the transition time where the buck regulator loop changes the modulation technique. Two  
possible values can be configured via SPI command.  
The Figure 12 shows the timing transition from SBC Normal to SBC Stop mode.  
SPI Commands  
Buck modulation  
Normal Mode  
PWM  
Stop Mode  
Auto PFM ↔ PWM  
PWM  
t
tlag  
Figure 12 Transition from SBC Normal to SBC Stop mode  
The tlag is always present in case of PWM to PFM transition.  
The automatic transition can be disabled by setting the bit PWM_AUTO to 0 in the HW_CTRL register.  
Datasheet  
36  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6.4.2.2 Manual transition from PFM to PWM in SBC Stop mode  
The PFM to PWM transition can also be controlled by the microcontroller or an external signal, directly by  
using the WK pin as a trigger signal if an additional current is required in SBC Stop mode.  
When the PWM_BY_ WK bit is set to 1, the DC/DC regulator can be switched from PFM to PWM using the WK pin.  
A LOW level at the WK pin will switch the buck converter to PFM mode, a HIGH level will switch it to PWM mode.  
In this configuration, the filter time is not taken into account because a defined signal from µC or external  
source is expected.  
If the PWM_BY_ WK bit is set to 0, the PFM modulation is used.  
Datasheet  
37  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6.4.2.3 SBC Stop to Normal mode transition  
The microcontroller sends an SPI command to switch from SBC Stop mode to SBC Normal mode. In this  
transition, the buck regulator changes the modulation from PFM to PWM.  
Once the SPI command for the SBC Normal mode transition is received the current is able to rise above the  
specified maximum Stop mode current (IPFM-PWM,TH).  
If the transition from SBC Stop mode to SBC Normal mode is carried out when the boost is enabled and  
operating, it will continue to operate without any changes.  
6.4.3  
Buck and boost in SBC Sleep and Fail-Safe mode  
In SBC Sleep or Fail-Safe mode, the buck and boost converter are off and not operating. The lowest quiescent  
current is achievable.  
6.4.3.1 SBC Sleep/Fail-Safe mode to Normal mode transition  
In case of a wake-up event from WK pin or transceivers, the SBC will be set SBC Restart mode and as soon as  
the reset is released, into SBC Normal mode.  
In SBC Restart mode, the buck regulator is activated and ramping. The boost regulator is activated and  
ramping again (in case the VS is below the selected threshold) in according the configuration selected in  
SBC Normal mode. As soon as the buck output voltage exceeds the reset threshold, the RO pin is released.  
Datasheet  
38  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
6.5  
Electrical characteristics  
Table 10 Electrical characteristics  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Buck regulator  
Output voltage SBC Normal  
mode  
VCC1,out1 4.9 5.0 5.1  
V
V
Normal mode (PWM)  
1 mA < IVCC1 < 750 mA  
6.3 V < VS < 28 V  
1) Normal mode (PWM)  
IVCC1 = 400 mA  
VS = 5.5 V  
P_6.5.1  
Output voltage SBC Normal  
mode  
VCC1,out2 4.85 5.0 5.15  
P_6.5.23  
Boost disabled  
Output voltage SBC Stop  
mode  
VCC1,out3 4.8 5.0 5.2  
V
V
Stop mode (PFM)  
1 mA < IVCC1 < IPFM-PWM,TH  
6.3 V < VS < 18 V  
P_6.5.2  
Output voltage SBC Stop  
mode  
VCC1,out4 4.825 5.0 5.15  
Stop mode (PFM)  
1 mA < IVCC1 < 50 mA  
6.3 V < VS < 18 V  
P_6.5.40  
Power Stage on-resistance  
High-Side  
RDSON1,HS  
RDSON1,LS  
1.3  
1.3  
Ω
Ω
VS = 6.5 V  
IVS= 100 mA  
P_6.5.3  
Power Stage on-resistance  
Low-Side  
IBCKSW= 100 mA  
P_6.5.20  
Buck switching frequency  
fBCK  
405 450 495 kHz Normal mode (PWM)  
P_6.5.5  
Threshold automatic  
transition PFM to PWM  
IPFM-  
PWM,TH  
80  
110 150 mA 2) Stop mode  
P_6.5.14  
6.3 V < VS < 18 V  
Transition time from PWM to tlag  
PFM  
1
ms  
µs  
A
2) PWM_TLAG=1  
(on HW_CTRL)  
2) PWM_TLAG=0  
(on HW_CTRL)  
P_6.5.15  
P_6.5.16  
P_6.5.4  
Transition time from PWM to tlag  
PFM  
100  
Peak current limit of internal IBCK_LIM  
high-side switch  
0.85 1.05 1.2  
6.32 6.65 6.88  
VS = 13.5 V  
Boost regulator  
Boost voltage 1  
VBST1_1  
V
3) SBC Normal mode  
P_6.5.11  
VSUP = 3 V  
IVS = 550 mA  
Boost enabled  
BOOST_V = 1  
Datasheet  
39  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
Table 10 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Boost voltage 2  
VBST2_1  
7.6  
8
8.4  
V
V
3) SBC Normal mode  
SUP = 3 V  
VS = 450 mA  
Boost enabled  
BOOST_V = 0  
P_6.5.6  
V
I
Boost switch ON/OFF voltage 1 VBST,TH1  
6.35  
7
7.5  
Boost enabled  
VS falling  
P_6.5.7  
threshold  
BOOST_V = 1  
Boost switch ON/OFF  
hysteresis 1  
VBST,HYS1 300 500 600 mV  
Boost enabled  
BOOST_V = 1  
P_6.5.8  
Boost switch ON/OFF voltage 2 VBST,TH2  
threshold  
9.5  
10  
1
10.5  
1.2  
V
Boost enabled  
VS falling; BOOST_V = 0  
P_6.5.32  
P_6.5.33  
P_6.5.28  
Boost switch ON/OFF  
hysteresis 2  
VBST,HYS2 0.9  
V
Boost enabled;  
BOOST_V = 0  
2)  
BSTG rise switching time  
tBSTG,rise  
30  
ns  
V
> 3 V  
SUP  
20% - 80%  
C
BSTG = 470 pF  
2)  
BSTG fall switching time  
tBSTG,fall  
30  
ns  
V
> 3 V  
P_6.5.29  
SUP  
20% - 80%  
BSTG = 470 pF  
C
Overcurrent shunt voltage  
threshold  
VTH,SNS  
fBST  
199 210 221 mV  
Boost enable  
VSUP > 3 V  
P_6.5.21  
P_6.5.10  
Boost switching frequency  
Boost switch gate driver  
Duration of PH1  
405 450 495 kHz Normal mode (PWM)  
2)  
tPH1  
tPH2  
tPH3  
tPH5  
tPH6  
tPH7  
IPH1  
IPH2  
37.5  
25  
ns  
ns  
ns  
ns  
ns  
ns  
mA  
mA  
Ω
P_6.5.17  
P_6.5.18  
P_6.5.19  
P_6.5.22  
P_6.5.25  
P_6.5.26  
P_6.5.31  
P_6.5.42  
P_6.5.34  
2)  
2)  
2)  
2)  
2)  
2)  
2)  
Duration of PH2  
Duration of PH3  
124 131  
Duration of PH5  
62.5  
25  
31  
-27  
-7  
Duration of PH6  
Duration of PH7  
29  
Current during PH1  
Current during PH2  
Pull up resistance during PH3 RPH3  
25  
4) to internal gate driver  
supply;  
V
BSTG = 4 V  
Internal gate driver supply  
Vdrv_sup  
4.75 5.0  
V
no load;  
P_6.5.35  
Datasheet  
40  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
Table 10 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
2)  
Current during PH5  
Current during PH6  
IPH5  
IPH6  
RPH7  
23  
15  
mA  
P_6.5.36  
P_6.5.37  
P_6.5.38  
2)  
mA  
Pull down resistance during  
PH7  
15  
Ω
BSTG short circuit detection  
threshold  
VBSTG,sc  
3.23 3.4  
3.57  
V
P_6.5.39  
1) Typical maximum current capability is given in Figure 13. The external components are in accordance with the  
application information (refer to Chapter 15).  
2) Not subject to production test; specified by design.  
3) Values verified in characterization with boost converter specified in Chapter 15.1. Not subject to production test;  
specified by design. Refer to Figure 14 for additional information.  
4) Calculated value based on other measurements.  
Datasheet  
41  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
DC/DC regulators  
800  
VCC1 tolerance +/-3%  
VCC1 tolerance +/-2%  
750  
700  
650  
600  
550  
500  
450  
400  
5.5  
5.6  
5.7  
5.8  
5.9  
6
6.1  
6.2  
6.3  
6.4  
6.5  
8
10  
12  
18  
20  
24  
28  
VS (V)  
Figure 13 Maximum DCDC buck current capability versus VS.  
Note: The Figure 13 is based on characterization results over temperature with external components specified  
in Chapter 15.1.  
1.4  
1.2  
1
0.8  
0.6  
0.4  
Boost Output 6.65V  
Boost Output 8V  
0.2  
3
4
5
6
7
8
VSUP (V)  
Figure 14 Maximum DCDC boost current capability versus VSUP.  
Note: Figure 14 is based on simulation results (specified by design), with boost converter external components  
specified in Chapter 15.1.  
Datasheet  
42  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Voltage regulator 2  
7
Voltage regulator 2  
7.1  
Block description  
VS2  
VCC2  
Vref  
1
Overtemperature  
Shutdown  
State  
Machine  
Bandgap  
Reference  
INH  
GND  
Figure 15 Module block diagram  
Functional features  
5 V low-drop voltage regulator  
Protected against short to supply voltage, e.g. for off-board sensor supply  
Can also be used for CAN supply  
VCC2 undervoltage monitoring. Please refer to Chapter 13.6 for more information  
Can be active in SBC Normal, SBC Stop, and SBC Sleep mode (not SBC Fail-Safe mode)  
VCC2 switch off after entering SBC Restart mode. Switch off is latched, LDO must be enabled via SPI after  
shutdown  
Overtemperature protection  
470 nF ceramic capacitor at output voltage for stability, with ESR < 1 at f = 10 kHz, to achieve the voltage  
regulator control loop stability based on the safe phase margin (bode diagram)  
Output current capability up to IVCC2,lim  
Datasheet  
43  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Voltage regulator 2  
7.2  
Functional description  
In SBC Normal mode, VCC2 can be switched on or off via SPI.  
For SBC Stop mode or Sleep mode, the VCC2 has to be switched on or off before entering the respective SBC  
mode.  
The output current of VCC2 is limited at IVCC2,lim  
.
The VS2 pin is the dedicated supply pin for VCC2. VS2 can be connected to VS and therefore to the boost  
output, or directly from battery after the reverse protection input diode.  
For low-quiescent current, the output voltage tolerance is decreased in SBC Stop mode because only a low-  
power mode regulator (with lower accuracy VCC2,out5) will be active for small loads. If the load current on VCC2  
increases (typ. more than 1.5 mA), then the high-power mode regulator will also be enabled to support an  
optimum dynamic load behavior. When both power mode regulators are active, the VCC2 quiescent current  
will the typical increase by 2.9 mA.  
If the load current on VCC2 decreases (typically below 1.3 mA), then the low-quiescent current mode is  
resumed again disabling the high-power mode regulator.  
Both regulators are active in SBC Normal mode.  
Note: If the VCC2 output voltage is supplying external off-board loads, the application must consider the series  
resonance circuit built by cable inductance and decoupling capacitor at load. Sufficient damping must  
be provided.  
Datasheet  
44  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Voltage regulator 2  
7.3  
Electrical characteristics  
Table 11 Electrical characteristics  
Tj = -40°C to +150°C; VS2 = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output voltage including line VCC2,out1 4.9  
and load regulation  
5.0  
5.1  
V
1) SBC Normal mode P_7.3.1  
10 µA < IVCC2 < 100 mA  
6.5 V < VS2 < 28 V  
Output voltage including line VCC2,out2 4.9  
and load regulation  
5.0  
5.1  
V
1) SBC Normal mode P_7.3.2  
10 µA < IVCC2 < 80 mA  
6 V < VS2 < 28 V  
Output voltage including line VCC2,out3 4.85 5.0  
and load regulation  
5.15  
5.07  
V
V
1) 10 µA < IVCC2 < 60 mA P_7.3.19  
SBC Normal mode  
2) SBC Normal mode P_7.3.18  
8 V < VS2 < 18 V  
Output voltage including line VCC2,out4 4.97  
and load regulation  
10 µA < IVCC2 < 5 mA  
25°C< Tj <125°C  
Output voltage including line VCC2,out5 4.9  
and load regulation  
5.05 5.2  
V
V
SBC Stop, Sleep mode P_7.3.3  
1 mA < IVCC2 < 3 mA  
Output voltage including line VCC2,out6 4.9  
5.05 5.25  
SBC Stop, Sleep mode P_7.3.20  
and load regulation  
10 µA < IVCC2 < 1 mA  
Output drop  
VCC2,d1  
500 mV  
7502) mA  
IVCC2 = 30 mA  
S2 = 5 V  
P_7.3.4  
V
Overcurrent limitation  
IVCC2,lim  
100  
current flowing out of P_7.3.5  
pin  
V
V
CC2 = 0 V  
S2 = 13.5 V  
1) In SBC Stop mode, the specified output voltage tolerance applies from ICC2 > 3 mA but with increased current  
consumption.  
2) Not subject to production test, specified by design.  
Datasheet  
45  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Voltage regulator 2  
Figure 16 VCC2 pass device on-resistance during low drop operation for ICC2 = 30 mA  
Datasheet  
46  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
8
High-speed CAN transceiver  
8.1  
Block description  
VCAN  
VCC1  
SPI Mode  
Control  
RTD  
Driver  
CANH  
CANL  
Output  
Stage  
TXDCAN  
Temp.-  
Protection  
+
timeout  
To SPI diagnostic  
VCAN  
VCC1  
RXDCAN  
MUX  
Receiver  
Vs  
Wake  
Receiver  
can block .vsd  
Figure 17 Functional block diagram  
8.2  
Functional description  
The Controller Area Network (CAN) transceiver part of the SBC provides high-speed (HS) differential mode  
data transmission (up to 5 Mbaud) and reception in automotive and industrial applications. It works as an  
interface between the CAN protocol controller and the physical bus lines compatible with ISO 11898-2: 2016  
as well as SAE J2284.  
The CAN transceiver offers low power modes to reduce current consumption. This supports networks with  
partially powered down nodes. To support software diagnostic functions, a CAN Receive-Only mode is  
implemented.  
It is designed to provide excellent passive behavior when the transceiver is switched off (mixed networks,  
clamp 15/30 applications).  
A wake-up from the CAN Wake-Capable mode is possible via a message on the bus. Thus, the microcontroller  
can be powered down or idled and will be woken up by the CAN bus activities.  
The CAN transceiver is designed to withstand the severe conditions of automotive applications and to support  
12 V applications.  
Datasheet  
47  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
The transceiver can also be configured as wake-capable in order to save power and to ensure a safe transition  
from SBC Normal to Sleep mode (to avoid losing messages).  
Figure 18 shows the possible transceiver mode transition when changing the SBC mode.  
SBC Mode  
CAN Transceiver Mode  
SBC Stop Mode  
Receive Only  
Receive Only  
Wake Capable  
OFF  
OFF  
SBC Normal Mode  
SBC Sleep Mode  
SBC Restart Mode  
SBC Fail-Safe Mode  
Wake Capable  
Normal Mode  
Wake Capable 2)  
OFF 2)  
OFF  
Woken 1)  
Wake Capable  
Behavior after SBC Restart Mode - not coming from SBC Sleep Mode due to a wake up of the respective transceiver:  
If the transceivers were configured to Normal Mode, or Receive Only Mode, then the mode will be changed to Wake Capable.  
If it was Wake Capable, then it will remain Wake Capable. If it was off before SBC Restart Mode, then it will remain off.  
1) After a wake event on CAN Bus.  
2) Must be set to CAN wake capable / CAN OFF mode before entering SBC Sleep Mode.  
Figure 18 CAN mode control diagram  
CAN FD support  
CAN FD stands for ‘CAN with Flexible Data Rate’. It is based on the well established CAN protocol as specified  
in ISO 11898-1. CAN FD still uses the CAN bus arbitration method. The benefit is that the bit rate can be  
increased by switching to a shorter bit time at the end of the arbitration process and then returning to the  
longer bit time at the CRC delimiter before the receivers transmit their acknowledge bits. See also Figure 19.  
In addition, the effective data rate is increased by allowing longer data fields. CAN FD allows the transmission  
of up to 64 data bytes compared to the 8 data bytes from the standard CAN.  
Standard CAN  
message  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
Example:  
- 11 bit identifier + 8Byte data  
CAN FD with  
reduced bit time  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
- Arbitration Phase  
- Data Phase  
500kbps  
2Mbps  
àaverage bit rate  
1.14Mbps  
Figure 19 Bite rate increase with CAN FD vs. standard CAN  
Datasheet  
48  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
CAN FD has to be supported by both physical layer and the CAN controller. If the CAN controller cannot  
support CAN FD, then the respective CAN node must at least tolerate CAN FD communication. This CAN FD  
tolerant mode is implemented in the physical layer.  
8.2.1  
CAN OFF mode  
The CAN OFF mode is the default mode after the SBC has powered up. It is available in all SBC modes and is  
used to completely stop CAN activities or when CAN communication is not needed. In CAN OFF mode, a wake-  
up event on the bus will be ignored.  
8.2.2  
CAN Normal mode  
The CAN transceiver is enabled via SPI. CAN Normal mode is designed for normal data transmission/reception  
within the HS CAN network. This mode is available in SBC Normal mode.  
Transmission  
The signal from the microcontroller is applied to the TXDCAN input of the SBC. The bus driver switches the  
CANH/L output stages to transfer this input signal to the CAN bus lines.  
Enabling sequence  
The CAN transceiver requires an enabling time tCAN,EN before a message can be sent on the bus. This means  
that the TXDCAN signal can only be pulled LOW after the enabling time. If this is not ensured, then the TXDCAN  
needs to be set back to HIGH (= recessive) until the enabling time is over. Only the next dominant bit will be  
transmitted on the bus. Figure 20 shows different scenarios and explanations for CAN enabling.  
V
TXDCAN  
t
CAN  
Mode  
t CAN,EN  
t CAN,EN  
t CAN,EN  
CAN  
NORM AL  
CAN  
OFF  
t
t
V
CANDIFF  
Dom inant  
Recessive  
recessive  
TXDCAN  
level required  
recessive TXDCAN  
level required before  
start of transmission  
Correct sequence,  
Bus is enabled after tCAN,  
tCAN, not ensured, no  
transmission on bus  
tCAN, not ensured,  
no transmission on bus  
EN  
EN  
EN  
Figure 20 CAN transceiver enabling sequence  
Reduced electromagnetic emission  
To reduce electromagnetic emissions (EME), the bus driver controls CANH/L slopes symmetrically.  
Reception  
Analog CAN bus signals are converted into digital signals at RXDCAN via the differential input receiver.  
Datasheet  
49  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
8.2.3  
CAN Receive-Only mode  
In CAN Receive-Only mode (RX only), the driver stage is disabled but reception is still operational. This mode  
is accessible by an SPI command in SBC Normal mode and in SBC Stop mode.  
