TLE9350VSJ [INFINEON]

Vio;
TLE9350VSJ
型号: TLE9350VSJ
厂家: Infineon    Infineon
描述:

Vio

文件: 总30页 (文件大小:872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9350VSJ  
High speed CAN FD transceiver  
Features  
Fully compliant to ISO 11898-2:2016 and SAE J2284-4/-5  
Loop delay symmetry for CAN FD data frames up to 5 MBit/s  
Certified according to VeLIO (Vehicle LAN Interoperability and  
Optimization) test requirements  
Very low electromagnetic emission (EME) allows the use without  
additional common mode choke  
VIO input for voltage adaption to the microcontroller interface (3.3 V or 5 V)  
Excellent ESD robustness  
TxD time-out function  
Very low CAN bus leakage current in power-down state  
Overtemperature protection  
Protected against automotive transients according to ISO 7637 and SAE J2962-2  
Power-save mode  
Green Product (RoHS compliant)  
Potential applications  
Engine control units (ECU)  
Electric power steering  
Transmission control units (TCUs)  
Chassis control modules  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE9350VSJ is a high speed CAN transceiver, used in HS CAN systems for automotive applications as well  
as for industrial applications. It is designed to fulfill the requirements of ISO 11898-2:2016 physical layer  
specification as well as SAE J1939 and SAE J2284.  
The TLE9350VSJ is available in a RoHS compliant, halogen free PG-DSO-8 package.  
As an interface between the physical bus layer and the HS CAN protocol controller, the TLE9350VSJ is  
designed to protect the microcontroller against interferences generated inside the network. A very high ESD  
Datasheet  
Rev. 1.2  
2022-03-18  
www.infineon.com/TLE9350VSJ  
1
TLE9350VSJ  
High speed CAN FD transceiver  
robustness and the optimized RF immunity allows the use in automotive applications without additional  
protection devices, such as suppressor diodes or common mode chokes.  
Based on the high symmetry of the CANH and CANL output signals, the TLE9350VSJ provides a very low level  
of electromagnetic emission (EME) within a wide frequency range. The TLE9350VSJ fulfills even stringent EMC  
test limits without an additional external circuit, such as a common mode choke.  
The optimized transmitter symmetry combined with the optimized delay symmetry of the receiver enables  
the TLE9350VSJ to support CAN FD data frames. The device supports data transmission rates up to 5 MBit/s,  
depending on the size of the network and the inherent parasitic effects.  
Fail-safe features, such as overtemperature protection, output current limitation or the TxD time-out feature  
are designed to protect the TLE9350VSJ and the external circuitry from irreparable damage.  
Type  
Package  
Marking  
TLE9350VSJ  
PG-DSO-8  
9350V  
Datasheet  
2
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
Table of contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
2.1  
2.2  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
4
High speed CAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
High speed CAN physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Normal-operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-save mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
5.2  
5.3  
6
Fail safe functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Unconnected logic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
V
CC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TxD time-out feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Delay time for mode change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power supply interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical characteristics current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical characteristics undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical characteristics CAN controller interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical characteristics receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical characteristics transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics dynamic transceiver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1  
7.1.1  
7.1.2  
7.2  
7.3  
7.4  
7.5  
7.6  
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ESD robustness according to IEC 61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Voltage adaption to the microcontroller supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1  
8.2  
8.3  
8.4  
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Datasheet  
3
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Datasheet  
4
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
1
Block diagram  
3
5
VCC  
VIO  
Transmitter  
7
1
8
CANH  
CANL  
Timeout  
TxD  
Driver  
Temp-  
6
protection  
Mode  
NEN  
control  
Receiver  
Normal-mode receiver  
4
RxD  
VCC/2  
=
Bus-biasing  
GND  
2
Figure 1  
Block diagram  
Datasheet  
5
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
2
Pin configuration  
2.1  
Pin assignment  
1
2
3
4
8
7
6
5
NEN  
CANH  
CANL  
TxD  
GND  
VCC  
RxD  
VIO  
Figure 2  
Pin assignment  
2.2  
Pin definitions  
Table 1  
Pin definitions and functions  
Pin No. Symbol Function  
1
TxD  
Transmit data input;  
Internal pull-up to VIO, "low" for dominant state.  
2
3
GND  
Ground  
VCC  
Transmitter supply voltage;  
A decoupling capacitor of 1 µF to GND is recommended,  
CC can be turned off in power-save mode.  
V
4
5
RxD  
Receive data output;  
"Low" in dominant state.  
VIO  
Digital supply voltage input;  
Adapts the logical input voltage level and output voltage level of the transceiver to the  
voltage level of the microcontroller supply,  
A 100 nF decoupling capacitor to GND is recommended.  
6
7
8
CANL  
CANH  
NEN  
CAN bus low level I/O;  
Bus level on the CANL input/output.  
CAN bus high level I/O;  
Bus level on the CANH input/output.  