Note: The transceiver is still working properly in Receive-Only mode even if VCAN is not available because of an  
independent receiver supply.  
8.2.4  
CAN Wake-capable mode (wake-up pattern)  
This mode can be used in SBC Stop, Sleep, Restart and Normal mode by programming via SPI and it is used to  
monitor bus activities. It is automatically accessed in SBC Fail-Safe mode. A wake-up pattern on the bus  
results in a change of behavior of the SBC, as described in Table 12. As a signal to the microcontroller, the  
RXDCAN pin is set to low and will stay low until the CAN transceiver changes to a different mode. After a wake-  
up pattern event, the transceiver can be switched to CAN Normal mode via SPI for bus communication.  
As shown in Figure 21, a wake-up pattern is signaled on the bus by two consecutive dominant bus levels for  
at least tWake1 (filter time t > tWake1) and less than tWake2, each separated by a recessive bus level greater than  
tWake1 and shorter than tWake2.  
Entering CAN wake  
capable  
Bus recessive > tWAKE1  
Bus dominant > tWAKE1  
Ini  
Bias off  
Wait  
Bias off  
tWAKE2 expired  
1
Bias off  
Bus recessive > tWAKE1  
t
WAKE2 expired  
2
Bias off  
Bus dominant > tWAKE1  
Entering CAN Normal  
or CAN Recive Only  
3
Bias on  
Figure 21 CAN wake-up pattern detection (WUP) according to the definition in ISO 11898-5  
Rearming the transceiver for wake capability  
After a BUS wake-up pattern event, the transceiver is woken. However, the CAN transceiver mode bits will still  
show wake capable (=‘01’) so the RXDCAN signal will be pulled LOW. There are two possibilities for enabling  
the CAN transceiver’s wake capable mode again after a wake-up event:  
Datasheet  
50  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
The CAN transceiver mode must be toggled, i.e. switched from Wake-Capable mode to CAN Normal mode,  
CAN Receive-Only mode or CAN Off, before switching to CAN Wake-Capable mode again  
Rearming occurs automatically when the SBC changes to SBC Stop, or SBC Fail-Safe mode to ensure wake-  
up capability  
If the SBC is in SBC Stop mode, the CAN is rearmed automatically if the SBC is set again in SBC Stop mode  
CAN must be set to CAN Wake-Capable or CAN OFF mode before entering SBC Sleep mode  
Notes  
1. It is necessary to clear the CAN wake-up bit CAN_WU to become wake capable again. It is sufficient to toggle  
the CAN mode.  
2. The CAN module is supplied by an internal voltage when in CAN Wake-Capable mode, i.e. the module must not  
be supplied through the VCAN pin during this time. Before changing the CAN mode to Normal mode, the  
supply of VCAN has to be activated first.  
Wake-up in SBC Stop and Normal mode  
In SBC Stop mode, if a wake-up pattern is detected, it is always signaled by the INT output and in the  
WK_STAT_1 SPI register. It is also signaled by RXDCAN pulled to LOW. The same applies for the SBC Normal  
mode. The microcontroller should set the device from SBC Stop mode to SBC Normal mode; there is no  
automatic transition to Normal mode.  
For functional safety reasons, the watchdog will be automatically enabled in SBC Stop mode after a bus wake-  
up event in case it was disabled before (if bit WD_EN_WK_BUS was configured to HIGH before).  
Wake-up in SBC Sleep mode  
Wake-up is possible via a CAN message. The wake-up pattern automatically transfers the SBC into the  
SBC Restart mode and from there to Normal mode the corresponding RXDCAN pin is set to LOW. The  
microcontroller is able to detect the LOW signal on RXDCAN and to read the wake source out of the  
WK_STAT_1 register via SPI. No interrupt is generated when coming out of Sleep mode. The microcontroller  
can now, for example, switch the CAN transceiver into CAN Normal mode via SPI to start communication.  
Table 12 Action due to CAN bus wake-Up  
SBC mode  
SBC mode after wake  
Normal mode  
Stop mode  
VCC1  
INT  
RXDCAN  
LOW  
Normal mode  
Stop mode  
ON  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
ON  
LOW  
Sleep mode  
Restart mode  
Fail-Safe mode  
Restart mode  
Restart mode  
Restart mode  
Ramping up  
ON  
LOW  
LOW  
Ramping up  
LOW  
8.2.5  
TXDCAN time-out feature  
If the TXDCAN signal is dominant for a time t > tTXDCAN_TO, in CAN Normal mode, the TXDCAN time-out function  
disables the transmission of the signal at the bus, setting the TXDCAN pin to recessive. This is implemented to  
prevent the bus from being blocked permanently due to an error. The transmitter is disabled and fixed to  
recessive. The CAN SPI control bits (CAN on BUS_CTRL_1) remain unchanged and the failure is stored in the  
SPI flag CAN_FAIL. The CAN transmitter stage is activated again after the dominant time-out condition is  
removed and the transceiver is automatically switched back to CAN Normal mode.  
Datasheet  
51  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
8.2.6  
Bus dominant clamping  
If the HS CAN bus signal is dominant for a time t > tBUS_CAN_TO, in CAN Normal and Receiver-only mode, a bus  
dominant clamping is detected and the SPI bit CAN_FAIL is set. The transceiver configuration stays  
unchanged.  
8.2.7  
VCAN undervoltage detection  
The voltage at the VCAN supply pin is monitored in CAN Normal and Receive-Only mode. If the HS CAN  
transceiver is set in CAN Wake-Capable mode, the VCAN supply pin is enable after that a valid WUP is detected.  
In case of VCAN undervoltage a signalization via SPI bit VCAN_UV is triggered and the TLE9271QX disables the  
transmitter stage. If the CAN supply reaches a higher level than the under voltage detection threshold  
(VCAN > VCAN_UV), the transceiver is automatically switched back to CAN Normal mode. The transceiver  
configuration stays unchanged.  
Datasheet  
52  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
8.3  
Electrical characteristics  
Table 13 Electrical characteristics  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CAN supply voltage  
CAN supply undervoltage  
detection threshold  
VCAN_UV  
4.45  
4.85  
V
V
CAN Normal mode, P_8.3.1  
hysteresis included  
CAN bus receiver  
Differential receiver  
threshold voltage,  
recessive to dominant edge  
Vdiff,rd_N  
0.80  
0.90  
8.0  
Vdiff = VCANH - VCANL;  
-12 V VCM(CAN) ≤  
12 V;  
P_8.3.2  
CAN Normal mode  
1)  
Dominant state differential Vdiff_D_range 0.9  
input voltage range  
V
V
V
V
= VCANH - VCANL; P_8.3.50  
diff  
-12 V VCM(CAN) ≤  
12 V;  
CAN Normal mode  
Differential receiver  
threshold voltage,  
dominant to recessive edge  
Vdiff,dr_N  
0.50  
0.60  
Vdiff = VCANH -VCANL  
;
P_8.3.3  
-12 V VCM(CAN) ≤  
12 V;  
CAN Normal mode  
1)  
Recessive state differential Vdiff_R_range -3.0  
0.5  
V
= VCANH - VCANL; P_8.3.51  
diff  
input voltage range  
-12 V VCM(CAN) ≤  
12 V;  
CAN Normal mode  
1)  
Common mode range  
CMR  
-12  
20  
12  
50  
V
P_8.3.4  
CANH, CANL input  
resistance  
Ri  
40  
kΩ  
CAN Normal / Wake- P_8.3.5  
capable mode;  
Recessive state  
-2 V VCANH/L +7 V  
Differential input resistance Rdiff  
40  
80  
100  
kΩ  
CAN Normal / Wake- P_8.3.6  
capable mode;  
Recessive state  
-2 V VCANH/L +7 V  
Input resistance deviation  
between CANH and CANL  
DRi  
Cin  
-3  
3
%
1) Recessive state  
CANH = VCANL = 5 V  
P_8.3.7  
P_8.3.8  
P_8.3.42  
V
2)  
Input capacitance CANH,  
CANL versus GND  
20  
10  
40  
20  
pF  
pF  
V
= 5 V  
TXDCAN  
2)  
Differential input  
capacitance  
Cdiff  
V
= 5 V  
TXDCAN  
Datasheet  
53  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
Table 13 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
0.8  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Wake-up receiver  
threshold voltage,  
recessive to dominant edge  
Vdiff, rd_W  
1.15  
V
V
-12 V VCM(CAN) ≤  
12 V;  
CAN Wake-capable  
mode  
P_8.3.9  
1)  
Wake-up receiver  
Vdiff_D_range_ 1.15  
8.0  
V
= VCANH - VCANL; P_8.3.52  
diff  
dominant state differential  
input voltage range  
-12 V VCM(CAN) ≤  
12 V;  
W
CAN Wake-capable  
mode  
Wake-up receiver  
threshold voltage,  
dominant to recessive edge  
Vdiff, dr_W  
0.4  
0.7  
V
V
-12 V VCM(CAN) ≤  
12 V;  
CAN Wake-capable  
mode  
P_8.3.10  
1)  
Wake-up receiver  
Vdiff_R_range_ -3.0  
0.4  
V
= VCANH - VCANL; P_8.3.53  
diff  
recessive state differential  
input voltage range  
-12 V VCM(CAN) ≤  
12 V;  
W
CAN Wake-capable  
mode  
CAN bus transmitter  
CANH/CANL recessive  
output voltage  
(CAN Normal mode)  
VCANL/H_NM 2.0  
3.0  
0.1  
V
V
CAN Normal mode  
P_8.3.11  
P_8.3.43  
V
TXDCAN = Vcc1  
;
no load  
CANH/CANL recessive  
output voltage  
(CAN Wake-capable mode)  
VCANL/H_LP  
Vdiff_r_N  
Vdiff_r_W  
VCANL  
-0.1  
-500  
-200  
0.5  
CAN Wake-capable  
mode;  
V
TXDCAN = Vcc1  
no load  
CAN Normal mode; P_8.3.12  
TXDCAN = Vcc1  
no load  
;
CANH, CANL recessive  
output voltage difference  
Vdiff = VCANH - VCANL  
50  
mV  
mV  
V
V
;
(CAN Normal mode)  
CANH, CANL recessive  
output voltage difference  
Vdiff = VCANH - VCANL  
200  
2.25  
CAN Wake-capable  
mode;  
P_8.3.44  
V
TXDCAN = Vcc1  
;
(CAN Wake-capable mode)  
no load  
CANL dominant output  
voltage  
3) CAN Normal mode; P_8.3.13  
VTXDCAN = 0 V;  
V
CAN = 5 V;  
50 Ω ≤ RL 65 Ω  
Datasheet  
54  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
Table 13 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CANH dominant output  
voltage  
VCANH  
2.75  
4.5  
V
V
3) CAN Normal mode; P_8.3.14  
V
V
TXDCAN = 0 V;  
CAN = 5 V;  
50 Ω ≤ RL 65 Ω  
3) CAN Normal mode; P_8.3.15  
CANH, CANL dominant  
output voltage difference  
Vdiff = VCANH - VCANL  
Vdiff_d_N  
1.5  
2.0  
2.5  
70  
VTXDCAN = 0 V;  
V
CAN = 5 V;  
50 Ω ≤ RL 65 Ω  
CANH, CANL output voltage Vdiff_slope_rd  
difference slope, recessive  
to dominant  
V/us 1) 30% to 70% of  
measured  
P_8.3.54  
P_8.3.55  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
CANH, CANL output voltage Vdiff_slope_dr  
difference slope, dominant  
to recessive  
70  
V/us 1) 70% to 30% of  
measured  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
CANH, CANL dominant  
output voltage difference  
Vdiff = VCANH - VCANL on  
Vdiff_d_N_ext 1.5  
5.0  
V
1) CAN Normal mode; P_8.3.58  
VTXDCAN = 0 V;  
V
CAN = 5 V;  
extended bus load range  
RL = 2240 Ω  
CANH short circuit current ICANHsc  
-100  
50  
-80  
80  
-50  
mA  
mA  
CAN Normal mode; P_8.3.16  
V
CANHshort = -3 V  
CAN Normal mode; P_8.3.17  
CANLshort = 18 V  
CANL short circuit current  
Leakage current  
ICANLsc  
100  
V
ICANH,lk  
ICANL,lk  
5
7.5  
µA  
VS = VCAN = 0 V;  
P_8.3.18  
0 V VCANH,L 5 V;  
4)  
R
= 0 / 47 kΩ  
test  
Receiver output RXDCAN  
HIGH level output voltage  
VRXDCAN,H  
VRXDCAN,L  
0.8 ×  
VCC1  
V
V
CAN Normal mode; P_8.3.19  
IRXDCAN = -2 mA  
LOW level output voltage  
0.2 ×  
CAN Normal mode; P_8.3.20  
Vcc1  
IRXDCAN = 2 mA  
Transmission input TXDCAN  
HIGH level input voltage  
threshold  
VTXDCAN,H  
0.7 ×  
Vcc1  
V
CAN Normal mode; P_8.3.21  
recessive state  
Datasheet  
55  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
Table 13 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
LOW level input voltage  
threshold  
VTXDCAN,L  
0.3 ×  
Vcc1  
V
CAN Normal mode; P_8.3.22  
dominant state  
1)  
TXDCAN input hysteresis  
VTXDCAN,hys  
0.12 ×  
mV  
P_8.3.23  
Vcc1  
TXDCAN pull-up resistance RTXDCAN  
20  
8
40  
13  
80  
18  
kΩ  
-
P_8.3.24  
CAN transceiver enabling  
time  
tCAN,EN  
µs  
7) CSN = HIGH to first P_8.3.25  
valid transmitted  
TXDCAN dominant  
Dynamic CAN transceiver characteristics  
Driver symmetry  
VSYM  
4.5  
5.5  
3.5  
V
5) CAN Normal mode; P_8.3.45  
VTXDCAN = 0 V / 5 V;  
VSYM = VCANH + VCANL  
V
CAN = 5 V;  
CSPLIT = 4.7 nF;  
50 Ω ≤ RL 60 Ω  
Min. dominant time for bus tWake1  
0.5  
µs  
-12 V VCM(CAN) ≤  
P_8.3.26  
wake-up  
12 V;  
V
diff 3 V  
CAN Wake-capable  
mode  
Wake-up time-out, recessive tWake2  
bus  
0.5  
10  
ms  
µs  
7) CAN Wake-capable P_8.3.27  
mode  
7) CAN Wake-capable P_8.3.57  
mode  
BUS bias reaction time  
tbias  
250  
V
CAN = 5 V;  
CL = 100 pF;  
GND = 100 pF;  
C
RL = 60 Ω  
Loop delay  
tLOOP,f  
150  
150  
255  
255  
ns  
ns  
5) CAN Normal mode; P_8.3.28  
CL = 100 pF;  
RL = 60 ;  
(recessive to dominant)  
V
C
CAN = 5 V;  
RXDCAN = 15 pF  
Loop delay  
tLOOP,r  
5) CAN Normal mode; P_8.3.29  
CL = 100 pF;  
(dominant to recessive)  
RL = 60 ;  
V
C
CAN = 5 V;  
RXDCAN = 15 pF  
Datasheet  
56  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
Table 13 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
50  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Propagation delay  
TXDCAN LOW to bus  
dominant  
td(L),T  
ns  
ns  
ns  
CAN Normal mode; P_8.3.30  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V  
Propagation delay  
TXDCAN HIGH to bus  
recessive  
td(H),T  
50  
CAN Normal mode; P_8.3.31  
CL = 100 pF;  
RL = 60 ;  
V
CAN = 5 V  
Propagation delay  
bus dominant to RXDCAN  
LOW  
td(L),R  
100  
CAN Normal mode; P_8.3.32  
CL = 100 pF;  
RL = 60 ;  
V
CAN = 5 V;  
CRXDCAN = 15 pF  
Propagation delay  
bus recessive to RXDCAN  
HIGH  
td(H),R  
100  
ns  
ns  
CAN Normal mode; P_8.3.33  
CL = 100 pF;  
RL = 60 ;  
V
CAN = 5 V;  
CRXDCAN = 15 pF  
Received recessive bit width tbit(RXD)  
400  
550  
CAN Normal mode; P_8.3.39  
CL = 100 pF;  
RL = 60 ;  
V
CAN = 5 V;  
CRXD = 15 pF;  
bit(TXD) = 500 ns;  
t
Parameter definition  
in according to  
Figure 23.  
Transmitted recessive bit  
width  
tbit(BUS)  
435  
530  
ns  
CAN Normal mode; P_8.3.40  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V;  
C
RXD = 15 pF;  
tbit(TXD) = 500 ns;  
Parameter definition  
in according to  
Figure 23.  
Datasheet  
57  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
Table 13 Electrical characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Receiver timing symmetry6) ΔtRec  
-65  
40  
ns  
ns  
ns  
ns  
CAN Normal mode; P_8.3.41  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V;  
C
RXD = 15 pF;  
tbit(TXD) = 500 ns;  
Parameter definition  
in according to  
Figure 23.  
Received recessive bit width tbit(RXD)  
120  
155  
-45  
220  
210  
15  
CAN Normal mode; P_8.3.46  
CL = 100 pF;  
RL = 60 ;  
V
CAN = 5 V;  
CRXD = 15 pF;  
bit(TXD) = 200 ns;  
t
Parameter definition  
in according to  
Figure 23.  
Transmitted recessive bit  
width  
tbit(BUS)  
CAN Normal mode; P_8.3.47  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V;  
C
RXD = 15 pF;  
tbit(TXD) = 200 ns;  
Parameter definition  
in according to  
Figure 23.  
Receiver timing symmetry6) ΔtRec  
CAN Normal mode; P_8.3.48  
CL = 100 pF;  
RL = 60 ;  
V
C
CAN = 5 V;  
RXD = 15 pF;  
tbit(TXD) = 200 ns;  
Parameter definition  
in according to  
Figure 23.  
TXDCAN permanent  
dominant time-out  
tTXDCAN_TO  
1.85  
1.85  
ms  
ms  
7) CAN Normal mode P_8.3.34  
BUS permanent dominant tBUS_CAN_TO  
7) CAN Normal mode P_8.3.35  
time-out  
Datasheet  
58  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design, S2P - Method; f = 10 Mhz.  
3) Voltage value valid for time < tTXDCAN_TO  
4) Rtests between (VS/VCAN) and 0 V (GND).  
.
5) VSYM shall be observed during dominant and recessive state and also during the transition dominant to recessive and  
vice versa while TxD is simulated by a square signal (50% duty cycle), a frequency of 1 MHz.  
6) tRec=tbit(RXD) -tbit(BUS)  
.
7) Not subject to production test, tolerance defined by internal oscillator tolerance.  
V
TXDCAN  
VIO  
GND  
t
t
VDIFF  
td(L),T  
td(H),T  
Vdiff, rd_N  
Vdiff, dr_N  
t d(L),R  
td(H),R  
t
t
loop,r  
VRXDCAN  
VIO  
loop,f  
0.8 x VIO  
0.2 x VIO  
GND  
t
Figure 22 Timing diagrams for dynamic characteristics  
Datasheet  
59  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
High-speed CAN transceiver  
70%  
TXDCAN  
30%  
tLoop_f  
5x tBit(TXD)  
tBit(TXD)  
Vdiff=CANH-CANL  
900mV  
tBit(Bus)  
500mV  
70%  
RXDCAN  
30%  
tLoop_r  
tBit(RXD)  
Figure 23 From ISO 11898-2: tloop, tbit(TXD), tbit(Bus), tbit(RXD) definitions  
Datasheet  
60  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9
LIN transceiver  
9.1  
Block description  
VLIN  
SPI Mode Control  
VCC1  
Driver  
TxD Input  
RTXD LI N  
Temp.-  
Protection  
Current  
RBUS  
Output  
Stage  
TXDLIN  
Timeout  
Limit  
LIN  
To SPI Diagnostic  
Receiver  
VCC1  
Filter  
Vs  
RXDLIN  
Wake  
Receiver  
Figure 24 Block diagram  
9.1.1  
LIN specifications  
The LIN network is standardized by international regulations. The device is compliant with the LIN2.2  
specification. The physical layer specification LIN2.2 is a superset of the previous LIN specifications, like  
LIN2.0, LIN2.1 or LIN1.3. The integrated LIN transceivers are according to the LIN2.2 standard.  
The device is compliant to the physical layer standard SAE-J2602-2. The SAE-J2602-2 standard differs from the  
LIN2.2 standard mainly by the lower data rate (10.4 kbps).  
Datasheet  
61  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9.2  
Functional description  
The LIN bus is a single wire, bidirectional bus, used for in-vehicle networks. The LIN transceivers implemented  
inside the TLE9271QX are the interface between the microcontroller and the physical LIN bus. The digital  
output data from the microcontroller are driven to the LIN bus via the TXDLIN input pin on the TLE9271QX. The  
transmit data stream on the TXDLIN input is converted to a LIN bus signal with an optimized slew rate to  
minimize the EME level of the LIN network. The RXDLIN output sends back the information from the LIN bus to  
the microcontroller. The receiver has an integrated filter network to suppress noise on the LIN bus and to  
increase the EMI (Electromagnetic Immunity) level of the transceiver.  
Two logical states are possible on the LIN bus according to the LIN Specification 2.2.  
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE9271QX for  