Not enable input;  
Internal pull-up to VIO, "low" for normal-operating mode.  
Datasheet  
6
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings voltages, currents and temperatures1)  
All voltages with respect to ground; positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Transmitter supply voltage  
Digital supply voltage  
VCC  
-0.3  
-0.3  
-40  
6.0  
6.0  
40  
V
V
V
P_7.1.1  
P_7.1.2  
P_7.1.3  
VIO  
CANH and CANL DC voltage  
versus GND  
VCANH  
Differential voltage between VCAN_Diff  
CANH and CANL  
-40  
40  
V
V
P_7.1.4  
P_7.1.5  
Voltage at the digital input  
VMAX_IO  
-0.3  
6.0  
pins:  
NEN, TxD  
Voltage at the digital output VMAX_RxD  
-0.3  
VIO +0.3  
V
P_7.1.9  
pin:  
RxD  
Currents  
RxD output current  
Temperatures  
IRxD  
-5  
5
mA  
P_7.1.6  
Junction temperature  
Storage temperature  
ESD immunity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_7.1.7  
P_7.1.8  
TS  
ESD immunity at CANH, CANL VESD_HBM_CAN -10  
versus GND  
10  
2
kV  
kV  
HBM;  
P_7.1.10  
P_7.1.11  
(100 pF via 1.5 k)2)  
ESD immunity at all other pins VESD_HBM_ALL -2  
HBM;  
(100 pF via 1.5 k)2)  
ESD immunity corner pins  
ESD immunity all other pins  
VESD_CDM_CP -750  
VESD_CDM_OP -500  
750  
500  
V
V
CDM3)  
CDM3)  
P_7.1.14  
P_7.1.12  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, Human Body Model (HBM) according to ANSI/ESDA/JEDEC JS-001.  
3) ESD susceptibility, Charge Device Model (CDM) according to ANSI/ESDA/JEDEC JS-002.  
Note:  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability. Integrated  
protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as outside normal-operating range. Protection  
functions are not designed for continuous repetitive operation.  
Datasheet  
7
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
3.2  
Functional range  
Table 3  
Functional range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Supply voltages  
Transmitter supply voltage  
Digital supply voltage  
Thermal parameters  
Junction temperature  
VCC  
VIO  
4.75  
3.0  
5.25  
5.5  
V
V
P_7.2.1  
P_7.2.2  
1)  
Tj  
-40  
150  
°C  
P_7.2.3  
1) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
3.3  
Thermal resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 4  
Thermal resistance1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Thermal resistance  
2)  
Junction to ambient  
PG-DSO-8  
RthJA_DSO8  
120  
K/W  
P_7.3.2  
Thermal shutdown (junction temperature)  
Thermal shutdown temperature,  
rising  
TJSD  
170  
5
180  
10  
190  
20  
°C  
K
temperature  
falling: minimum  
150°C  
P_7.3.3  
P_7.3.4  
Thermal shutdown hysteresis  
T  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-7 at natural convection on FR4 2s2p board. The product was  
simulated on a 76.2 × 114.3 × 1.5 mm3 board with two inner copper layers (2 × 70µm Cu, 2 × 35 µm Cu).  
Datasheet  
8
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
4
High speed CAN functional description  
HS CAN is a serial bus system that connects microcontrollers, sensors and actuators for real-time control  
applications. ISO 11898 describes the use of the controller area network (CAN) within road vehicles. According  
to the 7-layer OSI reference model the physical layer of a HS CAN bus system specifies the data transmission  
from one CAN node to all other CAN nodes available within the network. The physical layer specification of a  
CAN bus system includes all electrical specifications of a CAN. The CAN transceiver is part of the physical layer  
specification.  
4.1  
High speed CAN physical layer  
TxD  
VIO  
=
Digital supply voltage  
Transmit data input from  
the microcontroller  
Receive data output to  
the microcontroller  
Bus level on the CANH  
input/output  
TxD  
=
VIO  
RxD  
=
CANH =  
CANL =  
Bus level on the CANL  
input/output  
t
t
VDiff  
=
Differential voltage  
between CANH and CANL  
CANH  
CANL  
VDiff = VCANH VCANL  
VDiff  
“dominant” receiver threshold  
“recessive” receiver threshold  
t
RxD  
VIO  
tLoop  
tLoop  
t
Figure 3  
High speed CAN bus signals and logic signals  
Datasheet  
9
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
The TLE9350VSJ operates as an interface between the CAN controller and the physical bus medium. A HS CAN  
is a two wire differential network which allows data transmission rates up to 5 MBit/s. The characteristics for  
a HS CAN are the two signal states on the CAN bus: dominant and recessive (see Figure 3).  