master node applications, a resistor in the range of 1 kand a reverse diode must be connected between the  
LIN bus and the power supply VS.  
The different transceiver modes can be controlled using the SPI LIN1, LIN2 bits.  
The transceiver can also be configured to wake capable in order to save current and to ensure a safe transition  
from SBC Normal to Sleep mode (to avoid losing messages).  
Figure 25 shows the possible transceiver mode transitions when changing the SBC mode.  
SBC Mode  
LIN Transceiver Mode  
SBC Stop Mode  
Receive Only Wake Capable  
OFF  
OFF  
SBC Normal Mode  
SBC Sleep Mode  
SBC Restart Mode  
SBC Fail-Safe Mode  
Receive Only Wake Capable Normal Mode  
Wake Capable  
OFF  
OFF  
Woken1  
Wake Capable  
1after a wake event on LIN Bus  
Behavior after SBC Restart Mode - not coming from SBC Sleep Mode due to a wake up of the respective transceiver  
:
If the transceivers had been configured to Normal Mode, or Receive Only Mode, then the mode will be changed to Wake  
Capable. If it was Wake Capable, then it will remain Wake Capable . If it had been OFF before SBC Restart Mode , then it  
will remain OFF .  
Figure 25 LIN mode control diagram  
Datasheet  
62  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9.2.1  
LIN OFF mode  
The LIN OFF mode is the default mode after power-up of the SBC. It is available in all SBC modes and is  
intended to completely stop LIN activities or when LIN communication is not needed. In LIN OFF mode, a  
wake-up event on the bus will be ignored.  
9.2.2  
LIN Normal mode  
The LIN transceiver is enabled via SPI in SBC Normal mode. LIN Normal mode is designed for normal data  
transmission/reception within the LIN network. The mode is available only in SBC Normal mode.  
Transmission  
The signal from the microcontroller is applied to the TXDLIN input of the SBC. The bus driver switches the  
LIN output stage to transfer this input signal to the LIN bus line.  
Enabling sequence  
The LIN transceiver requires an enabling time tLIN,EN before a message can be sent on the bus. This means that  
the TXDLIN signal can only be pulled LOW after the enabling time. If this is not ensured, then the TXDLIN needs  
to be set back to HIGH (= recessive) until the enabling time is completed. Only the next dominant bit will be  
transmitted on the bus. Figure 26 shows different scenarios and explanations for LIN enabling.  
VTXDLIN  
t
LIN  
Mode  
t
t LIN,EN  
t
LIN,EN  
LIN,EN  
LIN  
NORMAL  
LIN OFF  
t
t
V
LIN_BUS  
Recessive  
Dominant  
recessive TXDLIN level  
required bevore start of  
transmission  
recessive TXDLIN  
level required  
tLIN, EN not ensured, no  
transmission on bus  
tLIN, EN not ensured,  
no transmission on bus  
Correct sequence,  
Bus is enabled aftertLIN,  
EN  
LIN_enabling_sequence.vsd  
Figure 26 LIN transceiver enabling sequence  
Reduced electromagnetic emission  
To reduce electromagnetic emissions (EME), the bus driver controls LIN slopes symmetrically. The  
configuration of the different slopes is described in Chapter 9.2.8.  
Reception  
Analog LIN bus signals are converted into digital signals at RXDLIN via the input receiver.  
Datasheet  
63  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9.2.3  
LIN Receive-Only mode  
In LIN Receive-Only mode (RX only), the driver stage is disabled but reception is still possible. This mode is  
accessible by an SPI command and is available in SBC Normal and SBC Stop mode.  
9.2.4  
LIN Wake-Capable mode  
This mode can be used in SBC Stop, Sleep, Restart and Normal mode by programming via SPI and it is used to  
monitor bus activities. It is automatically accessed in SBC Fail-Safe mode. A wake up is detected, if a recessive  
to dominant transition on the LIN bus is followed by a dominant level of longer than tWK,Bus, followed by a  
dominant to recessive transition. The dominant to recessive transition will cause a wake up of the  
LIN transceiver. A wake-up results different behavior of the SBC, as described in Table 14. As a signalization to  
the microcontroller, the RXDLIN pin is set LOW and will stay LOW until the LIN transceiver is changed to any  
other mode. After a wake-up event, the transceiver can be switched to LIN Normal mode for communication.  
Table 14 Action due to a LIN bus wake-up  
SBC mode  
SBC mode after wake  
Normal mode  
Stop mode  
VCC1  
INT  
RXDLIN  
LOW  
Normal mode  
Stop mode  
ON  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
ON  
LOW  
Sleep mode  
Restart mode  
Fail-Safe mode  
Restart mode  
Restart mode  
Restart mode  
Ramping up  
ON  
LOW  
LOW  
Ramping up  
LOW  
Rearming the transceiver for wake capability  
After a bus wake-up event, the transceiver is woken. However, the LIN1, LIN2 transceiver mode bits will still  
show wake capable (=‘01’) so that the RXDLIN signal will be pulled low. The Wake-Capable mode of the LIN  
transceiver can be reenabled in one of two ways after a wake-up event:  
By toggling the LIN transceiver mode, i.e. switched to LIN Normal mode, LIN Receive-Only mode or LIN Off,  
before switching to LIN Wake-Capable mode again  
Occurs automatically when the SBC changes to SBC Stop, SBC Sleep, or SBC Fail-Safe mode to ensure  
wake-up capability  
if the SBC is in SBC Stop mode, the LIN’s are rearmed automatically if the SBC is set again in SBC Stop mode  
Wake-up in SBC Stop and SBC Normal mode  
In SBC Stop mode, if a wake-up is detected, it is signaled by the INT output and in the WK_STAT_2 SPI register.  
It is also signaled by RXDLIN put to LOW. The same applies for the SBC Normal mode. The microcontroller  
should set the device to SBC Normal mode; there is no automatic transition to Normal mode.  
For functional safety reasons, the watchdog will be automatically enabled in SBC Stop mode after a bus wake-  
up event in case it was disabled before (if bit WD_EN_WK_BUS was configured to HIGH before).  
Wake-up in SBC Sleep mode  
Wake-up is possible via a LIN message (filter time t > tWK,Bus). The wake-up automatically transfers the SBC to  
SBC Restart mode and from there to Normal mode. The corresponding RXDLIN pin in set to LOW. The  
microcontroller is able to detect the low signal on RXDLIN and to read the wake source out of the WK_STAT_2  
Datasheet  
64  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
register via SPI. No interrupt is generated when coming out of Sleep mode. The microcontroller can now  
switch the LIN transceiver into LIN Normal mode via SPI to start communication.  
9.2.5  
TXDLIN Time-out feature  
If the TXDLIN signal is dominant for the time t > tBUS_LIN_TO, the TXDLIN time-out function deactivates the  
LIN transmitter output stage temporarily. The transceiver remains in recessive state. The TXDLIN time-out  
function prevents the LIN bus from being blocked by a permanent LOW signal on the TXDLIN pin caused by a  
failure. The failure is stored in the SPI flag LIN1_FAIL, , and on BUS_STAT_1 and BUS_STAT_2 registers. The  
LIN transmitter stage is activated again after the dominant time-out condition is removed.  
The TXDLIN time-out feature can be disabled with SPI bit LIN_TXD_ TO for all LINs at the same time.  
Recovery of the  
microcontroller error  
TXDLIN Time-Out due to  
microcontroller error  
Release after TXDLIN  
Time-out  
Normal Communication  
ttimeout  
ttorec  
Normal Communication  
TXDLIN  
t
LIN  
t
Figure 27 TXDLIN time-out function  
9.2.6  
Bus dominant clamping  
If the LIN bus signal is dominant for a time t > tBUS_LIN_TO in LIN Normal or Receive-Only mode, then a bus  
dominant clamping is detected and the SPI bits LIN1_FAIL, and are set. The transceiver configuration stays  
unchanged.  
9.2.7  
Undervoltage detection  
In case the supply voltage VLIN is dropping below the VLIN undervoltage detection threshold (VLIN < VLIN,UVD),  
the TLE9271QX will set the LINx in Receive-Only mode (the transmitter is disabled). The receiver stage is active.  
If the power supply VLIN reaches a higher level than the VLIN undervoltage detection threshold (VLIN >  
V
LIN,UVD), the TLE9271QX continues with normal operation.  
Datasheet  
65  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9.2.8  
Slope selection  
The LIN transceiver offers a LIN Low-Slope mode for 10.4 kBaud communication and a LIN Normal-Slope  
mode for 20 kBaud communication. The only difference is the behavior of the transmitter. In LIN Low-Slope  
mode, the transmitter uses a lower slew rate to further reduce the EME compared to Normal-Slope mode. This  
complies with SAE J2602 requirements.  
By default, the device works in LIN Normal-Slope mode. The selection of LIN Low-Slope mode is done by an  
SPI bit LIN_LSM and will become effective as soon as CSN goes HIGH for all LINx. Only the LIN slope is changed.  
The selection is accessible in SBC Normal mode only.  
9.2.9  
Flash programming via LIN  
The device allows LIN flash programming, e.g. of another LIN slave with a communication of up to 115 kbps.  
This feature is enabled by de-activating the slope control mechanism via a SPI command (bit LIN_FLASH) and  
will become effective as soon as CSN goes HIGH’ for all LINx. The SPI bit can be set in SBC Normal mode.  
Note: It is recommended to perform flash programming only at nominal supply voltage VS = 13.5 V to ensure  
stable data communication.  
Datasheet  
66  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
9.3  
Electrical characteristics of the LIN transceiver  
Table 15 Electrical characteristics: LIN transceiver  
Tj = -40°C to +150°C, VLIN = 5.5 V to 18 V, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Receiver output (RXDLIN pin)  
HIGH level output voltage  
VRXDLIN,H 0.8 ×  
V
V
IRXDLIN = -2 mA  
bus = VS  
IRXDLIN = 2 mA  
bus = 0 V  
P_9.3.1  
P_9.3.2  
VCC  
V
LOW level output voltage  
VRXDLIN,L  
0.2 ×  
VCC  
V
Transmission input (TXDLIN pin)  
HIGH level input voltage  
TXDLIN input hysteresis  
LOW level input voltage  
VTXDLIN,H 0.7 ×  
V
V
V
Recessive state  
P_9.3.3  
P_9.3.4  
P_9.3.5  
P_9.3.6  
VCC  
1)  
VTXDLIN,hys  
VTXDLIN,L  
RTXDLIN  
0.2 ×  
VCC  
0.3 ×  
VCC  
Dominant state  
TXDLIN pull-up resistance  
20  
40  
80  
kVTXDLIN = 0 V  
LIN bus receiver (LIN pin)  
Receiver threshold voltage, VBus,rd  
recessive to dominant edge  
0.4 × 0.45 × –  
V
V
P_9.3.7  
VLIN  
VLIN  
Receiver dominant state  
VBus,dom  
0.4 ×  
LIN2.2 Param. 17  
P_9.3.8  
VLIN  
Receiver threshold voltage, VBus,dr  
0.55 × 0.60 × V  
P_9.3.9  
dominant to recessive edge  
VLIN  
VLIN  
Receiver recessive state  
Receiver center voltage  
Receiver hysteresis  
VBus,rec  
VBus,c  
0.6 ×  
VLIN  
V
LIN2.2 Param 18  
LIN2.2 Param 19  
P_9.3.10  
P_9.3.11  
P_9.3.12  
P_9.3.13  
P_9.3.14  
0.475 0.5 × 0.525  
× VLIN VLIN × VLIN  
0.07 × 0.1 × 0.175  
VLIN VLIN × VLIN  
0.40 × 0.5 × 0.6 ×  
V
VBus,hys  
V
Vbus,hys = Vbus,rec - Vbus,dom  
LIN2.2 Param 20  
Wake-up threshold voltage VBus,wk  
V
VLIN  
VLIN  
VLIN  
2)  
Dominant time for bus  
wake-up  
tWK,Bus  
30  
150  
µs  
Datasheet  
67  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
Table 15 Electrical characteristics: LIN transceiver (cont’d)  
Tj = -40°C to +150°C, VLIN = 5.5 V to 18 V, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
LIN bus transmitter (LIN pin)  
1)  
Bus serial diode voltage drop Vserdiode 0.4  
0.7  
1.0  
V
V
V
= VCC1  
;
P_9.3.15  
TXDLIN  
LIN2.2 Param 21  
Bus recessive output voltage VBUS,ro  
0.8 ×  
VLIN  
VTXDLIN = high Level  
P_9.3.16  
P_9.3.20  
P_9.3.21  
VLIN  
Bus short circuit current  
IBUS,sc  
40  
100  
150  
mA VBUS = 18 V;  
LIN2.2 Param 12  
µA VLIN = 0 V;  
-12 V VBUS 6 V;  
LIN2.2 Param 15  
µA VLIN = 0 V;  
Leakage current  
loss of ground  
IBUS,lk1  
-1000 -450 20  
Leakage current  
loss of battery  
IBUS,lk2  
IBUS,lk3  
IBUS,lk4  
20  
P_9.3.22  
P_9.3.23  
P_9.3.24  
P_9.3.25  
0 V VBUS 18 V;  
LIN2.2 Param 16  
Leakage current  
driver off  
-1  
mA VLIN = 18 V;  
BUS = 0 V;  
LIN2.2 Param 13  
µA VLIN = 8 V;  
BUS = 18 V;  
V
Leakage current  
driver off  
20  
47  
V
LIN2.2 Param 14  
Bus pull-up resistance  
LIN input capacitance  
RBUS  
CBUS  
20  
30  
kNormal mode  
LIN2.2 Param 26  
1)  
20  
1
25  
6
ρF  
P_9.3.26  
P_9.3.27  
Receiver propagation delay td(L),R  
bus dominant to RXDLIN  
LOW  
µs VCC = 5 V;  
C
RXDLIN = 20 pF;  
LIN2.2 Param 31  
µs VCC = 5 V;  
Receiver propagation delay td(H),R  
1
6
P_9.3.28  
bus recessive to RXDLIN HIGH  
CRXDLIN = 20 pF;  
LIN2.2 Param 31  
Receiver delay symmetry  
tsym,R  
-2  
8
2
µs tsym,R = td(L),R - td(H),R;  
LIN2.2 Param 32  
µs 2) time from enabling LIN P_9.3.39  
P_9.3.29  
LIN transceiver enabling time tLIN,EN  
13  
18  
(CS HIGH) to first signal on  
RXDLIN  
1)2)  
Bus dominant time out  
tBUS_LIN  
20  
20  
ms  
ms  
P_9.3.30  
P_9.3.31  
_TO  
1)2)  
TXDLIN dominant time out  
tTXDLIN_LIN  
V
= 0 V  
TXDLIN  
_TO  
Datasheet  
68  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
Table 15 Electrical characteristics: LIN transceiver (cont’d)  
Tj = -40°C to +150°C, VLIN = 5.5 V to 18 V, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
1)2)  
TXDLIN dominant time out  
recovery time  
ttorec  
10  
µs  
P_9.3.32  
Duty cycle D1  
(For worst case at 20 kbit/s)  
LIN2.2 normal slope  
D1  
0.396  
3) THRec(max) = 0.744 × VS; P_9.3.33  
THDom(max) = 0.581 × VS;  
V
LIN = 7.0…18 V;  
tbit = 50 µs;  
D1 = tbus_rec(min)/2 tbit  
LIN2.2 Param 27  
;
Duty cycle D2  
(for worst case at 20 kbit/s)  
LIN2.2 normal slope  
D2  
D3  
D4  
0.581  
3) THRec(min) = 0.422 × VS; P_9.3.34  
THDom(min) = 0.284 × VS;  
VLIN = 7.0…18 V;  
tbit = 50 µs;  
D2 = tbus_rec(max)/2 tbit  
;
LIN2.2 Param 28  
3) THRec(max) = 0.778 × VS; P_9.3.35  
THDom(max) = 0.616 × VS;  
Duty cycle D3  
(for worst case at 10.4 kbit/s)  
SAE J2602 low slope  
0.417  
V
LIN = 7.0…18 V;  
tbit = 96 µs;  
D3 = tbus_rec(min)/2 tbit  
LIN2.2 Param 29  
;
Duty cycle D4  
(for worst case at 10.4 kbit/s)  
SAE J2602 low slope  
0.590  
3) THRec(min) = 0.389 × VS; P_9.3.36  
THDom(min) = 0.251 × VS;  
VLIN = 7.0…18 V;  
tbit =96 µs;  
D4 = tbus_rec(max)/2 tbit  
;
LIN2.2 Param 30  
1) Not subject to production test, specified by design.  
2) Not subject to production test, tolerance defined by internal oscillator tolerance.  
3) Bus load conditions concerning LIN spec 2.2 CLIN, RLIN = 1 nF, 1 k/ 6.8 nF, 660 / 10 nF, 500 .  
Datasheet  
69  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
VLIN  
TXDLIN  
RXDLIN  
100 nF  
RLIN  
CRXDLIN  
WK  
LIN  
GND  
CLIN  
Figure 28 Simplified test circuit for dynamic characteristics  
Datasheet  
70  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
LIN transceiver  
tBit  
tBit  
tBit  
TXDLIN  
(input to  
transmitting node )  
tBus _dom (max )  
tBus_rec (min)  
Thresholds of  
receiving node 1  
THRec (max)  
THDom (max)  
VSUP  
(Transceiver supply  
of transmitting  
node )  
Thresholds of  
receiving node 2  
THRec(min)  
THDom(min)  
tBus _dom (min )  
tBus_rec(max)  
RXDLIN  
(output of receiving  
node 1)  
td(L),R (1)  
td(H),R(1)  
RXDLIN  
(output of receiving  
node 2)  
t(L),R(2)  
td(H),r(2)  
Duty Cycle1 = tBUS_rec(min) / (2 x t  
)
BIT  
Duty Cycle2 = tBUS_rec(max) / (2 x tBIT  
)
Figure 29 Timing diagram for dynamic characteristics  
Datasheet  
71  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Wake input  
10  
Wake input  
10.1  
Block description  
Internal Supply  
IPU_WK  
WKx  
+
-
tWK  
IPD_WK  
VRef  
Logic  
MONx_Input_Circuit_ext.vsd  
Figure 30 Wake input block diagram  
Features  
One high-voltage inputs with 3 V (typ.) threshold voltage  
Wake-up capability for power saving modes  
Switch feature for DC/DC mode (PFM/PWM) in Stop mode  
Sensitive to level changes LOW to HIGH and HIGH to LOW  
Pull-up and pull-down current, configurable via SPI  
In SBC Normal and SBC Stop mode, the level of WK pin can be read via SPI  
Datasheet  
72  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Wake input  
10.2  
Functional description  
The wake input pin is edge-sensitive input with a switching threshold of typically 3 V. This means that both  
transitions, HIGH to LOW and LOW to HIGH, result in SBC signalling. The signal is created in one of the  
following ways:  
By triggering the interrupt in SBC Normal and SBC Stop mode  
Waking up the device in SBC Sleep and SBC Fail-Safe mode  
The WK pin can also be configured as a selection pin for PFM / PWM mode in Stop mode using the PWM_BY_  
WK bit of HW_CTRL register. In this case a LOW level at the WK pin will set the buck converter modulation to  
PFM mode, a HIGH level will set the buck converter modulation to PWM mode. In this configuration, the filter  
time is not taken into account because a defined signal from µC is expected.  
Two different wake detection modes can be selected via SPI:  
Static sense: WK inputs are always active  
Cyclic sense: WK inputs are only active for a certain time period (see Chapter 5.2.1)  
The filtering time is tFWK. The wake-up capability can be enabled or disabled via SPI command.  
Figure 31 shows a typical wake-up timing and parasitic filter.  
VWK  
VWK,th  
VWK,th  
t
t
VINT  
tWK,f  
tWK,f  
tINT  
No Wake Event  
Wake Event  
Figure 31 Wake-up filter timing for static sense  
The state of the WK pin (LOW or HIGH) can always be read in SBC Normal and Stop mode at the bit WK on  
register WK_LVL_STAT.  
When setting the bit WK_EN, to 1, the device wakes up from Sleep mode with a HIGH to LOW or LOW to HIGH  
transition on the selected WK input, in SBC Stop and SBC Normal mode an interrupt will be generated. From  
SBC Fail-Safe mode the device will always go to SBC Restart mode with a HIGH to LOW or LOW to HIGH  
transition. The wake source for a wake via wake pin can be read in the register WK_STAT_1 at the bit WK_WU.  
10.2.1  
Wake input configuration  
To ensure a defined and stable voltage levels at the internal comparator input it is possible to configure  
integrated current sources via the SPI register WK_PUPD_CTRL. The Table 16 shows the possible pull-up and  
pull-down current.  
Datasheet  
73  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Wake input  
Table 16 Pull-up/pull-down resistor  
WK_PUPD_1 WK_PUPD_0 Output current Note  
0
0
No current  
source  
WK is floating if left open (default setting)  
0
1
Pull-down  
current  
WK input internally pulled to GND  
1
1
0
1
Pull-up current WK input internally pulled to 5 V  
Automatic  
switching  
If a HIGH level is detected the pull-up current is activated, if  
LOW level is detected the pull down current is activated  
Note: If there is no pull-up or pull-down configured on the WK input, then the respective input should be tied to  
GND or VS on board to avoid unintended floating and waking of the pin.  
An example illustration of automatic switching configuration is shown in Figure 32.  
IWKth_min  
IWKth_max  
IWK  
VWKth  
Figure 32 Illustration for pull-up/pull-down current sources with automatic switching configuration  
Datasheet  
74  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Wake input  
10.3  
Electrical characteristics  
Table 17 Electrical characteristics  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
WK input pin characteristics  
Wake-up/monitoring VWKth  
2
3
4
V
Hysteresis included  
P_10.3.1  
threshold voltage  
Threshold hysteresis  
VWKNth,hys 0.1  
0.7  
-3  
V
P_10.3.2  
P_10.3.3  
P_10.3.4  
WK pin pull-up current IPU_WK  
-20  
3
-10  
10  
µA  
µA  
VWK_IN = 4 V  
VWK_IN = 2 V  
WK pin pull-down  
current  
IPD_WK  
20  
Input leakage current ILK,l  
-2  
2
µA  
0 V < VWK_IN < 28 V  
SBC Stop or Sleep  
mode  
P_10.3.5  
Timing  
1)  
Wake-up filter time  
tFWK  
16  
µs  
P_10.3.6  
1) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
75  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Interrupt function  
11  
Interrupt function  
11.1  
Block and functional description  
Vcc1  
INT  
Time  
out  
Interrupt logic  
Figure 33 Interrupt block diagram  
The interrupt is used to signal wake-up events in real time to the microcontroller. The interrupt block is  
designed as a push/pull output stage as shown in Figure 33. An interrupt is triggered and the INT pin is pulled  
LOW (active LOW) for tINT in SBC Normal and Stop mode and it is released again once tINT is expired. The  
minimum HIGH-time of INT between two consecutive interrupts is tINTD. An interrupt does not automatically  
cause a SBC mode change.  
The following wake-up events will be signaled via INT:  
All wake-up events stored in the wake status SPI register WK_STAT_1 and WK_STAT_2  
An interrupt is only triggered if the respective function is also enabled as a wake source  
The register WK_LVL_STAT is not generating interrupts  
In addition to this behavior, an INT will be triggered when:  
The SBC is sent to SBC Stop mode and not all bits were cleared in the WK_STAT_1 and WK_STAT_2 register  
An automatic transition PFM to PWM in the buck when the SBC is in SBC Stop mode (for more details please  
refer to Chapter 6.4.2.1)  
The SPI status registers are updated at every falling edge of the INT pulse. All interrupt events are stored in the  
respective register (except the register WK_LVL_STAT) until the register is read and cleared via SPI command.  
A typical interrupt behavior is shown in Figure 34.  
Datasheet  
76  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Interrupt function  
WK event 1  
INT  
WK event 2  
tINTD  
tINT  
Update of  
WK_STAT register  
Update of  
WK_STAT register  
optional  
no WK  
SPI  
Read & Clear  
WK_STAT  
contents  
WK event 1  
no WK  
WK event 2  
SPI  
Read & Clear  
No SPI Read & Clear  
Command sent  
WK event 1 and WK  
event 2  
WK_STAT  
contents  
no WK  
Interrupt_Behavior.vsd  
Figure 34 Interrupt signaling behavior  
Datasheet  
77  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Interrupt function  
11.2  
Electrical characteristics  
Table 18 Interrupt output  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; SBC Normal mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Interrupt output; pin INT  
INT HIGH output voltage VINT,H  
0.8 ×  
VCC1  
V
V
IINT = -2 mA;  
INT = OFF  
P_11.2.1  
P_11.2.2  
INT LOW output voltage VINT,L  
0.2 ×  
VCC1  
IINT = 2 mA;  
INT = ON  
1)  
INT pulse width  
tINT  
100  
100  
µs  
µs  
P_11.2.3  
P_11.2.4  
INT pulse minimum delay tINTD  
1) between  
time  
consecutive pulses  
1) Not subject to production test; tolerance defined by internal oscillator tolerance.  
Datasheet  
78  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Fail-safe outputs and fail-safe input  
12  
Fail-safe outputs and fail-safe input  
12.1  
Functional description  
5V_int  
SBC Init Mode /  
Normal mode  
RFO1  
FO1  
Failure Logic  
5V_int  
5V_int  
SBC Init  
Mode  
T FSI  
RFSI  
T test  
RTEST  
FO2/FSI  
FO3/TEST  
T FO_PL  
T FO_PL  
Failure Logic  
Failure Logic  
Figure 35 Fail-safe input and outputs block diagrams  
The fail outputs consist of a failure logic block and three low-side switches. In case of a failure, the FO outputs  
are activated and the SPI bit FO_ON_STATE in the register DEV_STAT is set.  
The fail outputs are activated under the following failure conditions:  
Failure conditions  
After one or two watchdog trigger failures depending on configuration  
Thermal shutdown TSD2  
VCC1 short to GND  
RO clamped to HIGH  
Configurations  
It is possible to configure the FOx activation after a Watchdog trigger using the CFG2 bit. Please refer to the  
HW_CTRL register.  
In order to deactivate the fail output, the failure conditions (e.g. TSD2) must not be present anymore and the  
bit FO_ON_STATE needs to be cleared via SPI command. In case of watchdog fail, the fail output may only be  
disabled after the watchdog has been triggered successfully, i.e. the WD_FAIL bit must be cleared.  
Datasheet  
79  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Fail-safe outputs and fail-safe input  
Note: The fail outputs are triggered for any of the above described failures and not only for failures leading to  
the Fail-Safe mode.  
The three fail outputs are activated in parallel. The FO1 gives a static LOW signal in case of fail output  
activation. The FO2 provides a signal with a fixed frequency pulse and a duty cycle of 50% to generate an  
indicator signal. The FO3 provides a PWM signal with a fixed frequency and duty cycle of 20%, e.g. to generate  
a dimmed bulb signal.  
Fail outputs  
FO1: Static fail output  
FO2: 1.25 Hz 50% duty cycle (typ.)  
FO3: 100 Hz 20% duty cycle (typ.)  
Pull-up configuration  
The integrated pull-up resistors are active if following conditions are fulfilled:  
FO1: SBC Init mode OR SBC Normal mode  
FO2: (SBC Init mode OR SBC Normal mode) AND FSI_FO2 = 0  
FO3: SBC Init mode  
12.2  
Fail-safe input  
The FO2 pin can be used as safety feature called fail-safe input.  
A digital signal has to be generated by the microcontroller and the TLE9271QX must detect the Low-to-High  
transition whitin tFSI,W window time. The feature is enabled by default after power on. It can be disabled using  
the SPI command (FSI_FO2=1 on HW_CTRL register).  
If there is no signal from the microcontroller, the TLE9271QX sets the FSI_FAIL on DEV_STAT and both FO1  
and FO3 are activated. The device remains in the same mode and neither reset nor interrupt will be triggered.  
The SPI status bit FSI_FAIL can only be cleared after a new rising edge on the FSI pin.  
The Figure 36 shows the timing diagram and level description of FSI input signal.  
Datasheet  
80  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Fail-safe outputs and fail-safe input  
FSI (from µC)  
tFSI,W  
tFSI,W  
tFSI,W  
tFSI,W  
t
t
FO1/FO3  
tFSI,W  
tFSI,W  
tFSI,W  
OFF  
ON  
OFF  
0
1
0
1
SPI “FSI_FAIL”  
SPI cmd.  
FO_ON=0  
SPI cmd .  
FSI_FAIL clear  
Figure 36 FSI timing diagram and level description  
The fail-safe input feature is available only in SBC Normal mode.  
Datasheet  
81  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Fail-safe outputs and fail-safe input  
12.3  
Electrical characteristics  
Table 19 Interrupt output  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; SBC Normal mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Fail output; pin FO1, FO2, FO3  
FO LOW output voltage  
(active)  
VFO,L  
IFO,H  
0
0.6  
1
2
V
IFO = 5 mA  
P_12.3.1  
P_12.3.2  
FO HIGH output current  
(inactive)  
µA  
VFO = 28 V  
FO3 test mode select  
FO3/TEST HIGH-input  
voltage threshold  
VTEST,H  
VTEST,L  
0.7 ×  
VCC1  
V
P_12.3.28  
P_12.3.29  
P_12.3.30  
P_12.3.31  
P_12.3.32  
FO3/TEST LOW-input  
voltage threshold  
0.3 ×  
VCC1  
V
1)  
FO3/Hysteresis of TEST  
input voltage  
VTEST,Hys  
0.2 ×  
VCC1  
V
FO3/Pull-up resistance at RTEST  
pin TEST  
5
kΩ  
µs  
VTEST = 0.2 × VCC1  
1)  
FO3/TEST input filter time tTEST  
16  
FO2/FSI input select  
FSI HIGH-input voltage  
threshold  
VFSI,H  
VFSI,L  
0.7 ×  
VCC1  
V
V
V
P_12.3.6  
P_12.3.7  
P_12.3.8  
FSI LOW-input voltage  
threshold  
0.3 ×  
VCC1  
1)  
FSI hysteresis of input  
voltage  
VFSI,Hys  
0.2 ×  
VCC1  
FSI pull-up resistance  
FSI input filter time  
FSI window time  
FO1  
RFSI  
tFSI  
40  
kΩ  
µs  
µs  
VFSI = 0.2 × VCC1  
P_12.3.9  
P_12.3.10  
P_12.3.11  
1)  
1.5  
240  
1)  
tFSI,W  
1)  
FO1 pull-up resistance  
RFO1  
40  
kΩ  
V
= 0.2 × VCC1  
P_12.3.12  
FO1  
1) Not subject to production test; specified by design.  
Datasheet  
82  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13  
Supervision functions  
13.1  
Reset function  
VCC1  
RO  
Resetlogic  
Incl. filter & delay  
Figure 37 Reset block diagram  
13.1.1  
Reset output description  
The reset output pin RO provides reset information to the microcontroller, for example, in the event that the  
output voltage has fallen below the undervoltage threshold VRT1/2/3. In case of a reset event due to an  
undervoltage on buck regulator output voltage, the reset output RO is pulled to LOW after the filter time tRF  
and stays LOW as long as the reset event is present plus a reset delay time tRD1. When connecting the SBC to  
battery voltage, the reset signal remains LOW initially. When the buck regulator output voltage has reached  
the default reset threshold VRT1,f, the reset output RO is released to HIGH after the reset delay time tRD1 (for a  
timing diagram, see also Figure 4). A reset can also occur due to a watchdog trigger failure. The reset  
threshold can be adjusted via SPI, the default reset threshold is VRT1,f. The RO pin has an integrated pull-up  
resistor. If a reset is triggered, it will pull LOW for buck regulator output voltage (VCC1) 1 V and for VS VPOR,f  
.
RO trigger timing regarding buck regulator undervoltage and watchdog trigger is shown in Figure 38.  
Datasheet  
83  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
VCC  
VRT1  
t < tRF  
The reset threshold can be  
configured via SPI in SBC  
Normal Mode, default is VRT1  
undervoltage  
t
tCW  
tOW  
tRD1  
tCW  
tLW  
tRD1  
tLW  
tCW  
tOW  
SPI  
RO  
SPI  
Init  
WD  
Trigger  
WD  
Trigger  
SPI  
Init  
t
t
tRF  
tLW= long open window  
tCW= closed window  
tOW= open window  
SBC Init  
SBC Normal  
SBC Restart  
SBC Normal  
Figure 38 Reset timing diagram  
13.1.2  
Reset clamp to high  
The RO pin is monitored internally. This feature detects if the RO pin is clamped to a high value from outside.  
The reset clamp to high is detected if the SBC generates a reset but the monitoring feedback senses a high  
level. The reset clamp is stored in RO_CL_HIGH bit on the DEV_STAT register.  
The feature is available in SBC Normal, Stop and Restart mode. In SBC Sleep or Fail-Safe mode, the RO is not  
monitored because the buck regulator is disabled.  
In case of watchdog failure, the reset clamp can be detected only if VCC1_UV on SUP_STAT register is 0 (no  
buck regulator undervoltage detected).  
In case of a buck regulator undervoltage event, the reset clamp can be detected only after the buck regulator  
output voltage rises above the reset threshold.  
13.1.3  
Soft reset description  
In SBC Normal and Stop mode, it is also possible to trigger a soft reset via an SPI command in order to bring  
the SBC into a defined state in case of failures. In this case, the microcontroller must send an SPI command  
and set the MODE bits to ‘11’ in the M_S_CTRL register. As soon as this command becomes valid, the SBC is  
set back to SBC INIT mode and all SPI registers are set to their default values (see SPI Chapter 14.5 and  
Chapter 14.6).  
No Reset (RO) is triggered when the soft reset is executed.  
Note: The device has to be in SBC Normal mode or SBC Stop mode when sending this command. Otherwise, it  
will be ignored.  
Datasheet  
84  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13.2  
Watchdog function  
The watchdog is used to monitor the software execution of the microcontroller and to trigger a reset if the  
microcontroller stops serving the watchdog due to a lock up in the software.  
Two different types of watchdog functions are implemented and can be selected via the bit WD_WIN:  
Time-out watchdog (default value)  
Window watchdog  
The respective watchdog function can be selected and programmed in SBC Normal mode. The configuration  
remains unchanged in SBC Stop mode.  
Refer to Table 20 to match the SBC modes with the respective watchdog modes.  
Table 20 Watchdog functionality by SBC modes  
SBC mode  
Watchdog mode  
Remarks  
INIT mode  
Start with long open window Watchdog starts with long open window after RO is  
released  
Normal mode  
Stop mode  
WD programmable  
Window watchdog, time-out watchdog  
Watchdog is fixed or OFF  
Watchdog OFF must be performed in SBC Normal  
mode  
Sleep mode  
Restart mode  
Fail-Safe mode  
OFF  
OFF  
OFF  
SBC will start with long open window when entering  
SBC Normal mode  
SBC will start with long open window when entering  
Normal mode  
SBC will start with long open window when entering  
SBC Normal mode  
The watchdog timing is programmed using an SPI command. As soon as the watchdog is programmed, the  
timer starts with the new setting and the watchdog must be served.The watchdog is triggered by sending a  
valid SPI-write command to the watchdog configuration register. The trigger SPI command is executed when  
the chip select input (CSN) becomes HIGH.  
When coming from SBC Init or Restart mode the watchdog timer is always started with a long open window.  
The long open window (tLW) allows the microcontroller to run its initialization sequences and then to trigger  
the watchdog via the SPI.  
The watchdog timer period can be selected via the watchdog timing bit field (WD_TIMER) and is in the range of  
10 ms to 1000 ms. This setting is valid for both watchdog types.  
The following watchdog timer periods are available:  
WD setting 1: 10 ms  
WD setting 2: 20 ms  
WD setting 3: 50 ms  
WD setting 4: 100 ms  
WD setting 5: 200 ms (reset value)  
WD setting 6: 500 ms  
WD setting 7: 1000 ms  
Datasheet  
85  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
In case of a watchdog reset, SBC Restart mode is started and the SPI bits WD_FAIL are set. Once the RO goes  
HIGH again the watchdog immediately starts with a long open window and the SBC enters automatically  
SBC Normal mode.  
In SBC Development mode, no reset is generated due to a watchdog failure, the watchdog is OFF.  
After 3 consecutive resets due to watchdog failures, additional resets can be prevented by setting the  
MAX_3_RST bit on WD_CTRL register. The SBC will then remain in SBC Normal or Stop mode (the device will  
not reenter SBC Restart mode).  
13.2.1  
Time-out watchdog  
The time-out watchdog is an easier and less secure watchdog than a window watchdog as the watchdog  
trigger can be done at any time within the configured watchdog timer period.  
A correct watchdog service immediately results in starting a new watchdog timer period. Taking the  
tolerances of the internal oscillator into account leads to the safe trigger area as defined in Figure 39.  
If the time-out watchdog period elapses, a watchdog reset is created by setting the reset output RO low and  
the SBC switches to SBC Restart mode.  
Typical timout watchdog trigger period  
tWD x 1.50  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
tWD x 1.20  
tWD x 1.80  
t / [tWD_TIMER  
]
safe trigger area  
Figure 39 Time-out watchdog definitions  
13.2.2  
Window watchdog  
Compared to the time-out watchdog, the characteristic of the window watchdog is that the watchdog timer  
period is divided between a closed and an open window. The watchdog must be triggered inside the open  
window.  
A correct watchdog trigger results in starting the window watchdog period by a closed window followed by an  
open window.  
The watchdog timer period is at the same time the typical trigger time and defines the middle of the open  
window.  
Taking the oscillator tolerances into account leads to a safe trigger area of:  
tWD × 0.72 < safe trigger area < tWD × 1.20  
The typical closed window is defined to a width of 60% of the selected window watchdog timer period. Taking  
the tolerances of the internal oscillator into account leads to the timings as defined in Figure 40.  
A correct watchdog service immediately results in starting the next closed window.  
Datasheet  
86  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
Should the trigger signal meet the closed window or should the watchdog timer period elapse, then a  