The CANH and CANL pins are the interface to the CAN bus and both pins operate as an input and output  
simultaneously. The RxD and TxD pins are the interface to the microcontroller. The pin TxD is the serial data  
input from the CAN controller, the RxD pin is the serial data output to the CAN controller. As shown in Figure 1,  
the TLE9350VSJ includes a receiver and a transmitter unit, allowing the transceiver to send data to the bus  
medium and monitor the data from the bus medium at the same time. The TLE9350VSJ converts the serial  
data stream which is available on the transmit data input TxD, into a differential output signal on the CAN bus,  
provided by the CANH and CANL pins. The receiver stage of the TLE9350VSJ monitors the data on the CAN bus  
and converts them to a serial, single-ended signal on the RxD output pin. A "low" signal on the TxD pin creates  
a dominant signal on the CAN bus, followed by a logical "low" signal on the RxD pin (see Figure 3). The feature  
of broadcasting data to the CAN bus and listening to the data traffic on the CAN bus simultaneously is essential  
to support the bit-to-bit arbitration within CAN.  
ISO 11898-2:2016 specifies the voltage levels for HS CAN transceivers. Whether a data bit is dominant or  
recessive depends on the voltage difference between the CANH and CANL pins (VDiff = VCANH - VCANL).  
To transmit a dominant signal to the CAN bus the amplitude of the differential signal VDiff is higher than or  
equal to 1.5 V. To receive a recessive signal from the CAN bus the amplitude of the differential VDiff is lower than  
or equal to 0.5 V.  
In partially-supplied high speed CAN the bus nodes of one common network have different power supply  
conditions. Some nodes are connected to the power supply, while other nodes are disconnected from the  
power supply and in power-down state. Regardless of whether the CAN bus subscriber is supplied or not, each  
subscriber connected to the common bus media must not interfere with the communication. The TLE9350VSJ  
is designed to support partially-supplied networks. In power-down state, the receiver input resistors are  
switched off and the transceiver input has a high resistance.  
For permanently supplied ECUs, the HS CAN transceiver TLE9350VSJ provides a power-save mode. In power-  
save mode, the power consumption of the TLE9350VSJ is optimized to a minimum  
The voltage level on the digital input TxD and the digital output RxD is determined by the power supply level  
at the VIO pin. Depending on the voltage level at the VIO pin, the signal levels on the logic pins (STB, TxD and  
RxD) are compatible with microcontrollers having a 5 V or 3.3 V I/O supply. Usually the digital power supply VIO  
of the transceiver is connected to the I/O power supply of the microcontroller (see Figure 13).  
Datasheet  
10  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
5
Modes of operation  
The TLE9350VSJ supports the following modes of operation):  
Normal-operating mode  
Power-save mode  
The mode selection input pin NEN triggers mode changes. Undervoltage on VCC disables the transmitter  
output stage. An undervoltage event on the digital supply VIO powers down the device.  
NEN = 0  
AND  
tmode expired  
Normal-  
Power-save  
operating  
mode  
mode  
NEN = 1  
AND  
tmode expired  
VIO > VIO_UV  
for at least tPON  
Power-down  
Any mode  
state  
VIO < VIO_UV  
Figure 4  
Mode state diagram  
5.1  
Normal-operating mode  
In normal-operating mode all functions of the device are available and the device is fully functional. Data can  
be received from the HS CAN bus as well as transmitted to the HS CAN bus.  
The transmitter is enabled and drives the serial data stream on the TxD input pin to the bus pins CANH  
and CANL  
The receiver is enabled and converts the signal from the bus to a serial data stream on the RxD output pin  
The bus biasing is active  
The TxD time-out function is enabled (see Chapter 6.4)  
The overtemperature protection is enabled (see Chapter 6.6)  
The undervoltage detection on VCC and VIO are enabled (see Chapter 6.3 and Chapter 5.3)  
The device enters normal-operating mode by setting the mode selection pin NEN to "low", see Figure 4.  
Normal-operating mode can be entered if the device supply VCC is higher than VCC_UV_R. The device enters  
normal-operating mode after tmode expires.  
Note:  
If the device recognizes a recessive signal on the TxD input pin during a mode change from any mode  
to normal-operating mode, then it enables the transmit path after the mode change.  
If the device recognizes a a dominant signal on the TxD input pin during a mode change to normal-  
operating mode, then it keeps the transmit path disabled and it blocks the dominant signal in order  
to not disturb the bus communication . As soon as the device recognizes a recessive signal on the TxD  
input pin, it enables the transmit path again.  
5.2  
Power-save mode  
In power-save mode the transmitter and receiver are disabled (see also ):  
Datasheet  
11  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
The transmitter is disabled and the data available on the TxD input is blocked  
The receiver is disabled and the data available on the bus is blocked  
The RxD output pin is permanently set to logical "high"  
The bus biasing is connected to high impedance  
The NEN input pin is active and if set to "low" it changes the mode of operation to normal-operating mode  
The overtemperature protection is disabled  
The undervoltage detection on VCC is disabled. In power-save mode the device can operate without the  
transmitter supply VCC  
The undervoltage detection on VIO is enabled  
Power-save mode can be entered from normal-operating mode by setting the NEN pin to logical "high". The  
device enters this mode after tmode expires or after the period of tPON when coming from power-down state.  