watchdog reset is created by setting the reset output RO LOW. The SBC switches to SBC Restart mode.  
tWD x 0.6  
tWD x 0.9  
Typ. closed window  
Typ. open window  
tWD x 0.48  
tWD x 0.72  
tWD x 1.0  
tWD x 1.20  
tWD x 1.80  
closed window  
uncertainty  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
t / [tWD_TIMER  
]
safe trigger area  
Figure 40 Window watchdog definitions  
13.2.3  
Watchdog setting check sum  
A check sum bit is part of the SPI command to trigger the watchdog and to set the watchdog setting.  
The sum of the 8 bits in the register WD_CTRL needs to be even. This is realized by either setting the bit  
CHECKSUM to “0” or “1”.  
If the check sum is wrong the SPI command is ignored, i.e. the watchdog is not triggered or the settings are not  
changed and the bit SPI_FAIL is set.  
The checksum is calculated by taking all 8 data bits into account.  
(13.1)  
CHKSUM = Bit15  
Bit8  
13.2.4  
Watchdog during SBC Stop mode  
The watchdog can be disabled for SBC Stop mode in SBC Normal mode. For safety reasons, there is a special  
sequence to be ensured in order to disable the watchdog. The sequence can be implemented only if the FSI  
feature is disabled (FSI_FO2 = 1 on HW_CTRL register). The sequence is shown in Figure 41.  
Two different bits (WD_STM_ EN_0 and WD_STM_ EN_1) in the registers WD_CTRL and WK_CTRL_1 need to  
be set.  
If a sequence error occurs, then the bit WD_STM_ EN_1 is cleared and the sequence has to be started again.  
The watchdog can be enabled by triggering the watchdog in SBC Stop mode or by switching back to  
SBC Normal mode via SPI. In both cases, the watchdog will start with a long open window and the bits  
WD_STM_ EN_1 and WD_STM_ EN_0 are cleared. After the long open window, the watchdog has to be served  
as configured in WD_CTRL register.  
Note: The bit WD_STM_ EN_0 will be cleared automatically when the sequence is started and it was “1” before.  
Datasheet  
87  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
Correct WD disabling  
Sequence Errors  
sequence  
Not setting the  
Set bit  
WD_STM_EN_1 = 1  
WD_STM_EN_0 bit with the  
next watchdog trigger after  
having set WD_STM_EN_1  
with next WD Trigger  
Staying in Normal Mode  
Set bit  
WD_STM_EN_0 = 1  
Before subsequent WD Trigger  
Will enable the WD:  
Switching back to SBC  
Normal Mode  
Change to  
SBC Stop Mode  
Triggering the watchdog  
WD is switched off  
Figure 41 Watchdog disabling sequence in SBC Stop mode  
13.2.4.1 WD start in SBC Stop mode due to bus wake  
In SBC Stop mode, the WD can be disabled. In addition, a feature can be enabled to start the watchdog with  
any bus wake during SBC Stop mode. The feature is enabled by setting the bit WD_EN_WK_BUS. This bit can  
only be changed in SBC Normal mode and needs to be programmed before entering SBC Stop mode. It is not  
reset by the SBC. The sequence described in Chapter 13.2.4 needs to be followed to disable the watchdog.  
With this function enabled, the WD will be restarted by any wake event on CAN or LINx. The wake event on CAN  
or LINx will generate an interrupt and the RXDLINx or RXDCAN will be pulled to LOW. The watchdog starts with  
long open window. The watchdog can be triggered in SBC Stop mode or the SBC can be switched to  
SBC Normal mode. To disable the watchdog again, the SBC needs to be switched to SBC Normal mode and the  
sequence must be sent again. The sequence is shown in Figure 42.  
Datasheet  
88  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
Correct WD disabling  
Sequence Errors  
sequence  
Missing to set bit  
Set bit  
WD_EN_WK_BUS = 1  
WD_STM_EN_0 with the  
next watchdog trigger after  
having set WD_STM_EN_1  
Staying in Normal Mode  
Set bit  
WD_STM_EN_1 = 1  
with next WD Trigger  
Will enable the WD :  
Set bit  
WD_STM_EN_0 = 1  
Switching back to SBC  
Normal Mode  
Before subsequent WD Trigger  
Triggering the watchdog  
Wake on CAN  
Change to  
SBC Stop Mode  
Wake on LIN  
WD is switched off  
Figure 42 Watchdog disabling sequence (with wake via bus)  
Datasheet  
89  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13.3  
VS power on reset  
When powering up, the device detects the VS power on reset when VS > VPOR,r, and the SPI bit POR is set to  
indicate that all SPI registers are set to POR default settings. The buck regulator starts up. The reset output is  
kept LOW and is only released when VCC1 has exceeded VRT1,r and after tRD1 has elapsed.  
If VS < VPOR,f, an internal reset is generated and the SBC is switched OFF. The SBC will restart in INIT mode when  
VS > VPOR,r rising. Timing behavior is shown in Figure 43.  
VS  
VPOR,r  
VPOR,f  
t
t
VCC1  
VRT1,r  
The reset threshold can be  
configured via SPI in SBC  
Normal Mode, default is VRT1  
VRTx,f  
RO  
SBC Restart Mode is  
entered whenever the  
Reset is triggered  
t
tRD1  
SBC Mode  
Re-  
start  
SBC OFF  
SBC INIT MODE  
Any SBC MODE  
SBC OFF  
t
SPI  
Command  
Figure 43 Ramp up/down example of supply voltage  
13.4  
Undervoltage VLIN  
When the supply voltage VLIN reaches the undervoltage threshold (VLIN,UVD) the SBC does the following  
actions:  
The SPI bit VLIN_UV is set. No other error bits are set. The bit can be cleared once the condition is no longer  
present  
LIN is set to LIN Receive-Only mode  
For additional information, please refer to Chapter 9.2.7.  
Datasheet  
90  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13.5  
Buck regulator monitoring features  
13.5.1  
VCC1 undervoltage  
As described in Chapter 13.1, and Figure 44, a reset will be triggered (RO pulled LOW) when the VCC1 output  
voltage reaches the undervoltage threshold (VRTx) and the SBC enters SBC Restart mode. The bit VCC1_UV is  
set. The threshold can be configured using VCC1_RT bits.  
The VCC1 undervoltage can be disabled by setting VCC1_RT to 11B. With this configuration no reset is issued  
due to VCC1 undervoltage and no VCC1_UV bit is set. The under voltage detection has to be performed outside  
of the SBC when required.  
VCC1  
VRTx  
t
tRF  
tRD1  
RO  
t
SBC Normal  
SBC Restart  
SBC Normal  
Figure 44 VCC1 undervoltage timing diagram  
Note: The VCC1_UV bit is not set in SBC Sleep and Fail-Safe mode as VCC1 is known to be 0 V in these cases.  
13.5.2  
VCC1 overvoltage  
For fail-safe reasons, a VCC1 overvoltage detection feature is implemented. It is active in SBC Init, Normal, and  
Stop mode.  
If VCC1 voltage exceeds the VCC1,OV,r threshold, the SBC triggers following actions:  
The bit VCC1_OV is always set  
If the bit VCC1_OV_ RST is set, SBC Restart mode is entered. A reset event is generated. The SBC exits the  
SBC Restart mode and SBC Normal mode is resumed after the VCC1 over voltage is not present anymore  
(see also Figure 45)  
Datasheet  
91  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
VCC1  
VCC1,OV  
t
tOV_filt  
RO  
tRD1  
t
SBC Normal  
SBC Restart  
SBC Normal  
Figure 45 VCC1 overvoltage timing diagram  
13.5.3  
VCC1 short circuit  
The short circuit protection feature for buck regulator is implemented as follows:  
When VCC1 stays below the undervoltage threshold VRTx for more than tVCC1,SC and at the same time VS is  
above the threshold VS,UV_TO, the SBC enters SBC Fail-Safe mode and turns OFF the buck regulator. The FOx  
are activated and the SPI status bits VCC1_SC, VCC1_UV and BCK_SH are set. The SBC can be reactivated  
by a wake event on CAN, LINx or WK  
13.5.4  
SMPS status register  
The TLE9271QX has a dedicated SMPS status register which provides information about the buck and boost  
regulators. No SBC mode changes and no transceivers configurations changes are triggered when an  
SMPS_STAT register bit is set.  
13.6  
VCC2 undervoltage  
An undervoltage warning is implemented for VCC2 as follows:  
In case VCC2 drops below the VCC2,UV,f threshold for t > tVCC2,UV, the SPI bit VCC2_UV is set and can be only  
cleared via SPI  
Note: The VCC2_UV flag is not set during turn-on or turn-off of VCC..  
13.7  
VCAN undervoltage  
The CAN module has a dedicated feature to detect undervoltage condition on the VCAN supply pin. Refer to  
Chapter 8.2.7 for additional information.  
Datasheet  
92  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13.8  
Thermal protection  
Three independent and different thermal protection features are implemented in the SBC according to the  
system impact:  
Individual thermal shutdown of specific blocks  
Temperature prewarning of buck regulator  
SBC thermal shutdown due to buck regulator overtemperature  
13.8.1  
Individual thermal shutdown  
As a first-level protection measure, the output stages VCC2, CAN and LINx are independently switched OFF  
when the respective block reaches the temperature threshold TjTSD1. Then the TSD1 bit is set. This bit can only  
be cleared via SPI once the overtemperature is not present anymore. Regardless of the SBC mode, the thermal  
shutdown protection is only active when the respective block is ON.  
The different modules behave as follows:  
VCC2: It is switched OFF and the control bits VCC2_ON are cleared. The status bit VCC2_OT is set. Once the  
over temperature condition is not present anymore, the VCC2 must be reconfigured by SPI. The thermal  
protection in VCC2 is available only in SBC Normal mode or SBC Stop mode with watchdog activated  
CAN: The transmitter is disabled and stays in CAN Normal mode acting like CAN Receive-Only mode. The  
status bits CAN_FAIL = 01B are set. Once the overtemperature condition is not present anymore, the CAN  
transmitter is automatically switched on  
LIN1, LIN2: The transmitter is disabled and stays in LIN Normal mode acting like LIN Receive-Only mode.  
The respective status bits LINx_FAIL are set to 01B. Once the overtemperature condition is not present  
anymore, the LIN transmitter is automatically switched on  
Note: The diagnosis bits are not cleared automatically and have to be cleared via SPI once the overtemperature  
condition is not present anymore.  
13.8.2  
Temperature prewarning  
As a next level of thermal protection, a temperature prewarning is implemented if the buck regulator reaches  
the temperature prewarning threshold TjPW. The status bit TPW is set. This bit can only be cleared via SPI once  
the overtemperature is not present anymore. Regardless of the SBC mode the temperature prewarning is  
active only if the buck converter is ON.  
13.8.3  
SBC thermal shutdown  
As a highest level of thermal protection, a temperature shutdown of the SBC occurs if the buck regulator  
reaches the thermal shutdown temperature threshold TjTSD2. The temperature protection is available only in  
case that the buck regulator works in PWM modulation. The thermal protection is not available if the buck  
regulator works in PFM mode.  
Once a TSD2 event is detected, SBC Fail-Safe mode is entered for at least tTSD2. The default wake sources (CAN,  
LINx, WK pin) are enabled together with the fail-safe outputs.  
When a TSD2 event is detected, the status bit TSD2 is set. This bit can only be cleared via SPI in SBC Normal  
mode once the overtemperature is not present anymore. Regardless of the SBC mode the thermal shutdown  
is only active if the buck converter is ON.  
Datasheet  
93  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
13.9  
Electrical characteristics  
Table 21 Electrical specification  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; SBC Normal mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VCC1 monitoring, reset generator; pin RO TLE9271QX  
Reset threshold  
voltage RT1,f  
VRT1,f  
VRT1,r  
VRT2,f  
VRT2,r  
VRT3,f  
4.5  
4.6  
3.7  
3.8  
3.0  
4.6  
4.7  
3.9  
4.0  
3.15  
4.75  
4.85  
4.0  
V
V
V
V
V
Default setting; P_13.9.1  
V
CC1 falling  
Default setting; P_13.9.2  
CC1 rising  
Reset threshold  
voltage RT1,r  
V
Reset threshold  
voltage RT2,f  
SPI option; VCC1 P_13.9.3  
falling  
Reset threshold  
voltage RT2,r  
4.1  
SPI option; VCC1 P_13.9.4  
rising  
Reset threshold  
voltage RT3,f  
3.3  
SPI option;  
VS 4 V;  
P_13.9.5  
P_13.9.6  
V
CC1 falling  
Reset threshold  
voltage RT3,r  
VRT3,r  
3.1  
3.25  
3.4  
V
SPI option;  
VS 4 V;  
V
CC1 rising  
Reset threshold hysteresis VRT,hys  
CC1 overvoltage detection VCC1,OV,r  
20  
100  
5.4  
200  
5.5  
mV  
V
P_13.9.33  
P_13.9.50  
V
5.2  
Rising VCC1  
threshold  
VCC1 overvoltage detection VCC1,OV,hys  
20  
100  
200  
mV  
P_13.9.74  
hysteresis  
2)  
2)  
VCC1 short to GND filter time tVCC1,SC  
4
ms  
µs  
V
P_13.9.11  
P_13.9.58  
P_13.9.13  
V
CC1 overvoltage filter time tOV,filt  
7
VS threshold for VCC1  
undervoltage time out  
detection  
VS,UV_TO  
5.3  
5.6  
6.0  
VS needs to be  
above to activate  
VCC1_SC time-  
out  
Reset LOW output voltage  
VRO,HIGH  
0.2  
0.4  
V
IRO = 1 mA for  
P_13.9.14  
P_13.9.15  
V
CC1 1 V  
Reset HIGH output voltage VRO,LOW  
0.7 ×  
VCC1µC + V  
IRO = -20 µA  
VCC1µC  
0.3 V  
Reset pull-up resistor  
Reset filter time  
RRO  
tRF  
10  
4
20  
10  
40  
26  
kΩ  
µs  
VRO = 0 V  
P_13.9.16  
P_13.9.17  
2)  
V
< VRT1x  
CC1  
to RO = LOW  
Datasheet  
94  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Supervision functions  
Table 21 Electrical specification (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; SBC Normal mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)2)  
Reset delay time  
tRD1  
1.5  
2.5  
ms  
P_13.9.18  
VCC2 monitoring  
VCC2 undervoltage  
threshold (falling)  
VCC2,UV,f  
VCC2,UV,r  
VCC2,UV,hys  
tVCC2,UV  
4.5  
4.6  
20  
4.75  
4.9  
250  
V
VCC2 falling  
VCC2 rising  
P_13.9.21  
P_13.9.55  
P_13.9.56  
P_13.9.22  
VCC2 undervoltage  
threshold (rising)  
V
VCC2 undervoltage  
detection hysteresis  
100  
7
mV  
µs  
2)  
VCC2 undervoltage Filter  
time  
Watchdog generator  
Long open window  
Internal oscillator  
4)  
tLW  
240  
0.8  
300  
1.0  
360  
1.2  
ms  
P_13.9.34  
P_13.9.24  
fCLKSBC  
MHz  
Minimum waiting time during SBC Fail-Safe mode  
2)3)  
Min. waiting time in fail-safe tFS,min  
100  
ms  
P_13.9.41  
Power on reset, over-/undervoltage protection  
VS power ON reset rising  
VS power ON reset falling  
VPOR,r  
VPOR,f  
4.5  
5
3
V
V
VS increasing  
P_13.9.25  
P_13.9.26  
VS decreasing  
BOOST=OFF  
VLINundervoltagedetection VLIN,UVD  
threshold  
4.8  
5.5  
V
Hysteresis  
included  
4)  
P_13.9.27  
P_13.9.57  
VLINundervoltagedetection VLIN,UVD,hys  
200  
mV  
hysteresis  
Overtemperature shutdown4)  
4)  
Thermal prewarning ON  
temperature  
TjPW  
125  
145  
165  
°C  
P_13.9.37  
4)  
4)  
2)  
Thermal shutdown TSD1  
Thermal shutdown TSD2  
TjTSD1  
TjTSD2  
tTSD2  
165  
165  
185  
185  
1
200  
200  
°C  
°C  
s
P_13.9.38  
P_13.9.39  
P_13.9.40  
Deactivation time after  
thermal shutdown TSD2  
1) The reset delay time will start when VCC1 crosses above the selected Vrtx threshold.  
2) Not subject to production tests. Tolerance defined by internal oscillator tolerance.  
3) This time applies for all failure entries except a device thermal shutdown (TSD2 has a 1 s waiting time tTSD2).  
4) Not subject to production test, specified by design.  
Datasheet  
95  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14  
Serial Peripheral Interface  
14.1  
SPI description  
The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input  
CLK provided by the microcontroller. The output word appears synchronously at the data output SDO (see  
Figure 46).  
The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), LOW active. After  
the CSN input returns from LOW to HIGH, the word that has been read is interpreted according to the content.  
The SDO output switches to tristate status (HIGH impedance) at this point, thereby releasing the SDO bus for  
other use.  
The state of SDI is shifted into the input register with every falling edge on CLK. The state of SDO is shifted out  
of the output register after every rising edge on CLK. The SPI of the SBC is not daisy chain capable.  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
CLK  
time  
Actual data  
New data  
0 1  
+ +  
SDI  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
time  
SDI: will accept data on the falling edge of CLK signal  
Actual status  
New status  
0
1
+
ERR  
SDO  
ERR  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
-
+
time  
SDO: will change state on the rising edge of CLK signal  
Figure 46 SPI data transfer timing (note the reversed order of LSB and MSB shown in this figure  
compared to the register description)  
Datasheet  
96  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14.2  
Failure signalization in the SPI data output  
When the microcontroller sends a wrong SPI command to the SBC, the SBC ignores the information. Wrong  
SPI commands can be either an invalid control command requesting to go to an SBC mode which is not  
allowed by the state machine, for example from SBC Stop mode to SBC Sleep mode. In this case the diagnosis  
bit ‘SPI_FAIL’ is set. This bit can be only reset by actively clearing it using an SPI command.  
Invalid SPI commands are listed below:  
Illegal state transitions:  
Going from SBC Stop to SBC Sleep mode. In this case, the SBC enters in addition the SBC Restart mode.  
Trying to go to SBC Stop or SBC Sleep mode from SBC Init mode. In this case, the SBC enters  
SBC Normal mode  
Attempting to change the watchdog settings during Stop mode ;.  
Only WD trigger, returning to SBC Normal mode, select Software Reset, set to SBC Stop mode to return  
from PWM to PFM when automatic buck mode transition has happened and read and clear commands are  
valid SPI commands in SBC Stop mode  
Attempt to go to Sleep mode when all bits in the BUS_CTRL_1 and WK_CTRL_2 registers are cleared. In  
this case, the SPI_FAIL bit is set and the SBC enters Restart mode.  