5.3  
Power-down state  
If the supply voltage VIO < VIO_UV, then the device powers down independent of the transmitter supply VCC and  
NEN input pin (see Figure 5). In power-down state all functions of the device are disabled and the device is  
switched off. The input resistors of the receiver are disconnected. The CANH and CANL bus interface of the  
device is floating and acts as a high impedance input with a very low leakage current. The high impedance  
input does not influence the recessive level of the CAN and allows an optimized EME performance of the entire  
network. In power-down state the transceiver is an invisible node to the bus. tpon must expire as a prerequisite  
for the device to exit power-down state.  
The transmitter and receiver are disabled  
The bus biasing is connected to high impedance  
The TxD time-out function is disabled  
The overtemperature protection is disabled  
The undervoltage detection on VCC is disabled  
The undervoltage detection on VIO is enabled  
Transmitter supply voltage VCC = “don’t care”  
VIO  
hysteresis  
VIO_UV  
tPON  
t
Normal-operating mode /  
Power-save mode  
Normal-operating mode /  
Power-save mode  
Power-down state  
Figure 5  
Power-down and power-up behavior and VIO  
Datasheet  
12  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
6
Fail safe functions  
6.1  
Short circuit protection  
The CANH and CANL bus outputs are short circuit proof to GND and short circuit proof to a supply voltage. The  
current limiting circuit is designed to protect the transceiver from damage. If the device heats up due to a  
continuous short on the CANH or CANL, then the internal overtemperature protection switches off the bus  
transmitter.  
6.2  
Unconnected logic pins  
All logic input pins have an internal pull-up resistor to VIO. If the VIO and VCC supply is active and the logical pins  
are open, the device enters the power-save mode by default.  
6.3  
VCC undervoltage  
If the transmitter supply is in undervoltage condition VCC < VCC_UV_F, then the device might not be able to  
provide the correct bus levels on the CANH and CANL output pins. During this time the transmitter is blocked  
in normal-operating mode, to avoid any interference with the network.  
During undervoltage condition VCC < VCC_UV_F, the bus biasing is switched to ground in normal-operating mode.  
Device is in normal-operating mode  
VCC  
VCC_UV_R  
tVCC_UV_filter  
hysteresis  
VCC_UV_F  
t
VCC_UV_filter + tVCC_recovery  
t
Transmitter  
Enabled  
Disabled  
Enabled  
Normal-mode  
receiver  
Enabled  
Figure 6  
Undervoltage on the transmitter supply VCC  
6.4  
TxD time-out feature  
The TxD time-out feature protects the CAN bus against permanent blocking in case the logical signal on the  
TxD pin is continuously "low". A continuous "low" signal on the TxD pin might have its root cause in a locked-  
up microcontroller or in a short circuit on the printed circuit board, for example.  
In normal-operating mode, a "low" signal on the TxD pin for the time t > tTxD enables the TxD time-out feature  
and the device disables the transmitter (see Figure 7). The receiver is still active and the device continues to  
monitor data on the bus via the RxD output pin.  
Datasheet  
13  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
TxD  
t
t > tTxD  
TxD time–out released  
TxD time-out  
CANH  
CANL  
t
t
RxD  
Figure 7  
TxD time-out function  
Figure 7 shows how the transmitter is deactivated and activated again. A permanent "low" signal on the TxD  
input pin activates the TxD time-out and deactivates the transmitter. To release the transmitter after a TxD  
time-out event, the device requires a signal change on the TxD input pin from "low" to "high".  
6.5  
Delay time for mode change  
The device changes the mode of operation within the time window tMode. During the mode change from  
power-save mode to non-low power mode the device sets the RxD output "high" permanently, so it does not  
reflect the status on the CANH and CANL input pins.  
After the mode change is completed, the device releases the RxD output pin.  
6.6  
Overtemperature protection  
The TLE9350VSJ has an integrated overtemperature detection, which is designed to protect the device against  
thermal overstress of the transmitter. The overtemperature protection is only active in normal-operating  
mode. In case of an overtemperature condition, the temperature sensor disables the transmitter while the  
transceiver remains in normal-operating mode. After the device cools down it enables the transmitter again  
(see Figure 8). A hysteresis is implemented within the temperature sensor.  
Datasheet  
14  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
TJSD (shut down temperature)  
cool down  
TJ  
ΔT  
switch-on transmitter  
t
t
CANH  
CANL  
TxD  
RxD  
t
t
Figure 8  
Overtemperature protection  
Datasheet  
15  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7
Electrical characteristics  
7.1  
Power supply interface  
7.1.1  
Electrical characteristics current consumption  
Table 5  
Electrical characteristics current consumption  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current consumption at VCC  
normal-operating mode,  
recessive state  
ICC_R  
1.4  
4
mA VTxD = VIO;  
NEN = 0 V;  
P_8.1.1  
V
VCANH = VCANL = VCC/2  
Current consumption at VCC  
normal-operating mode,  
dominant state  
ICC_D  
34  
48  
1.5  
mA VTxD = VNEN = 0 V  
P_8.1.2  
P_8.1.3  
Current consumption at VIO  
IIO  
0.9  
mA VNEN = 0 V;  
normal-operating mode  
V =VIO  
;
VDiff = 0 V;  
recessive  
Current consumption at VCC  
power-save mode  
ICC(PSM)  
IIO(PSM)  
0.005  
7
5
µA  
µA  
VTxD = VNEN = VIO  
P_8.1.4  
P_8.1.6  
Current consumption at VIO  
power-save mode  
18  
VTxD = VNEN = VIO;  
0 V < VCC < 5.5 V  
Datasheet  
16  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.1.2  
Electrical characteristics undervoltage detection  
Table 6  
Electrical characteristics undervoltage detection  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground;  
positive current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
1)  
VCC undervoltage threshold  
VCC_UV_R  
VCC_UV_F  
3.8  
4.2  
4.65  
V
P_8.1.11  
P_8.1.21  
rising edge  
see Figure 6  
1)  
VCC undervoltage threshold  
3.8  
4.2  
4.5  
V
falling edge  
see Figure 6  
2) Figure 6  
2) see Figure 6  
VCC undervoltage filter time  
tVCC_UV_filter  
tVCC_recovery  
4
6
7
10  
70  
µs  
µs  
P_8.1.13  
P_8.1.14  
VCC undervoltage recovery  
time  
VIO undervoltage threshold  
VIO_UV  
tPON  
2.0  
2.6  
40  
3.0  
V
P_8.1.15  
P_8.1.19  
VIO delay time power-up  
280  
µs  
2) see Figure 5  
1) VCC undervoltage threshold for rising edge is always higher than undervoltage threshold for falling edge.  
2) Not subject to production test, specified by design.  
Datasheet  
17  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.2  
Electrical characteristics CAN controller interface  
Table 7  
Electrical characteristics CAN controller interface  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Receiver output RxD  
"High" level output current  
IRxD_H  
IRxD_L  
1
-2.5  
2.5  
-1  
mA VRxD = VIO -0.4 V;  
Diff < 0.5 V  
mA VRxD = 0.4 V;  
Diff > 0.9 V  
P_8.2.1  
P_8.2.2  
V
"Low" level output current  
V
Transmission input TxD  
"High" level input voltage  
VTxD_H  
VTxD_L  
0.7 ×  
VIO  
6.0  
V
V
Recessive state  
Dominant state  
P_8.2.3  
P_8.2.4  
"Low" level input voltage  
-0.3  
0.3 ×  
VIO  
Internal pull-up resistor TxD  
Input capacitance  
RTxD  
CTxD  
tTxD  
35  
55  
70  
10  
4
kΩ  
pF  
P_8.2.7  
P_8.2.8  
P_8.2.9  
1)  
TxD permanent dominant  
time-out  
1
2.3  
ms  
Normal-operating  
mode  
non-enable input NEN  
"High" level input voltage  
VNEN_H  
VNEN_L  
0.7 ×  
VIO  
6.0  
V
V
Power-save mode  
P_8.2.13  
P_8.2.14  
"Low" level input voltage  
-0.3  
0.3 ×  
VIO  
Normal-operating  
mode  
Internal pull-up resistor NEN RNEN  
Input capacitance C(NEN)  
35  
55  
70  
10  
kΩ  
1)  
P_8.2.16  
P_8.2.20  
pF  
1) Not subject to production test, specified by design.  
Datasheet  
18  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.3  
Electrical characteristics receiver  
Table 8  
Electrical characteristics receiver  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition Number  
Min. Typ. Max.  
Differential range dominant VDiff_D_Range  
normal-operating mode  
0.9  
8.0  
0.5  
12  
V
V
V
1) -12 V VCMR 12 V  
1) -12V VCMR 12 V  
P_8.3.3  
P_8.3.5  
Differential range recessive  
normal-operating mode  
VDiff_R_Range  
-3.0  
Common mode range  
CMR  
-12  
6
P_8.3.11  
P_8.3.12  
Single ended internal  
resistance  
RCAN_H, RCAN_L  
40 50  
k1) recessive state;  
-2 V VCANH 7 V;  
-2 V VCANL 7 V  
Differential internal resistance RDiff  
12 80 100 k1) recessive state;  
-2 V VCANH 7 V;  
P_8.3.14  
-2 V VCANL 7 V  
Input resistance deviation  
between CANH and CANL  
Ri  
-3  
4
3
%
1) recessive state;  
P_8.3.16  
P_8.3.17  
P_8.3.18  
V
CANH = VCANL = 5 V  
Input capacitance CANH,  
CANL versus GND  
CIn  
40  
20  
pF 1)2) recessive state;  
normal-operating mode  
pF 1)2) recessive state;  
normal-operating mode  
Differential input capacitance CInDiff  
1) Not subject to production test, specified by design.  