Note that at least one wake source must be activated in order to avoid a deadlock situation in Sleep mode,  
i.e. the SBC would not be able to wake up anymore. There is no signalling or failure handling for the  
attempt to go to SBC Stop mode when all bits in the registers BUS_CTRL_1 and WK_CTRL_2 are cleared  
because the microcontroller can leave this mode via SPI  
Signalization of the ERR flag in the SPI data output (see Figure 46):  
In addition, the number of received input clocks is supervised to be 0- or 16 clock cycles and the input word is  
discarded in case of a mismatch (0 clock cycle to enable ERR signalization). Both errors - 0 bit and 16 bit CLK  
mismatch or CLK high during CSN edges - are flagged in the following SPI output by a HIGH at the data output  
(SDO pin, bit ERR) before the first rising edge of the clock is received. The error logic also recognizes if CLK was  
HIGH during CSN edges. The complete SPI command is ignored in these cases.  
Note: It is also possible (no ERR flag is set) to quickly check for the ERR flag without sending any data bits. i.e. no  
SPI clocks are sent in this case.  
Datasheet  
97  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14.3  
SPI programming  
For the TLE9271QX, 7 bits are used for the address selection (6...0). Bit 7 is used to decide between Read_Only  
and Read_Clear for the status bits, and between Write and Read Only for configuration bits. For the actual  
configuration and status information, 8 data bits (BIT15...8) are used.  
Writing, clearing and reading is done byte wise. SPI configuration and status bits are not cleared automatically  
and must be cleared by the microcontroller, e.g. if the TSD2 was set due to overtemperature. The  
configuration bits will be partially automatically cleared by the SBC - please refer to the individual registers  
description for detailed information. During SBC Restart mode or Sleep mode or Fail-Safe mode, the SPI  
communication is ignored by the SBC, i.e. it is not interpreted.  
There are two types of SPI registers:  
Control registers: The registers used to configure the SBC, e.g. SBC mode, watchdog trigger, etc.  
Status registers: The registers used to signal the status of the SBC, e.g. wake-up events, warnings, failures,  
etc.  
For the status registers, the requested information is given in the same SPI command in DO.  
For the control registers, the status of the respective bit is also shown in the same SPI command, but if the  
setting is changed this is only shown with the next SPI command (it is only valid after CSN HIGH) of the same  
register.  
The SBC status information from the SPI status registers is transmitted in a compressed format with each SPI  
response on SDO in the so-called Status Information Field register (see also Figure 47). The purpose of this  
register is to quickly signal the information to the microcontroller if there was a change in one of the SPI status  
registers. In this way, the microcontroller does not need to constantly read all the SPI status registers but only  
those registers that have changed. Each bit in the Status Information Field represents an SPI status register  
(see Table 22). As soon as one bit is set in one of the status registers, the respective bit in the Status  
Information Field register is set. The register WK_LVL_STAT is not included in the status Information field. This  
is shown in Table 22.  
For example, if bit 0 in the Status Information Field is set to 1, one or more bits of the register 100 0001  
(SUP_STAT) are set to 1. Then this register needs to be read in a second SPI command. The bit in the Status  
Information Field will be set to 0 when all bits in the register 100 0001 are set back to 0.  
Table 22 Status information field  
Status  
Symbol  
Status register  
information bit address bit  
0
1
2
3
4
5
6
7
100 0001  
100 0010  
100 0011  
100 0100  
100 0101  
100 0110  
100 0111  
100 1100  
SUP_STAT: Supply status - VS fail, VCCx fail, POR  
THERM_STAT: Thermal protection status  
DEV_STAT: Device status - mode before wake, WD fail, SPI fail, failure  
BUS_STAT_1: Bus failure status: CAN, LIN  
BUS_STAT_2: Bus failure status: CAN, LIN  
WK_STAT_1: Wake source status  
WK_STAT_2: Wake source status  
SMPS_STAT: SMPS status  
Datasheet  
98  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
LSB  
MSB  
DI  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15  
R/W  
Address Bits  
Data Bits  
x
x
x
x
x
x
Register content of  
selected address  
DO  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15  
Data Bits  
Status Information Field  
x
x
x
x
x
x
time  
LSB is sent first in SPI message  
Figure 47 SPI operation mode  
14.4  
SPI bit mapping  
Figure 48 and show the mapping of the SPI bits and the respective registers.  
The control registers ‘000 0001’ to ‘001 1110’ are READ/WRITE register. Depending on bit 7 the bits are only  
read or also written. The new setting of the bit after write can be seen with a new read / write command.  
The registers ‘100 0001’ to ‘111 1110’ are Status Registers and can be read or read with clearing the bit (if  
possible) depending on bit 7. To clear a data byte of one of the Status Registers, bit 7 must be set to 1. The  
register WK_LVL_STAT is an exception as it shows the actual voltage level at the respective WK pin  
(LOW/HIGH) and can thus not be cleared.  
When changing to a different SBC mode, certain configurations and status bits will be cleared:  
The SBC mode bits are updated to the actual status, e.g. when returning to Normal mode  
In Sleep mode, the CAN and LIN control bits will be changed to CAN/LIN wake capable if they were ON  
before. FOx will stay activated if it was triggered before  
VCC2 can be active in Low power mode (Stop/Sleep). The configuration can only be done in Normal mode.  
Diagnosis is active (UV, OT)  
Depending on the respective configuration, CAN/LIN transceivers will be either OFF, woken or still wake  
capable  
Datasheet  
99  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
7
6...0  
Register Short Name  
Address  
A6…A0  
Read-Only (1)  
C O N T R O L R E G I S T E R S  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001100  
0011110  
M_S_CTRL  
HW_CTRL  
WD_CTRL  
BUS_CTRL_1  
BUS_CTRL_2  
WK_CTRL_1  
WK_CTRL_2  
WK_PUPD_CTRL  
TIMER1_CTRL  
SYS_STATUS_CTRL  
S T A T U S R E G I S T E R S  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001100  
1111110  
SUP_STAT  
THERM_STAT  
DEV_STAT  
BUS_STAT_1  
BUS_STAT_2  
WK_STAT_1  
WK_STAT_2  
WK_LVL_STAT  
SMPS_STAT  
FAM_PROD_STAT  
read/clear  
read  
Figure 48 SPI bit mapping  
15  
14  
13  
12  
11  
10  
9
8
7
6...0  
Data Bit 15…8  
D4  
Register Short Name  
Address  
A6…A0  
Read-Only (1)  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
C O N T R O L R E G I S T E R S  
M_S_CTRL  
HW_CTRL  
WD_CTRL  
BUS_CTRL_1  
BUS_CTRL_2  
WK_CTRL_1  
MODE_1  
FSI_FO2  
CHECKSUM  
LIN_FLASH  
reserved  
reserved  
reserved  
reserved  
reserved  
MODE_0  
PWM_TLAG  
WD_STM_EN_0  
LIN_LSM  
reserved  
TIMER1_WK_EN  
reserved  
reserved  
reserved  
SYS_STAT_6  
reserved  
FO_ON  
WD_WIN  
LIN_TXD_TO  
reserved  
reserved  
reserved  
reserved  
reserved  
VCC2_ON_1  
PWM_BY_WK  
WD_EN_WK_BUS  
LIN1_1  
reserved  
reserved  
reserved  
reserved  
reserved  
SYS_STAT_4  
VCC2_ON_0  
PWM_AUTO  
MAX_3_RST  
LIN1_0  
reserved  
reserved  
reserved  
reserved  
reserved  
SYS_STAT_3  
VCC1_OV_RST  
BOOST_V  
WD_TIMER_2  
reserved  
reserved  
WD_STM_EN_1  
reserved  
VCC1_RT_1  
BOOST_EN  
WD_TIMER_1  
CAN_1  
LIN2_1  
reserved  
VCC1_RT_0  
CFG2  
WD_TIMER_0  
CAN_0  
LIN2_0  
reserved  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001100  
0011110  
WK_CTRL_2  
reserved  
WK_PUPD_1  
WK_EN  
WK_PUPD_0  
WK_PUPD_CTRL  
TIMER1_CTRL  
SYS_STATUS_CTRL  
reserved  
TIMER1_PER_2 TIMER1_PER_1 TIMER1_PER_0  
SYS_STAT_2  
SYS_STAT_7  
SYS_STAT_5  
SYS_STAT_1  
SYS_STAT_0  
S T A T U S R E G I S T E R S  
SUP_STAT  
THERM_STAT  
DEV_STAT  
BUS_STAT_1  
BUS_STAT_2  
WK_STAT_1  
WK_STAT_2  
WK_LVL_STAT  
SMPS_STAT  
POR  
reserved  
DEV_STAT_1  
reserved  
reserved  
PFM_PWM  
reserved  
TEST  
VLIN_UV  
reserved  
DEV_STAT_0  
LIN1_FAIL_1  
reserved  
reserved  
reserved  
reserved  
BST_SH  
VCC1_OV  
reserved  
RO_CL_HIGH  
LIN1_FAIL_0  
reserved  
CAN_WU  
reserved  
CFG2_STATE  
BST_OP  
VCC2_OT  
reserved  
FSI_FAIL  
reserved  
reserved  
TIMER_WU  
reserved  
reserved  
BST_GSH  
FAM_0  
VCC2_UV  
reserved  
WD_FAIL_1  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
PROD_3  
VCC1_SC  
TSD2  
WD_FAIL_0  
CAN_FAIL_1  
LIN2_FAIL_1  
reserved  
reserved  
reserved  
BCK_SH  
PROD_2  
reserved  
TSD1  
SPI_FAIL  
CAN_FAIL_0  
LIN2_FAIL_0  
reserved  
LIN2_WU  
reserved  
BCK_OP  
PROD_1  
VCC1_UV  
TPW  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001100  
1111110  
FO_ON_STATE  
VCAN_UV  
reserved  
WK_WU  
LIN1_WU  
WK  
BST_ACT  
FAM_3  
BCK_OOR  
PROD_0  
read/clear  
read  
FAM_PROD_STAT  
FAM_2  
FAM_1  
Figure 49 Detailed SPI bit mapping  
Datasheet  
100  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14.5  
SPI control registers  
Read-/write operation (see Chapter 14.3):  
The ‘POR / Soft Reset Value’ defines the register content after POR or SBC Reset  
The ‘Restart Value’ defines the register content after SBC Restart, where ‘x’ means the bit is unchanged  
One 16-bit SPI command consist of two bytes:  
The 7-bit address and one additional bit for the register access mode and  
Following the data byte  
The numbering of following bit definitions refers to the data byte and correspond to the bits D0...D7 and  
to the SPI bits 8...15 (see also Figure 49)  
There are three different bit types:  
r’ = READ; read-only bits (or reserved bits)  
rw’ = READ/WRITE; readable and writable bits  
rwh’ = READ/WRITE/HARDWARE; as rw with the possibility that the hardware can change the bits  
Reading a register is done byte wise by setting the SPI bit 7 to “0” (= read-only)  
Writing to a register is done byte wise by setting the SPI bit 7 to “1”  
SPI control bits are in general not cleared or changed automatically. This must be done by the  
microcontroller via SPI programming  
M_S_CTRL  
Mode- and supply control (Address 000 0001B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0xxxB  
7
6
5
4
3
2
1
0
VCC1_OV_  
RST  
MODE_1  
MODE_0  
Reserved  
VCC2_ON_1 VCC2_ON_0  
VCC1_RT_1 VCC1_RT_0  
R
rw  
rw  
r
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
MODE  
7:6  
rw  
SBC mode control  
00B , SBC Normal mode  
01B , SBC Sleep mode  
10B , SBC Stop mode  
11B , SBC Reset: Soft reset is executed (RO is not triggered)  
Reserved  
VCC2_ON  
5
r
Reserved, always reads as 0  
4:3  
rw  
VCC2 mode control  
00B , VCC2 OFF  
01B , VCC2 ON in Normal mode  
10B , VCC2 ON in Normal and Stop mode  
11B , VCC2 ON in Normal, Stop and Sleep mode  
VCC1_OV_  
RST  
2
rw  
VCC1 overvoltage reset enable  
0B  
1B  
, Overvoltage on VCC1 will not trigger a reset  
, Overvoltage on VCC1 will trigger a reset, SBC goes to SBC  
Restart mode  
Datasheet  
101  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
VCC1_RT  
1:0  
rw  
VCC1 reset threshold control  
00B , Vrt1 selected (highest threshold)  
01B , Vrt2 selected  
10B , Vrt3 selected  
11B , Undervoltage Reset disabled  
Note: Trying to enter SBC Sleep mode without any of the wake sources enabled will result in entering SBC  
Restart mode and triggering a Reset.  
HW_CTRL  
Hardware control (Address 000 0010B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xx0x xxxxB  
7
6
5
4
3
2
1
0
FSI_FO2  
PWM_TLAG  
FO_ON  
PWM_BY_WK PWM_AUTO  
BOOST_V  
BOOST_EN  
CFG2  
R
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
FSI_FO2  
PWM_TLAG  
FO_ON  
7
rw  
rw  
rw  
Failure safe input activation  
This bit is used to activate the fail-safe input by software.  
0B  
1B  
, FSI active  
, FSI disable. The pin is set as output (FO2)  
6
5
PWM lag time  
This bit permits to set the time between the PWM to PFM transition.  
0B  
1B  
, 100 µs  
, 1 ms  
Failure outputs activation  
This bit is used to activate the fail outputs by software.  
0B  
, FOx not activated by software, FOx can be activated by  
defined failure  
1B  
, FOx activated by software  
PWM_BY_  
WK  
4
3
rw  
rw  
PWM of buck converter enabled by WK pin in SBC Stop mode  
0B  
1B  
, Buck converter uses PFM in Stop mode  
, Buck converter can be switched between PFM and PWM by  
the level of the WK pin in SBC Stop mode  
PWM_AUTO  
Automatic transition PFM-PWM in SBC Stop mode  
This bit is used to activate the automatic transition PFM to PWM in  
SBC Stop mode.  
0B  
1B  
, Buck converter always uses PFM in SBC Stop mode  
, Buck converter uses automatic transition PFM to PWM in  
case large current needed in SBC Stop mode. To come back  
in PFM, write a SBC Stop mode command to M_S_CTRL  
Datasheet  
102  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
BOOST_V  
2
rw  
Boost voltage selection  
0B  
1B  
, Boost voltage 8 V typical  
, Boost voltage 6.65 V typical  
BOOST_EN  
CFG2  
1
0
rw  
rw  
Boost converter enable  
0B  
1B  
, Boost off  
, Boost enabled, automatic switch ON for VS voltage lower  
than VBST,THx  
Configuration select 2  
0B  
, Fail outputs (FOx) are active after 2nd watchdog trigger fail  
Config 3  
1B  
, Fail outputs (FOx) are active after 1st watchdog trigger fail  
Config 1  
Note: The selection between Config 1 respectively Config 3 is done by the pin CFG. The CFG pin defines if the SBC  
goes to Fail-Safe mode with VCC1 OFF in case of a watchdog failure.  
WD_CTRL  
Watchdog control (Address 000 0011B)  
POR / Soft Reset Value: 0001 0100B;  
Restart Value: x00x x100B  
7
6
5
4
3
2
1
0
WD_STM_  
EN_0  
WD_EN_WK_  
BUS  
CHECKSUM  
WD_WIN  
MAX_3_RST WD_TIMER_2 WD_TIMER_1 WD_TIMER_0  
r
w
rwh  
rw  
rwh  
rw  
rwh  
rwh  
rwh  
Field  
Bits  
Type  
Description  
CHECKSUM  
7
w
Checksum bit  
The sum of bit 7...0 needs to be even. Otherwise the bit SPI_FAIL is  
set and the command ignored.  
This bit will always read as ‘0’.  
0B  
1B  
, Counts as 0 for checksum calculation  
, Counts as 1 for checksum calculation  
WD_STM_  
EN_0  
6
5
4
rwh  
rw  
Watchdog activation during SBC Stop mode  
0B  
1B  
, Watchdog is active in SBC Stop mode  
, Watchdog is deactivated in SBC Stop mode  
WD_WIN  
Watchdog window time-out feature enabled  
0B  
1B  
, Watchdog works as time-out Watchdog  
, Watchdog works as Window Watchdog  
WD_EN_WK  
_BUS  
rwh  
Enable the watchdog after transceiver (CAN/LIN) wake-up in  
SBC Stop mode  
0B  
1B  
, Watchdog will not start after a CAN/LIN1/LIN2/ wake  
, Watchdog starts with a long open window after  
CAN/LIN1/LIN2 wake  
Datasheet  
103  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
MAX_3_RST  
3
rw  
Limit number of resets due to a watchdog failure  
0B  
1B  
, Always generate a reset in case of WD fail  
, After 3 consecutive resets due to WD fail, no further reset is  
generated  
WD_TIMER 2:0  
rwh  
Watchdog timer period  
000B , 10 ms  
001B , 20 ms  
010B , 50 ms  
011B , 100 ms  
100B , 200 ms  
101B , 500 ms  
110B , 1s  
111B , reserved  
Note: See also Chapter 13.2.4 for more information on disabling the watchdog SBC Stop mode.  
BUS_CTRL_1  
Bus control (Address 000 0100B)  
POR / Soft Reset Value: 0010 0000B;  
Restart Value: xxxx x0xxB  
7
6
5
4
3
2
1
0
LIN_FLASH  
LIN_LSM  
LIN_TXD_TO  
LIN1_1  
LIN1_0  
reserved  
CAN_1  
CAN_0  
r
rw  
rw  
rw  
rwh  
rwh  
r
rwh  
rwh  
Field  
Bits  
Type  
Description  
LIN_FLASH  
7
rw  
LIN flash programming mode  
0B  
1B  
, Slope control mechanism active  
, Deactivation of slope control for baud rates up to 115 kBaud  
LIN_LSM  
6
rw  
LIN LOW-slope mode selection  
0B  
1B  
, LIN Normal-slope mode is activated  
, LIN Low-slope mode is activated  
LIN_TXD_  
TO  
5
rw  
LIN TXD time-out control  
0B  
1B  
, TXDLIN time-out feature disabled  
, TXDLIN time-out feature enabled  
LIN1  
4:3  
rwh  
LIN module mode  
00B , LIN1 OFF  
01B , LIN1 is wake capable  
10B , LIN1 Receive-Only mode  
11B , LIN1 Normal mode  
Reserved  
2
r
Reserved, always reads as 0  
Datasheet  
104  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
CAN  
Bits  
Type  
Description  
1:0  
rwh  
HS-CAN module mode  
00B , CAN OFF  
01B , CAN is wake capable  
10B , CAN Receive-Only mode  
11B , CAN Normal mode  
Note: In case CAN transceiver is configured to ‘11’ while going to SBC Stop or Sleep mode, it will be  
automatically set to wake capable (‘01’). However, the SPI bits will stay unchanged, i.e. once the SBC  
returns to Normal mode, the previous state is recovered again (‘11’). The Receive-Only mode (‘10’) has to  
be selected by purpose before entering SBC Stop mode. For more details, refer to Figure 18.  
In case of entering SBC Sleep mode, the CAN transceiver has to be set to CAN wake capable or CAN OFF  
mode before.  
In case LIN transceiver is configured to ‘11’ while going to SBC Stop or Sleep mode, it will be automatically  
set to wake capable (‘01’). However, the SPI bits will stay unchanged, i.e. once the SBC returns to Normal  
mode, the previous state is recovered again (‘11’).The Receive-Only mode (‘10’) has to be selected by  
purpose before entering SBC Stop mode. For more details, refer to Figure 25.  
BUS_CTRL_2  
Bus control (Address 000 0101B)  
POR / Soft Reset Value: 0000 0000B; Restart Value: 0000 00xxB  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
LIN2_1  
LIN2_0  
r
r
r
r
r
r
r
rwh  
rwh  
Field  
Bits  
Type  
Description  
Reserved  
LIN2  
7:2  
1:0  
r
Reserved, always reads as 0  
rwh  
LIN module mode  
00B , LIN2 OFF  
01B , LIN2 is wake capable  
10B , LIN2 Receive-Only mode  
11B , LIN2 Normal mode  
Note: In case either LIN transceiver is configured to ‘11’ while going to SBC Stop or Sleep mode, it will be  