2) S2P-Method; f = 10 MHz.  
Datasheet  
19  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.4  
Electrical characteristics transmitter  
Table 9  
Electrical characteristics transmitter  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
CANL, CANH recessive  
output voltage  
VCANL,H  
2.0  
2.5  
3.0  
V
VTxD = VIO;  
no load  
P_8.4.1  
normal-operating mode  
CANH, CANL recessive  
output voltage difference  
normal-operating mode  
VDiff_R_NM  
=
-500 -10  
50  
mV  
V
V
TxD = VIO;  
P_8.4.2  
P_8.4.3  
P_8.4.4  
P_8.4.5  
P_8.4.6  
P_8.4.7  
P_8.4.10  
VCANH  
VCANL  
-
no load  
CANL dominant  
output voltage  
normal-operating mode  
VCANL  
0.5  
1.5  
2.25  
4.5  
2.5  
3.3  
5.0  
VTxD = 0 V;  
50 < RL < 65 Ω  
CANH dominant  
output voltage  
normal-operating mode  
VCANH  
2.75 3.4  
V
VTxD = 0 V;  
50 < RL < 65 Ω  
Differential voltage dominant VDiff_D_NM  
normal-operating mode  
1.5  
1.9  
1.9  
3.5  
V
VTxD = 0 V;  
50 < RL < 65 Ω  
VDiff = VCANH - VCANL  
Differential voltage dominant VDiff_EXT_BL 1.4  
extended bus load  
normal-operating mode  
V
VTxD = 0 V;  
45 < RL < 70 Ω  
1)  
Differential voltage dominant VDiff_HEXT_BL 1.5  
high extended bus load  
normal-operating mode  
V
V
= 0 V;  
TxD  
RL = 2240;  
static behavior  
1) 2) C1 = 4.7 nF  
Driver symmetry (VSYM  
CANH + VCANL  
=
VSYM  
0.9 × 1.0 × 1.1 ×  
V
V
)
VCC  
VCC  
VCC  
CANL short circuit current  
CANL short circuit current  
CANH short circuit current  
CANH short circuit current  
Leakage current, CANH  
ICANLsc  
-115 90  
115  
mA 1)-3 V < VCANLshort < 18 V; P_8.4.11  
t < tTxD  
;
VTxD = 0 V  
ICANLsc2  
ICANHsc  
ICANHsc2  
ICANH,lk  
40  
90  
115  
115  
-40  
5
mA VCANLshort = 18 V;  
P_8.4.23  
t < tTxD  
TxD = 0 V  
mA 1)-3 V < VCANHshort = 18 V; P_8.4.13  
t < tTxD  
TxD =0 V  
mA VCANHshort = -3 V;  
t < tTxD  
;
V
-115 -90  
-115 -90  
;
V
P_8.4.24  
P_8.4.19  
;
VTxD =0 V  
-5  
1
µA  
VCC = VIO = 0 V;  
0 V < VCANH 5 V;  
VCANH = VCANL;  
Datasheet  
20  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
Table 9  
Electrical characteristics transmitter (Continued)  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Leakage current, CANL  
ICANL,lk  
-5  
1
5
µA  
VCC = VIO = 0 V;  
P_8.4.20  
0 V < VCANL 5 V;  
V
CANH = VCANL  
V/µs 1) 30% to 70% of  
measured differential  
CANH, CANL output voltage  
difference slope, recessive to  
dominant  
Vdiff_slope_rd  
42  
70  
P_8.4.21  
P_8.4.22  
bus voltage,  
C2 = 100 pF, RL = 60 ,  
4.75 V < VCC < 5.25 V  
CANH, CANL output voltage  
difference slope, dominant to  
recessive  
Vdiff_slope_dr  
42  
70  
V/µs 1) 70% to 30% of  
measured differential  
bus voltage,  
C2 = 100 pF, RL = 60 ,  
4.75 V < VCC < 5.25 V  
1) Not subject to production test, specified by design.  
2) VSYM is observed during dominant and recessive state and also during the transition from dominant to recessive state  
and vice versa, while TxD is stimulated by a square wave signal with a frequency of 1 MHz.  
Datasheet  
21  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.5  
Electrical characteristics dynamic transceiver parameters  
Table 10  
Electrical characteristics dynamic transceiver parameters  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Propagation delay  
TxD-to-RxD  
tLoop  
80  
80  
30  
30  
30  
30  
150  
180  
70  
255  
330  
140  
140  
140  
140  
ns  
ns  
ns  
ns  
ns  
ns  
C1 = 0 pF,  
C2 = 100 pF,  
RxD = 15 pF;  
P_8.5.1  
C
(see Figure 10)  
Propagation delay  
increased load  
TxD-to-RxD  
tLoop_150  
C1 = 0 pF,  
P_8.5.2  
P_8.5.3  
P_8.5.4  
P_8.5.5  
P_8.5.6  
C2 = 100 pF,  
CRxD = 15 pF,  
RL = 150 1)  
Propagation delay  
TxD to bus  
"low" to dominant  
td(L)_T  
C1 = 0 pF,  
C2 = 100 pF,  
CRxD = 15 pF;  
(see Figure 10)  
Propagation delay  
TxD to bus  
"high" to recessive  
td(H)_T  
90  
C1 = 0 pF,  
C2 = 100 pF,  
CRxD = 15 pF;  
(see Figure 10)  
Propagation delay  
bus to RxD  
dominant to "low"  
td(L)_R  
90  
CRxD = 15 pF,  
Independent of tBit  
(see Figure 10)  
;
;
Propagation delay  
bus to RxD  
recessive to "high"  
td(H)_R  
100  
CRxD = 15 pF,  
Independent of tBit  
(see Figure 10)  
Delay Times  
1)  
Delay time for mode change tMode  
12  
20  
µs  
µs  
P_8.5.7  
Hold-up time of power-save  
mode  
tHold_PS  
180  
2) see Figure 12  
P_8.5.19  
CAN FD characteristics  
Received recessive bit width at tBit(RxD)_2M 420  
2 MBit/s  
450  
150  
520  
220  
ns  
ns  
C2 = 100 pF;  
P_8.5.13  
P_8.5.14  
CRxD = 15 pF;  
tBit = 500 ns;  
see Figure 11  
Received recessive bit width at tBit(RxD)_5M 120  
5 MBit/s  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 200 ns;  
see Figure 11  
Datasheet  
22  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
Table 10  
Electrical characteristics dynamic transceiver parameters (Continued)  
4.75 V < VCC < 5.25 V; 3.0 V < VIO < 5.5 V; RL = 60 ; -40°C < Tj < 150°C; all voltages with respect to ground; positive  
current flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Transmitted recessive bit  
width at 2 MBit/s  
tBit(Bus)_2M 455  
470  
170  
-23  
-23  
510  
210  
15  
ns  
ns  
ns  
ns  
C2 = 100 pF;  
RxD = 15 pF;  
Bit = 500 ns;  
P_8.5.15  
C
t
see Figure 11  
Transmitted recessive bit  
width at 5 MBit/s  
tBit(Bus)_5M 155  
C2 = 100 pF;  
CRxD = 15 pF;  
P_8.5.16  
P_8.5.17  
P_8.5.18  
tBit = 200 ns;  
see Figure 11  
Receiver timing symmetry at tRec_2M  
2 MBit/s  
tRec_2M = tBit(RxD)_2M - tBit(Bus)_2M  
-45  
-45  
C2 = 100 pF;  
CRxD = 15 pF;  
tBit = 500 ns;  
see Figure 11  
Receiver timing symmetry at tRec_5M  
5 MBit/s  
tRec_5M = tBit(RxD)_5M - tBit(Bus)_5M  
15  
C2 = 100 pF;  
C
RxD = 15 pF;  
Bit = 200 ns;  
see Figure 11  
t
1) Not subject to production test, specified by design.  
2) In case of mode transition from normal-operating to power-save and back to normal-operating, the transceiver is  
recommended to stay for minimum of 200 µs in the power-save mode to be in the safe operating area; to receive and  
transmit CAN messages properly.  
Datasheet  
23  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
7.6  
Diagrams  
TxD  
RxD  
CANH  
RL/2  
CRxD  
C2  
Transceiver  
C1  
VIO  
100nF  
1μF  
RL/2  
6
CANL  
VCC  
GND  
Figure 9  
Test circuit  
TxD  
0.7 x VIO  
0.3 x VIO  
t
t
td(L),T  
td(H),T  
VDiff  
0.9 V  
td(L),R  
0.5 V  
td(H),R  
tLoop  
tLoop  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 10 Timing diagrams for dynamic characteristics  
Datasheet  
24  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
TxD  
0.7 x VIO  
0.3 x VIO  
0.3 x VIO  
t
t
5 x tBit  
tBit  
tLoop  
tBit(Bus)  
VDiff = VCANH - VCANL  
VDiff  
0.9 V  
0.5 V  
tLoop  
tBit(RxD)  
RxD  
0.7 x VIO  
0.3 x VIO  
t
Figure 11 Recessive bit time for five dominant bits followed by one recessive bit  
State  
tMode=20μs  
tMode=20μs  
tHold_PS =180μs  
Normal-operating mode  
Power-save mode  
Normal-operating mode  
t
Mode transition to Power-save  
Mode transition to Normal-operating  
Earliest point where the mode change is allowed by the microcontroller  
Figure 12 Hold-up time of power-save mode  
Datasheet  
25  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
8
Application information  
8.1  
ESD robustness according to IEC 61000-4-2  
Tests for ESD robustness according to IEC 61000-4-2 Gun test (150 pF, 330 ) have been performed. The results  
and test conditions are available in a separate test report.  