automatically set to wake capable (‘01’). However, the SPI bits will stay unchanged, i.e. once the SBC  
returns to Normal mode, the previous state is recovered again (‘11’). The Receive-Only mode (‘10’) has to  
be selected by purpose before entering SBC Stop mode. For more details, refer to Figure 25.  
Datasheet  
105  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
WK_CTRL_1  
Wake input control (Address 000 0110B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0x00 0000B  
7
6
5
4
3
2
1
0
TIMER1_WK_  
EN  
WD_STM_  
EN_1  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
r
r
rw  
r
r
r
rwh  
r
r
Field  
Reserved  
Bits  
Type  
Description  
7
r
Reserved, always reads as 0  
TIMER1_WK 6  
rw  
Timer1 wake source control  
_EN  
0B  
1B  
, Timer1 wake disabled  
, Timer1 is enabled as a wake source  
Reserved  
5:3  
r
Reserved, always reads as 0  
WD_STM_  
EN_1  
2
rwh  
Watchdog activation during SBC Stop mode  
0B  
1B  
, Watchdog is active in Stop mode  
, Watchdog is deactivated in Stop mode  
Reserved  
1:0  
r
Reserved, always reads as 0  
WK_CTRL_2  
Wake source control (Address 000 0111B)  
POR / Soft Reset Value: 0000 0001B; Restart Value: 0000 000xB  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
WK_EN  
r
r
r
r
r
r
r
r
rw  
Field  
Bits  
Type  
Description  
Reserved  
WK_EN  
7:1  
0
r
Reserved, always reads as 0  
WK wake source control  
rw  
0B  
1B  
, WK wake disabled  
, WK is enabled as a wake source  
WK_PUPD_CTRL  
Wake input level control (Address 000 1000B)  
POR / Soft Reset Value: 0000 0000B; Restart Value: 0000 00xxB  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
WK_PUPD_1 WK_PUPD_0  
r
r
r
r
r
r
r
rw  
rw  
Datasheet  
106  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
7:2  
Type  
r
Description  
Reserved  
WK_PUPD  
Reserved, always reads as 0  
1:0  
rw  
WK pull-up/pull-down configuration  
00B , No pull-up/pull-down selected  
01B , Pull-down resistor selected  
10B , Pull-up resistor selected  
11B , Automatic switching to pull-up or pull-down  
TIMER1_CTRL  
Timer1 control and selection (Address 000 1100B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0xxxB  
7
6
5
4
3
2
1
0
TIMER1_PER TIMER1_PER TIMER1_PER  
reserved  
reserved  
reserved  
reserved  
reserved  
_2  
_1  
_0  
r
r
r
r
r
r
rw  
rw  
rw  
Field  
Reserved  
Bits  
7:3  
Type  
Description  
r
Reserved, always reads as 0  
TIMER1_PE 2:0  
R
rw  
Timer1 period configuration  
000B , 10 ms  
001B , 20 ms  
010B , 50 ms  
011B , 100 ms  
100B , 200 ms  
101B , 1 s  
110B , 2 s  
111B , reserved  
SYS_STATUS_CTRL  
System status control (Address 001 1110B)  
POR Value: 0000 0000B;  
Restart Value/Soft Reset Value: xxxx xxxxB  
7
6
5
4
3
2
1
0
SYS_STAT_7 SYS_STAT_6 SYS_STAT_5 SYS_STAT_4 SYS_STAT_3 SYS_STAT_2 SYS_STAT_1 SYS_STAT_0  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
rw  
Description  
SYS_STAT  
7:0  
System status control byte (bit0=LSB; bit7=MSB)  
Dedicated byte for system configuration, access only by  
microcontroller. No SBC functions  
Datasheet  
107  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Notes  
1. The SYS_STATUS_CTRL register is an exception for the default values, i.e. it will keep its configured value  
even after a Soft Reset.  
2. This byte is intended for storing system configurations of the ECU by the microcontroller and it is writable in  
SBC Normal and Stop mode. The byte is not accessible by the SBC and is also not cleared after Fail-Safe or  
SBC Restart mode. It allows the microcontroller to quickly store system configuration without losing the data.  
Datasheet  
108  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14.6  
SPI status information registers  
Read-/write operation (see Chapter 14.3):  
One 16-bit SPI command consists of two bytes:  
The 7-bit address and one additional bit for the register access mode and  
Following the data byte will be ignored when accessing a status register  
The numbering of following bit definitions refers to the data byte and correspond to the bits D0...D7 and  
to the SPI bits 8...15 (see also )  
There are two different bit types:  
‘r’ = READ: read-only bits (or reserved bits)  
‘rc’ = READ/CLEAR: readable and clearable bits  
Reading a register is done byte wise by setting the SPI bit 7 to “0” (= read-only)  
Clearing a register is done byte wise by setting the SPI bit 7 to “1”  
SPI status registers are in general not cleared or changed automatically (an exception are the WD_FAIL  
bits). This must be done by the microcontroller via SPI command  
SUP_STAT  
Supply voltage fail status (Address 100 0001B)  
POR / Soft Reset Value: x000 0000B;  
Restart Value: xxxx xx0xB  
7
6
5
4
3
2
1
0
POR  
VLIN_UV  
VCC1_OV  
VCC2_OT  
VCC2_UV  
VCC1_SC  
reserved  
VCC1_UV  
r
rc  
rc  
rc  
rc  
rc  
rc  
r
rc  
Field  
Bits  
Type  
Description  
POR  
7
6
5
4
3
rc  
rc  
rc  
rc  
rc  
Power-on-reset detection  
0B  
1B  
, No POR  
, POR occurred  
VLIN_UV  
VCC1_OV  
VCC2_OT  
VCC2_UV  
VLIN undervoltage detection  
0B  
1B  
, No VLIN undervoltage  
, VLIN undervoltage detected  
VCC1 overvoltage detection  
0B  
1B  
, No VCC1 overvoltage  
, VCC1 overvoltage detected  
VCC2 overtemperature detection  
0B  
1B  
, No overtemperature  
, VCC2 overtemperature detected  
VCC2 undervoltage detection  
0B  
1B  
, No VCC2 undervoltage  
, VCC2 undervoltage detected  
Datasheet  
109  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
VCC1_SC  
2
rc  
VCC1 short to GND detection  
0B  
1B  
, No short  
, VCC1 short to GND detected  
Reserved  
VCC1_UV  
1
0
r
Reserved, always reads 0  
rc  
VCC1 undervoltage detection  
0B  
1B  
, No VCC1 undervoltage  
, VCC1 undervoltage detected  
Notes  
1. When VCC1 is OFF (for example in SBC Sleep mode), the bits VCC1_SC and VCC1_UV will not be set.  
2. When VCC2 is OFF, the bit VCC2_UV and VCC2_OT will not be set.  
3. When all LIN’s are wake capable or OFF, VLIN_UV will not be set.  
THERM_STAT  
Thermal protection status (Address 100 0010B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0xxxB  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
TSD2  
TSD1  
TPW  
r
r
r
r
r
r
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
Reserved  
TSD2  
7:3  
2
r
Reserved, always reads as 0  
rc  
TSD2 thermal shutdown detection  
0B  
1B  
, No TSD2 fail  
, TSD2 thermal shutdown detected (leading to SBC Fail-Safe  
mode)  
TSD1  
TPW  
1
0
rc  
rc  
TSD1 thermal shutdown detection  
0B  
1B  
, No TSD1 fail  
, TSD1 thermal shutdown detected  
Thermal prewarning  
0B  
1B  
, No thermal prewarning  
, Thermal prewarning detected  
DEV_STAT  
Device information status (Address 100 0011B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xxxx xxxxB  
7
6
5
4
3
2
1
0
FO_ON_  
STATE  
DEV_STAT_1 DEV_STAT_0 RO_CL_HIGH FSI_FAIL  
WD_FAIL_1 WD_FAIL_0  
rh rh  
SPI_FAIL  
r
rc  
rc  
rc  
rc  
rc  
rc  
Datasheet  
110  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
DEV_STAT 7:6  
rc  
Device status before Restart mode  
00B , Cleared (register must be actively cleared)  
01B , Restart after failures (WD fail, TSD2, VCC1_UV and  
VCC1_OV); also wake from SBC Fail-Safe mode  
10B , Wake from Sleep mode  
11B , Not used  
RO_CL_HIG  
H
5
rc  
rc  
rh  
Reset PIN clamped to HIGH level detected  
0B  
1B  
, No Reset Clamped to HIGH detected  
, Reset Clamped to HIGH detected  
FSI_FAIL  
WD_FAIL  
4
FSI fail information  
0B  
1B  
, No FSI fail  
, Failure on FSI pattern recognized  
3:2  
Number of WD-fail event  
00B , No WD-fail  
01B , 1x WD-fail, causing SBC activates FOx in Config1  
10B , 2x WD-fails, causing SBC activates FOx in Config3  
11B , Reserved (never achieved)  
SPI_FAIL  
1
rc  
rc  
SPI fail information  
0B  
1B  
, No SPI fail  
, Invalid SPI command detected, SPI command is not  
executed  
FO_ON_STA 0  
Fail outputs on status  
TE  
0B  
1B  
, FO outputs are not activated  
, FO outputs are activated  
Notes  
1. The bits DEV_STAT show the status of the device before it went through Restart. Either the device came from  
regular Sleep mode (‘10’) or a failure (‘01’ - SBC Restart or SBC Fail-Safe mode: WD fail, TSD2 fail, VCC1_UV fail  
or VCC1_OV if bit VCC1_OV_ RST is set) occurred.  
2. The WD_FAIL bits are configured as a counter and are the only status bits which are cleared automatically by  
the SBC. They are cleared after a successful watchdog trigger. See also Chapter 12.1.  
3. The SPI_FAIL bit is cleared only by SPI command.  
BUS_STAT_1  
Bus communication status (Address 100 0100B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0xx0 0xxxB  
7
6
5
4
3
2
1
0
reserved  
LIN1_FAIL_1 LIN1_FAIL_0  
rc rc  
reserved  
reserved  
CAN_FAIL_1 CAN_FAIL_0  
VCAN_UV  
r
r
r
r
rc  
rc  
rc  
Datasheet  
111  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
7
Type  
Description  
Reserved  
LIN1_FAIL  
r
Reserved, always reads as 0  
6:5  
rc  
LIN failure status  
00B , No error  
01B , LIN TSD shutdown, also TSD1 is signaled  
10B , LIN_TXD_DOM: TXDLIN dominant time out  
11B , LIN_BUS_DOM: BUS dominant time out  
Reserved  
CAN_FAIL  
4:3  
2:1  
r
Reserved, always reads as 0  
rc  
CAN failure status  
00B , No error  
01B , CAN TSD shutdown, also TSD1 signaled  
10B , CAN_TXD_DOM: TXDCAN dominant time out  
11B , CAN_BUS_DOM: BUS dominant time out  
VCAN_UV  
Notes  
0
rc  
Undervoltage VCAN supply  
0B  
1B  
, Normal operation  
, VCAN supply undervoltage detected. Transmitter disabled  
1. CAN and LIN recovery conditions:  
1.) TXD Time Out: TXD goes HIGH or transmitter is set to wake capable or switched off.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply undervoltage: as soon as the threshold is crossed again, i.e. VLIN > VS_UV for LIN and VCAN >  
VCAN_UV for CAN.  
4.) In all cases (also for TSD shutdown): to enable the bus transmission again, TXD needs to be HIGH for a  
certain time (transmitter enable time).  
2. The VCAN_UV comparator is enabled if the CAN is CAN Normal mode or CAN Receive-Only mode or CAN Wake  
Capable after one valid WUP is detected.  
BUS_STAT_2  
Bus communication status (Address 100 0101B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0xx0B  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
LIN2_FAIL_1 LIN2_FAIL_0  
reserved  
r
r
r
r
r
r
rc  
rc  
r
Field  
Bits  
7:3  
Type  
Description  
Reserved  
r
Reserved, always reads as 0  
Datasheet  
112  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
LIN2_FAIL  
2:1  
rc  
LIN failure status  
00B , No error  
01B , LIN TSD shutdown, also TSD1 signaled  
10B , LIN_TXD_DOM: TXDLIN dominant time out  
11B , LIN_BUS_DOM: BUS dominant time out  
Reserved  
Notes  
0
r
Reserved, always reads as 0  
1. LIN recovery conditions:  
1.) TXD Time Out: TXD goes HIGH or transmitter is set to wake capable or switched off.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply undervoltage: as soon as the threshold is crossed again, i.e. VLIN > VS_UV.  
4.) In all cases (also for TSD shutdown): to enable the bus transmission again, TXD needs to be HIGH for a  
certain time (transmitter enable time).  
WK_STAT_1  
Wake-up source and information status (Address 100 0110B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: x0xx 000xB  
7
6
5
4
3
2
1
0
PFM_PWM  
reserved  
CAN_WU  
TIMER_WU  
reserved  
reserved  
reserved  
WK_WU  
r
rc  
r
rc  
rc  
r
r
r
rc  
Field  
Bits  
Type  
Description  
PFM_PWM  
7
rc  
PFM_PWM automatic transition detected  
0B  
1B  
, No automatic PFM_PWM transition detected  
, Automatic PFM_PWM transition detected  
Reserved  
CAN_WU  
6
5
r
Reserved, always reads as 0  
rc  
Wake up via CAN bus  
0B  
1B  
, No Wake up  
, Wake up  
TIMER_WU  
4
rc  
Wake up via timer  
0B  
1B  
, No Wake up  
, Wake up  
Reserved  
WK_WU  
3:1  
0
r
Reserved, always reads as 0  
Wake up via WK  
rc  
0B  
1B  
, No Wake up  
, Wake up  
Datasheet  
113  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
WK_STAT_2  
Wake-up source and information status (Address 100 0111B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 xxxxB  
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
LIN2_WU  
LIN1_WU  
r
r
r
r
r
r
r
rc  
rc  
Field  
Bits  
Type  
Description  
Reserved  
LIN2_WU  
7:2  
1
r
Reserved, always reads as 0  
rc  
Wake up via LIN2 bus  
0B  
1B  
, No Wake up  
, Wake up  
LIN1_WU  
0
rc  
Wake up via LIN1 bus  
0B  
1B  
, No Wake up  
, Wake up  
WK_LVL_STAT  
WK input level (Address 100 1000B)  
POR / Soft Reset Value: x100 000xB;  
Restart Value: x1x0 000xB  
7
6
5
4
3
2
1
0
TEST  
reserved CFG2_STATE reserved  
reserved  
reserved  
reserved  
WK  
r
r
r
r
r
r
r
r
r
Field  
Bits  
Type  
Description  
TEST  
7
r
Status of TEST pin  
0B  
1B  
, LOW Level (= 0)  
, HIGH Level (= 1), SBC Development mode is enabled, No  
reset triggered due to wrong watchdog trigger  
reserved  
6
5
r
r
Reserved, always reads as 1  
CFG2_  
STATE  
Status of CFG2 bit on HW_CTRL register  
This bit shows the setting in bit CFG2.  
0B  
1B  
, LOW Level; Fail outputs (FOx) are active after 2nd watchdog  
trigger fail Config 3  
, HIGH Level; Fail outputs (FOx) are active after 1st watchdog  
trigger fail Config 1  
Reserved  
WK  
4:1  
0
r
r
Reserved, always reads as 0  
Status of WK  
0B  
1B  
, LOW Level (= 0)  
, HIGH Level (= 1)  
Datasheet  
114  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
SMPS_STAT  
SMPS state (Address 100 1100B)  
POR / Soft Reset Value: 0000 0xxxB;  
Restart Value: xxxx 0xxxB  
7
6
5
4
3
2
1
0
BST_ACT  
BST_SH  
BST_OP  
BST_GSH  
reserved  
BCK_SH  
BCK_OP  
BCK_OOR  
r
rc  
rc  
rc  
rc  
r
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
BST_ACT  
BST_SH  
BST_OP  
7
6
5
rc  
rc  
rc  
Boost regulator active  
0B  
1B  
, Boost not active  
, Boost active  
BSTD and SNSP short detection  
0B  
1B  
, No short detected on BSTD and SNSP pins  
, BSTD or SNSP pins short to GND  
BSTD, SNSP SNSN open detection  
0B  
1B  
, No open detection in BSTD, SNSP and SNSN pins  
, Or operation between: BSTD loss of diode detected, SNSP  
loss of resistor detected, SNSN loss of GND detected  
BST_GSH  
4
rc  
BSTG pin short detection  
0B  
1B  
, BSTG no short detected  
, BSTG short detected to GND or internal supply  
Reserved  
BCK_SH  
3
2
r
Reserved, always reads as 0  
BCKSW pin short detection  
rc  
0B  
1B  
, No short detected  
, Short to GND or short to VS detected on BCKSW pin  
BCK_OP  
1
0
rc  
rc  
BCKSW pin open detection  
0B  
1B  
, No BCKSW open detected  
, BCKSW open detected  
BCK_OOR  
VCC1 out-of-range  
0B  
1B  
, VCC1 inside VCC1,out1 ±12%  
, VCC1 outside ±12%  
FAM_PROD_STAT  
SWK Data0 register (Address 111 1110B)  
POR / Soft Reset Value: 0010 xxxxB;  
Restart Value: 0010 xxxxB  
7
6
5
4
3
2
1
0
FAM_3  
FAM_2  
FAM_1  
FAM_0  
PROD_3  
PROD_2  
PROD_1  
PROD_0  
r
r
r
r
r
r
r
r
r
Datasheet  
115  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Field  
FAM  
Bits  
Type  
Description  
7:4  
r
Family of products  
0010B , TLE927x Family, High End SBC  
PROD  
3:0  
r
Product variant  
0100B , LIN1/2 available, VCC1 = 5 V  
0101B , LIN1/2 available, VCC1 = 3.3 V  
1000B , LIN1-3 available, VCC1 = 5 V  
1001B , LIN1-3 available, VCC1 = 3.3 V  
1100B , LIN1-4 available, VCC1 = 5 V  
1101B , LIN1-4 available, VCC1 = 3.3 V  
Datasheet  
116  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
14.7  
Electrical characteristics  
Table 23 Electrical characteristics: power stage  
Tj = -40°C to +150°C, VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI frequency  
1)  
Maximum SPI frequency  
fSPI,max  
4.0  
MHz  
P_14.8.1  
SPI interface; logic inputs SDI, CLK and CSN  
H-input voltage threshold  
VIH  
0.7 ×  
VCC1  
V
V
V
P_14.8.2  
P_14.8.3  
P_14.8.4  
L-input voltage threshold  
VIL  
0.3 ×  
VCC1  
1)  
Hysteresis of input voltage VIHY  
Pull-up resistance at pin CSN RICSN  
0.2 ×  
VCC1  
20  
20  
40  
40  
80  
80  
kΩ  
kΩ  
VCSN = 0.7 × VCC1 P_14.8.5  
Pull-down resistance at pin RICLK/SDI  
VSDI/CLK  
=
P_14.8.6  
SDI and CLK  
0.2 × VCC1  
1)  
Input capacitance at pin  
CSN, SDI or CLK  
CI  
10  
pF  
V
P_14.8.7  
Logic output SDO  
H-output voltage level  
VSDOH  
VCC1  
0.4  
-
VCC1  
0.2  
-
IDOH = -1.6 mA  
IDOL = 1.6 mA  
P_14.8.8  
L-output voltage level  
VSDOL  
ISDOLK  
0.2  
0.4  
10  
V
P_14.8.9  
Tri-state leakage current  
-10  
µA  
VCSN = VCC1  
;
P_14.8.10  
0 V < VDO < VCC1  
1)  
Tri-state input capacitance CSDO  
10  
15  
pF  
P_14.8.11  
Data input timing1)  
Clock period  
tpCLK  
tCLKH  
tCLKL  
250  
125  
125  
125  
250  
250  
125  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P_14.8.12  
P_14.8.13  
P_14.8.14  
P_14.8.15  
P_14.8.16  
P_14.8.17  
P_14.8.18  
P_14.8.19  
P_14.8.20  
Clock HIGH time  
Clock LOW time  
Clock LOW before CSN LOW tbef  
CSN setup time  
CLK setup time  
tlead  
tlag  
Clock LOW after CSN HIGH tbeh  
SDI setup time  
SDI hold time  
tDISU  
tDIHO  
Datasheet  
117  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Serial Peripheral Interface  
Table 23 Electrical characteristics: power stage (cont’d)  
Tj = -40°C to +150°C, VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input signal rise time at pin trIN  
SDI, CLK and CSN  
50  
ns  
ns  
µs  
µs  
P_14.8.21  
P_14.8.22  
P_14.8.23  
P_14.8.24  
Input signal fall time at pin tfIN  
SDI, CLK and CSN  
3
50  
10  
Delay time for mode  
changes2)  
tDel,Mode  
CSN HIGH time  
Data output timing1)  
SDO rise time  
tCSN(high)  
trSDO  
30  
30  
80  
80  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF  
CL = 100 pF  
P_14.8.25  
P_14.8.26  
SDO fall time  
tfSDO  
SDO enable time  
SDO disable time  
SDO valid time  
tENSDO  
tDISSDO  
tVASDO  
LOW impedance P_14.8.27  
HIGH impedance P_14.8.28  
CL = 100 pF  