Table 11  
ESD robustness according to IEC 61000-4-2  
Performed test  
Result Unit Remarks  
Electrostatic discharge voltage at pin CANH and CANL versus GND  
Electrostatic discharge voltage at pin CANH and CANL versus GND  
+8  
-8  
kV  
kV  
1) positive pulse  
1) negative pulse  
1) Not subject to production test. ESD susceptibility "ESD GUN" according to GIFT/ICT paper: "EMC Evaluation of CAN  
Transceivers, version IEC TS62228", section 4.3. (DIN EN61000-4-2).  
Tested by external test facility (IBEE Zwickau).  
8.2  
Application example  
VBAT  
I
Q1  
Q2  
22 μF  
TLE4476D  
GND  
1 μF  
CANH  
CANL  
EN  
100 nF  
3
VCC  
100 nF  
VIO  
22 μF  
5
8
1
4
120  
Ohm  
Transceiver  
VCC  
Out  
Out  
In  
NEN  
7
6
CANH  
Microcontroller  
e.g. AURIX™ 32  
bit multicore  
TxD  
RxD  
CANL  
2
microcontroller  
optional:  
common mode choke  
GND  
GND  
I
Q1  
Q2  
22 μF  
TLE4476D  
GND  
1 μF  
EN  
3
VCC  
100 nF  
VIO  
100 nF  
22 μF  
5
8
1
4
Transceiver  
VCC  
Out  
Out  
In  
NEN  
TxD  
RxD  
7
6
Microcontroller  
e.g. AURIX™ 32  
bit multicore  
CANH  
CANL  
microcontroller  
optional:  
common mode choke  
GND  
120  
Ohm  
GND  
2
example ECU design  
CANH  
CANL  
Figure 13 Application circuit  
Datasheet  
26  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
8.3  
Voltage adaption to the microcontroller supply  
To adapt the digital input and output levels of the device to the I/O levels of the microcontroller, connect the  
power supply pin VIO to the microcontroller voltage supply, see Figure 13.  
Note:  
If case no dedicated digital supply voltage VIO is required in the application, then connect the digital  
supply voltage VIO to the transmitter supply VCC  
.
8.4  
Further application information  
For further information you may visit: https://www.infineon.com/automotive-transceiver  
Datasheet  
27  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
9
Package information  
1)  
0.33 x 45°  
4.93+-00..1035  
0.64+-00..2235  
2)  
0.41+-00..0068  
8° Max.  
3 x 1.27 =3.81  
1.27  
5
8
4
1
Index Marking  
1) Does not include plastic or metal protrusion of 0.25 Max. per side  
2) Does not include dambar protrusion of 0.1 Max. per side  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure 14 PG-DSO-8  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
Datasheet  
28  
Rev. 1.2  
2022-03-18  
TLE9350VSJ  
High speed CAN FD transceiver  
10  
Revision history  
Revision Date  
Changes  
Added new parameter P_8.5.19  
1.2  
2022-03-18  
Editorial changes  
Minimum value for Parameter P_8.1.13 VCC undervoltage filter time specified  
1.1  
2021-07-30  
VCC undervoltage threshold (P_8.1.11 and P_8.1.21) for rising and falling edge  
specified  
Updated description of VCC undervoltage detection  
Added new parameter P_8.4.23 and P_8.4.24  
Updated figure of application example  
1.0  
2020-11-06 Datasheet created  
Datasheet  
29  
Rev. 1.2  
2022-03-18  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2022-03-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Z8F65123477  

相关型号:


Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94003EP

TLE94003EP 是受保护的三倍半桥驱动器,专为驱动汽车应用中小型直流电机而设计,如后视镜调节或加热、通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94004EP

TLE94004EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94104EP

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94106ES

TLE94106ES 是受保护的六倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。 半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-24,提供良好的热性能,节省 PCB 板空间和成本。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94108EL

TLE94108EL 是受保护的八倍半桥驱动器,专为汽车运动控制应用而设计,如加热,通风和空调(HVAC)的活门直流电机控制。它属于一个较大的半桥驱动器系列,可提供三路至十二路输出,设有直接接口或SPI接口。该半桥驱动器旨在以顺序或并行方式驱动直流电机负载。正向 (cw)、反向 (ccw)、制动和高阻抗等工作模式通过16位SPI接口进行控制。该器件提供各种诊断功能,如短路、开路负载、电源故障和过热检测。结合其低静态电流,该器件在汽车应用中具有吸引力。采用小型小脚距散热焊盘封装PG-SSOP-24,具有良好的散热性能,可减少PCB板的占用空间和成本。

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94108ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94108ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON

TLE94110ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INFINEON