P_14.8.29  
1) Not subject to production test; specified by design.  
2) Applies to all mode changes triggered via SPI commands.  
24  
CSN  
15  
16  
17  
18  
13  
14  
CLK  
SDI  
19  
20  
LSB  
MSB  
MSB  
not defined  
27  
28  
29  
SDO  
Flag  
LSB  
Figure 50 SPI timing diagram  
Note: Numbers in drawing correlate to the last 2 digits of the number field in the electrical characteristics table.  
Datasheet  
118  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
15  
Application information  
15.1  
Application diagram with boost module  
Note: The following information is given as a hint for the implementation of the device only and should not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VS  
Vsup  
C1  
VSENSE  
VS  
D1  
L1  
L2  
D2  
VBAT  
VS  
BCKSW  
VS2  
CVSUP  
C4  
C5  
C2  
C3  
VCC1  
VCC2  
BSTD  
BSTG  
TBOOST  
CVCC2  
SNSP  
RCFG  
VDD  
Rsense  
CFG  
CLK  
CSN  
SDI  
CLK  
SNSN  
CSN  
SDI  
VS  
VS  
T2  
VS  
SDO  
SDO  
RO  
INT  
RO  
INT  
TLE9271  
µC  
TXDLIN1  
RXDLIN1  
TXDLIN2  
RXDLIN2  
TXDLIN3  
RXDLIN3  
TXDLIN4  
RXDLIN4  
TXDLIN1  
RXDLIN1  
TXDLIN2  
RXDLIN2  
TXDLIN3  
RXDLIN3  
TXDLIN4  
RXDLIN4  
T3  
T1  
LH1  
LH2  
LH3  
FO1  
FO2/FSI  
FO3/TEST  
VS  
Sdev  
WK  
S3  
R4  
R5  
VSUP  
TXDCAN  
RXDCAN  
TXDCAN  
RXDCAN  
C9  
VLIN  
VSS  
VCC2  
DLIN1 DLIN2  
RLIN1 RLIN2  
CVCAN  
VCAN  
CANH  
CANH  
CANL  
LIN1  
LIN2  
LIN1  
LIN2  
RCANH  
CCAN  
RCANL  
CANL  
CLIN1 CLIN2  
GND  
Figure 51 Application diagram  
Note: This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Datasheet  
119  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
Table 24 Bill of material for Figure 15.1  
Ref.  
Typical value  
Purpose/comment  
Capacitances  
C1  
47 µF ±20% electrolytic Buffering capacitor to cut off battery spikes, depending on the  
application  
CVSUP  
C2  
100 nF ±20% ceramic  
Input filter battery capacitor for optimum EMC behavior  
100 µF…560 µF ±20%,  
50 V electrolytic  
Output boost capacitor. ESR 1 over the temperature range  
C3  
1 µF…10 µF ±20%,  
50 V ceramic  
Input buck capacitor. Low ESR  
C4  
C5  
10 µF ±20%, 16 V ceramic 1) Output buck capacitor, for cost optimization. Low ESR  
47 µF ±20%,  
1) Output buck capacitor, for cost optimization. ESR 4 over the  
16 V electrolytic  
temperature range  
CVCC2  
C9  
2.2 µF ±20%,  
16 V ceramic  
Blocking capacitor, min. 470 nF for stability. Low ESR  
10 nF ±20% ceramic  
Spikes filtering, as required by application. Mandatory protection for off-  
board connection  
CVCAN  
100 nF ±20%,  
16 V ceramic  
Input filter CAN supply. The capacitor must be placed close to the VCAN  
pin. One additional buffer capacitor 1 µF shall be placed for optimum  
EMC and CAN FD performances  
CCAN  
CLIN1  
CLIN2  
CLIN3  
CLIN4  
47 nF / OEM dependent Split termination stability  
1 nF / OEM dependent  
1 nF / OEM dependent  
1 nF / OEM dependent  
1 nF / OEM dependent  
LIN master termination  
LIN master termination  
LIN master termination  
LIN master termination  
Resistances  
RSENSE 100 m±1%  
Boost regulator current sense. Depending on required current limitation  
Required for hardware initialization  
RCFG  
R4  
10 k…22 k±5%  
10 k±20%  
Wetting current of the switch, as required by application  
Limit the WK pin current, e.g. for ISO pulses  
CAN bus termination  
R5  
10 k±20%  
RCANH  
RCANL  
RLIN1  
RLIN2  
60 / OEM dependent  
60 / OEM dependent  
1 k/ OEM dependent  
1 k/ OEM dependent  
CAN bus termination  
LIN master termination (if configured as a LIN master)  
LIN master termination (if configured as a LIN master)  
Inductors  
L1  
L2  
22 µH ±20%2)  
47 µH ±20%2)  
Boost regulator coil  
Buck regulator coil  
Datasheet  
120  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
Table 24 Bill of material for Figure 15.1 (cont’d)  
Ref.  
Typical value  
Purpose/comment  
Active components  
D1  
D2  
e.g. SS34HE3/9AT  
(Vishay)  
Reverse polarity protection. Depending for the application  
e.g. SL04-GS08 or  
SS34HE3/9AT (Vishay)  
Boost regulator power diode. Forward current depends on the  
application  
DLIN1  
DLIN2  
DLIN3  
DLIN4  
e.g. BAS70  
e.g. BAS70  
e.g. BAS70  
e.g. BAS70  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
TBOOST e.g. BSS606N  
Boost regulator external MOSFET. Maximum Rds_on 100 m, Drain  
current max 3 A, Drain-Source max voltage 60 V  
T1  
T2  
T3  
µC  
e.g. BCR191W  
e.g. BCR191W  
e.g. BCR191W  
e.g. XC2xxx  
High active FO1 control  
High active FO2 control  
High active FO3 control  
Microcontroller  
1) For for optimum dynamic behavior, C4 and C5 = 22 µF ±20%, 16 V ceramic low ESR.  
2) The saturation current has to be define in according with the maximum current required by the application.  
Datasheet  
121  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
15.2  
Application diagram without boost module  
Note: The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Vsup  
VS  
VSENSE  
VS  
D1  
L1  
L2  
VBAT  
VS  
BCKSW  
VS2  
C4  
C5  
C2  
C3  
C1  
CVSUP  
VCC1  
VCC2  
BSTD  
BSTG  
CVCC2  
SNSP  
SNSN  
RCFG  
VDD  
CFG  
CLK  
CSN  
SDI  
CLK  
CSN  
SDI  
VS  
T3  
VS  
VS  
T1  
SDO  
SDO  
RO  
INT  
RO  
INT  
µC  
TLE9271  
TXDLIN1  
RXDLIN1  
TXDLIN2  
RXDLIN2  
TXDLIN3  
RXDLIN3  
TXDLIN4  
RXDLIN4  
TXDLIN1  
RXDLIN1  
TXDLIN2  
RXDLIN2  
TXDLIN3  
RXDLIN3  
TXDLIN4  
RXDLIN4  
T2  
LH1  
LH2  
LH3  
FO1  
FO2/FSI  
FO3/TEST  
VS  
Sdev  
WK  
S3  
R4  
R5  
VSUP  
TXDCAN  
RXDCAN  
TXDCAN  
RXDCAN  
C9  
VLIN  
VSS  
VCC2  
DLIN1 DLIN2  
RLIN1 RLIN2  
CVCAN  
VCAN  
CANH  
CANH  
CANL  
LIN1  
LIN2  
LIN1  
LIN2  
RCANH  
CCAN  
RCANL  
CANL  
CLIN1 CLIN2  
GND  
Figure 52 Application diagram  
Note: This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Datasheet  
122  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
Table 25 Bill of material for Figure 15.2  
Ref.  
Typical value  
Purpose/comment  
EMI filter components1)  
C1  
47 µF ±20%,  
Input EMI filter capacitor, depending on the application  
50 V electrolytic  
L1  
2.2 µH ±20%2)  
Input EMI filter inductor, depending on the application  
Input EMI filter capacitor, depending on the application  
C2  
4.7 µF ±20%,  
50 V ceramic low ESR  
Capacitances  
CVSUP  
C3  
100 nF ±20% ceramic  
Input filter battery capacitor for optimum EMC behavior  
Input buck capacitor. Low ESR  
1 µF…10 µF ±20%  
ceramic  
C4  
C5  
10 µF ±20%, 16 V ceramic 3) Output buck capacitor, for cost optimization. Low ESR  
47 µF ±20%,  
3) Output buck capacitor, for cost optimization. ESR 4 over the  
16 V electrolytic  
temperature range  
CVCC2  
C9  
2.2 µF ±20% ceramic  
10 nF ceramic  
Blocking capacitor, min. 470 nF for stability. Low ESR  
Spikes filtering, as required by application. Mandatory protection for off-  
board connection  
CVCAN  
100 nF ± 20%,  
16 V ceramic  
Input filter CAN supply. The capacitor must be placed close to the VCAN  
pin. One additional buffer capacitor 1 µF shall be placed for optimum  
EMC and CAN FD performances  
CCAN  
CLIN1  
CLIN2  
CLIN3  
CLIN4  
47 nF / OEM dependent Split termination stability  
1 nF / OEM dependent  
1 nF / OEM dependent  
1 nF / OEM dependent  
1 nF / OEM dependent  
LIN master termination  
LIN master termination  
LIN master termination  
LIN master termination  
Resistances  
RCFG  
R4  
10 k…22 k±5%  
Required for hardware initialization  
10 k±5%  
Wetting current of the switch, as required by application  
Limit the WK pin current, e.g. for ISO pulses  
CAN bus termination  
R5  
10 k±5%  
RCANH  
RCANL  
RLIN1  
RLIN2  
RLIN3  
RLIN4  
60 / OEM dependent  
60 / OEM dependent  
1 k/ OEM dependent  
1 k/ OEM dependent  
1 k/ OEM dependent  
1 k/ OEM dependent  
CAN bus termination  
LIN master termination (if configured as a LIN master)  
LIN master termination (if configured as a LIN master)  
LIN master termination (if configured as a LIN master)  
LIN master termination (if configured as a LIN master)  
Inductors  
L2  
47 µH ±20%2)  
Buck regulator coil  
Datasheet  
123  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
Table 25 Bill of material for Figure 15.2 (cont’d)  
Ref.  
Typical value  
Purpose/comment  
Active Components  
D1  
e.g. SS34HE3/9AT  
Reverse polarity protection. Depending for the application  
(Vishay)  
DLIN1  
DLIN2  
DLIN3  
DLIN4  
T1  
e.g. BAS70  
e.g. BAS70  
e.g. BAS70  
e.g. BAS70  
e.g. BCR191W  
e.g. BCR191W  
e.g. BCR191W  
e.g. XC2xxx  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
Requested by LIN standard; reverse polarity protection of network  
High active FO1 control  
T2  
High active FO2 control  
T3  
High active FO3 control  
µC  
Microcontroller  
1) The input EMI filter has to be evaluated in according with the final application. The values are only given as hint.  
2) The saturation current has to be define in according with the maximum current required by the application.  
3) For optimum dynamic behavior, C4 and C5 = 22 µF ±20%, 16 V ceramic low ESR.  
5V_int  
SBC Init  
Mode  
Ttest  
RTEST  
Connector/  
FO3/  
Jumper  
TEST  
REXT  
TFO_PL  
Failure Logic  
Figure 53 Hint for increasing the robustness of pin FO3/TEST during debugging or programming  
Datasheet  
124  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
15.3  
ESD tests  
Note: Tests for ESD robustness according to IEC61000-4-2 “gun test” (150pF, 330) have been performed. The  
results and test condition are available in a test report. The minimum values for the test are listed in  
Table 26 below.  
Table 26 ESD “Gun Test”  
Performed test  
Result  
Unit  
Remarks  
1)2) positive pulse  
ESD at pin CANH, CANL,  
LIN, versus GND  
>6  
kV  
ESD at pin CANH, CANL,  
LIN, versus GND  
< -6  
kV  
1)2) negative pulse  
1) ESD susceptibility “ESD GUN” according to LIN EMC 1.3 Test Specification, Section 4.3 (IEC 61000-4-2). Tested by  
external test house (IBEE, EMC Test report Nr. 01-03-17).  
2) ESD Test “Gun Test” is specified with external components for pins VS, WK, BKSW, VCC2. Refer to application diagram  
in Chapter 15.2 for more information.  
EMC and ESD susceptibility tests according to SAE J2962-2 (2010) have been performed. Tested by external  
test house (UL LLC, Test report Nr. 2017-327).  
Datasheet  
125  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Application information  
15.4  
Thermal behavior of package  
The figure below shows the thermal resistance (Rth_JA) of the device versus the cooling area on the bottom of  
the PCB for TA = 85°C. Every line reflects a different PCB and thermal via design.  
80  
Tamb=85°C  
70  
60  
2s0p - 25 vias (standard)  
50  
40  
2s2p - 16 vias (standard)  
2s2p - 16 vias (solder filled)  
30  
20  
2s2p - 25 vias (standard)  
0
100  
200  
300  
400  
500  
600  
Bottom Cooling area (mm2)  
Figure 54 Thermal resistance (Rth_JA) versus cooling area  
Cross Section (JEDEC 2s2p) with Cooling Area  
Cross Section (JEDEC 2s0p) with Cooling Area  
70µm modelled (traces)  
35µm, 90% metalization*  
35µm, 90% metalization*  
70µm / 5% metalization + cooling area  
*: means percentual Cu metalization on each layer  
PCB (top view)  
PCB (bottom view)  
standard solder pads  
Figure 55 Board setup  
Board setup is defined according to JESD 51-2,-5,-7.  
Board: 76.2 × 114.3 × 1.5 mm3 with 2 inner copper layers (35 µm thick), with thermal via array under the  
exposed pad contacting the first inner copper layer and 300 mm2 cooling area on the bottom layer (70 µm).  
Datasheet  
126  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Package outlines  
16  
Package outlines  
0.9 MAX.  
(0.65)  
11 x 0.5 = 5.5  
0.5  
±0.1  
7
A
±0.03  
0.1  
6.8  
+0.03 1)  
2)  
37  
B
36  
25  
24  
48x  
0.08  
48  
13  
1
12  
Index Marking  
48x  
0.1  
0.4 x 45°  
±0.05  
Index Marking  
0.23  
M
A B C  
(0.2)  
0.05 MAX.  
(5.2)  
(6)  
C
1) Vertical burr 0.03 max., all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 56 PG-VQFN-48 1)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
127  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Revision history  
17  
Revision history  
Revision  
Date  
Changes  
Editorial changes  
2.0  
2022-05-06  
Added OrderabelPartNumber to the second page  
Deleted 47 µH as an option for boost inductor in Chapter 6.2.3 and  
Chapter 15.1  
Added Chapter 6.3.3 and Chapter 6.3.4 with detailed description of the  
boost switch gate driver and the BSTG short circuit detection feature.  
Therefore replaced parameter P_6.5.27 and P_6.5.9 by new parameter in  
Table 10 section “Boost switch gate driver”  
Added parameter P_6.5.4 specifying current limit for buck regulator. No  
product change.  
Correction within WD_CTRL register: Watchdog checksum bit is write only.  
Always read as 0. No product change.  
Extended the capacitance range of output boost capacitor C2 within the  
application information (Chapter 15.1)  
Pin configuration: Clearer wording for exposed pad connection to GND  
Updated specification of charge device model to JEDEC JS-002  
Added clarification to P_10.3.1 (VWKth): “Hysteresis included”  
Corrected the output circuitry of FO1 in Figure 35 and added explanation  
when the pull up transistors are switched. Added parameter RFO1  
(P_12.3.12). No product change.  
Hints for unused pins: Changed recommendation for N.C.-Pins to “leave  
open” to gain pin compatibility within the variants.  
1.5  
2019-09-27 Datasheet updated:  
Editorial changes  
General  
changed “SBC Software development mode” to “SBC development  
mode”  
Updated Table 13  
added P_8.3.54 and P_8.3.55 (no product change)  
tightened P_8.3.15  
tightened P_8.3.8 and P_8.3.42 by additional footnote  
Added Figure 53  
1.4  
1.3  
2018-11-20 Datasheet updated:  
Updated CAN description (Figure 3, Figure 5.1.4, Figure 18, Chapter 8.2.4).  
2017-11-17 First revision of datasheet:  
Updated description Chapter 13.8.1.  
Datasheet  
128  
Rev.2.0  
2022-05-06  
OPTIREG™ SBC TLE9271QX  
Revision history  
Revision  
Date  
2017-10-22 Preliminary Datasheet:  
Updated the Figure 3 on SBC Normal Mode.  
Changes  
1.2  
Update the description of Figure 21.  
Removed the “optional” on Figure 21.  
Added P_8.3.58 (according to ISO11898-2:2016).  
Added P_4.1.28 (according to ISO11898-2:2016).  
Correct description Chapter 13.5.1.  
Correct description Chapter 13.5.2 and updated Figure 45.  
Corrected the bit type of SMPS_STAT register.  
Corrected description on Chapter 13.8.3 and Figure 3.  
Updated P_8.3.7 test conditions.  
Updated P_8.3.6 test conditions.  
Updated P_8.3.5 test conditions.  
Updated P_8.3.16 test conditions.  
Updated the description about LIN rearming in Chapter 9.2.4.  
Updated the description about CAN rearming in Chapter 8.2.4.  
Updated SYS_STAT_CTRL register note description.  
Updated Chapter 9.2.6 description.  
Update Chapter 8.2.7 description.  
Added chapter outcome pre and system tests verification.  
Added P_8.3.50, P_8.3.51, P_8.3.52 and P_8.3.53.  
Change description on WK_LVL_STAT and Table 6 regarding the Fail-Safe  
Output behavior in case of watchdog trigger issue.  
Added the VCC2,UV Blanking time as internal parameter.  
Modified description Chapter 8.2.6.  
Add additional Note in SUP_STAT, BUS_STAT_1 and BUS_STAT_2 regarding  
the register content after one software reset.  
Update LIN wake-up description.  
Updated description Chapter 13.8.3.  
Updated parameter P_13.9.34.  
Updated FSI in Stop Mode and Restart Mode description.  
Updated max limit of P_12.3.11.  
Updated description DEV_STAT register Notes.  
Update test condition P_8.3.26.  
1.1  
2016-10-17 Target Datasheet updated:  
Added CAN FD timing parameters up to 5Mbps.  
Corrected the naming of Figure 22 (tLOOP,f and tLOOP,r).  
Updated the title of Figure 41 and Figure 42.  
Improve the description of LIN wake-up pattern detection (Chapter 9.2.4).  
Updated footnote 5) on Chapter 8.3 according to ISO11898-2.  
Added description 11B on WD_FAIL: reserved (never achieved).  
Updated description Chapter 13.2.3.  
1.0  
2015-10-08 First Revision of Datasheet.  
Datasheet  
129  
Rev.2.0  
2022-05-06  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2022-05-06  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Z8F68481959  

相关型号:

TLE9271QX V33

The device is designed forvarious CAN-LIN automotive applications as the main supply for the microcontroller and as the interface for LIN and CAN bus networks.
INFINEON

TLE9272QX

The device is designed forvarious CAN-LIN automotive applications as the main supply forthe microcontroller and as the Interface for LIN and CAN bus networks.
INFINEON

TLE9274QX

The device is designed for various CAN-LIN automotive applications as the main supply forthe microcontroller and as the Interface for LIN and CAN bus networks.
INFINEON

TLE9274QX V33

The device is designed forvarious CAN-LIN automotive applications as the main supply forthe microcontroller and as the interface for LIN and CAN bus networks.
INFINEON

TLE9278-3BQX

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 5.0 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278-3BQX is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.
INFINEON

TLE9278-3BQX V33

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 3.3 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278-3BQX V33 is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.
INFINEON

TLE9278BQX

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 5.0 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278BQX is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.
INFINEON

TLE9278BQX V33

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 3.3 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278BQX V33 is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.
INFINEON
INFINEON
INFINEON
INFINEON
INFINEON