TLE9278BQX V33 [INFINEON]

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 3.3 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278BQX V33 is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.;
TLE9278BQX V33
型号: TLE9278BQX V33
厂家: Infineon    Infineon
描述:

A high-efficient switch mode power supply (SMPS) buck regulator provides an external 3.3 V output voltage at up to 750 mA, while an additional DC/DC boost converter supports applications or conditions at low input supply voltages. The device is controlled and monitored via a 16-bit serial peripheral interface (SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and undervoltage reset. The device offers low-power modes in order to support applications that are connected permanently to the battery. A wake-up from the low-power mode is possible via LIN/CAN bus, via the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278BQX V33 is offered in a very small footprint, exposed pad PG-VQFN-48 (7 x 7 mm2) power package.

文件: 总126页 (文件大小:3686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
1
Overview  
Features  
SMPS with integrated switches up to 750 mA (DC/DC buck) with 3.3 V  
output voltage  
DC/DC Boost converter for low Vsup supply voltage with integrated switch  
at 6.5 V, 8 V, 10 V and 12 V  
Low-Drop Voltage Regulator with external PNP device with configurable 5.0 V, 3.3 V, 1.8 V and 1.2 V output  
voltage, protected for off-board usage  
Very low quiescent current consumption in Stop and Sleep Mode  
Four CAN Transceivers compliant to CAN Flexible Data-rate (FD)  
ISO 11898-2: 2016 standard up to 5 Mb  
One universal High-Voltage Wake Input for voltage level monitoring including wake up capability  
Cyclic wake feature via an integrated timer  
Reset Output to ensure stable supply to the MCU  
Fail Output to activate external load in case of system malfunctions are detected  
Output voltage supervision functions in all output supply voltages  
Fast Battery Voltage Monitoring Feature  
16-bit Serial Perpheral Interface (SPI)  
Overtemperature and short circuit protection feature  
Wide input voltage and temperature range  
Software Compatibility to other SBC family members for the TLE926x and TLE927x families  
Green Product (RoHS compliant) & AEC Qualified  
7 × 7 mm PG-VQFN-48 package  
Potential applications  
Gateways  
Body control modules  
Driver assistance  
Chasis control  
Datasheet  
www.infineon.com  
Rev. 1.5  
2019-09-27  
1
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Overview  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100/101.  
Description  
Infineon’s TLE9278BQX V33 offers the highest level of integration at smallest footprint for automotive  
applications requiring multiple channels of CAN transceivers like gateways and high-end Body Control  
Modules (BCM). A high-efficient Switch Mode Power Supply (SMPS) buck regulator provides an external 3.3 V  
output voltage at up to 750 mA while an additional DC/DC boost converter supports applications or conditions  
at low supply input voltages. The device is controlled and monitored via a 16-bit Serial Peripheral Interface  
(SPI). Additional features include a time-out/window watchdog circuit with reset, fail output and  
undervoltage reset. The device offers low-power modes in order to support applications that are connected  
permanently to the battery. A wake-up from the low-power mode is possible via a message on the buses, via  
the bi-level sensitive monitoring/wake-up input as well as via the timer. The TLE9278BQX V33 is offered in a  
very small footprint, exposed pad PG-VQFN-48 (7 × 7 mm) power package.  
Type  
Package  
Marking  
TLE9278BQX V33  
PG-VQFN-48  
TLE9278BQXV33  
Datasheet  
2
Rev.1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
4.4  
5
5.1  
System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
State Machine Description and SBC Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device Configuration and SBC Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Supply and Power up configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Watchdog trigger failure configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SBC Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SBC Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SBC Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SBC Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SBC Fail-Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SBC Development Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wake Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cyclic Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Internal Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1.1  
5.1.1.1  
5.1.1.2  
5.1.1.3  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.2  
5.2.1  
5.2.2  
6
6.1  
DC/DC Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Functional Description of the Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Startup Procedure (Soft Start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Buck regulator Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Functional Description of the Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Boost Regulator Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Buck behavior in SBC Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Buck behavior in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.1.1  
6.1.1.1  
6.1.1.2  
6.1.1.3  
6.1.2  
6.1.2.1  
6.1.2.2  
6.2  
6.2.1  
6.2.2  
Datasheet  
3
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
6.2.2.1  
6.2.2.2  
6.2.2.3  
6.2.3  
6.2.3.1  
6.3  
Automatic Transition from PFM to PWM in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Manual Transition from PFM to PWM in SBC Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SBC Stop to Normal Mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Buck behavior in SBC Sleep or Fail Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SBC Sleep/Fail Safe Mode to SBC Normal Mode transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7
External Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Calculation of RSHUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1  
7.2  
7.2.1  
7.3  
7.4  
7.5  
7.6  
8
8.1  
8.2  
High Speed CAN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CAN OFF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CAN Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CAN Receive Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CAN Wake Capable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
TXD Time-out Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Bus Dominant Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.3  
9
Wake Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Wake Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.1  
9.2  
9.2.1  
9.3  
10  
10.1  
10.2  
Interrupt Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Block and Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11  
11.1  
11.2  
Fail Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12  
12.1  
Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Reset Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Soft Reset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Time-Out Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Window Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Watchdog during Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
12.1.1  
12.1.2  
12.2  
12.2.1  
12.2.2  
12.2.3  
12.2.4  
Datasheet  
4
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
12.2.4.1  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
12.10  
12.11  
12.11.1  
12.12  
Watchdog Start in SBC Stop Mode due to BUS Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
VS Power ON Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Measurement Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Fast Battery Voltage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
VBSENSE Boost deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
VIO Undervoltage and Undervoltage Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VIO Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VIO Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
VEXT Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Temperature Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
13  
13.1  
13.2  
13.3  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SPI Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Failure Signalization in the SPI Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SPI Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
SPI Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
SPI Mapping Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
SPI Mapping Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
SPI Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
General Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
SPI Status Information Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
General Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Family and Product Information Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
13.4  
13.4.1  
13.4.2  
13.5  
13.5.1  
13.6  
13.6.1  
13.6.2  
13.7  
14  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Thermal Behavior of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
14.1  
14.2  
14.3  
15  
16  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Datasheet  
5
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Block Diagram  
2
Block Diagram  
VS  
VS  
BSTD  
BSTD  
VCC1  
Buck  
Boost  
BCKSW  
VCC1  
GND  
GND  
Vint.  
VEXTIN  
VEXTSH  
VEXTB  
FO/TEST  
Fail Safe  
Vext  
PCFG  
VIO  
VEXTREF  
SBC  
STATE  
MACHINE  
SDI  
SDO  
SPI  
CLK  
CSN  
INTN  
Interrupt  
Control  
VBSENSE  
Window Watchdog  
RSTN  
RESET  
GENERATOR  
4
4
WAKE  
REGISTER  
WK  
WK  
4
TXDCAN0  
RXDCAN0  
TXDCAN2  
RXDCAN2  
CAN  
Module 0  
CAN  
Module 2  
CANH0  
CANL0  
CANH2  
CANL2  
VCAN  
TXDCAN3  
RXDCAN3  
TXDCAN1  
RXDCAN1  
CAN  
Module 1  
CAN  
Module 3  
CANH3  
CANL3  
CANH1  
CANL1  
GND  
Figure 1  
Block Diagram  
Datasheet  
6
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
CSN 37  
SDO 38  
24 RSTN  
23 VIO  
SDI 39  
22 VCC1  
CLK 40  
GND 41  
WK 42  
21 RXDCAN3  
20 TXDCAN3  
19 VCAN  
TLE9278  
VBSENSE 43  
VEXTIN 44  
VEXTSH 45  
VEXTB 46  
VEXTREF 47  
FO/TEST 48  
18 RXDCAN2  
17 TXDCAN2  
16 RXDCAN1  
15 TXDCAN1  
14 RXDCAN0  
13 TXDCAN0  
PG-VQFN-48  
Figure 2  
Pin Configuration TLE9278BQX V33  
Datasheet  
7
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
CANH0  
CANL0  
GND  
Function  
CAN High 0 Bus Pin.  
2
CAN Low 0 Bus Pin.  
3
Ground. CAN0 and CAN1 common ground.  
CAN Low 1 Bus Pin.  
4
CANL1  
CANH1  
GND  
5
CAN High 1 Bus Pin.  
6
Ground. Analog GND.  
7
CANH2  
CANL2  
GND  
CAN High 2 Bus Pin.  
8
CAN Low 2 Bus Pin.  
9
Ground. CAN2 and CAN3 common ground.  
CAN Low 3 Bus Pin.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CANL3  
CANH3  
PCFG  
CAN High 3 Bus Pin.  
Configuration pin. For power up hardware configuration (refer to Chapter 5.1.1).  
Transmit CAN0.  
TXDCAN0  
RXDCAN0  
TXDCAN1  
RXDCAN1  
TXDCAN2  
RXDCAN2  
VCAN  
Receive CAN0.  
Transmit CAN1.  
Receive CAN1.  
Transmit CAN2.  
Receive CAN2.  
Supply Input for internal HS-CAN modules.  
Transmit CAN3.  
TXDCAN3  
RXDCAN3  
VCC1  
Receive CAN3.  
Buck Regulator. Input feedback for Buck Converter.  
VIO  
I/O voltage supply, reference voltage for over-/undervoltage monitoring  
(see Chapter 5.1.1).  
24  
25  
26  
27  
28  
29  
RSTN  
INTN  
GND  
BCKSW  
n.c.  
Reset Output. Active LOW, internal pull-up.  
Interrupt Output. Active LOW.  
Ground. Buck regulator ground.  
Buck regulator switch node output.  
not connected. Not bondend internally.  
VS  
Buck Supply Voltage. Connected to Battery Voltage or Boost output voltage  
with reverse protection diode. Use a filter against EMC in case that the Boost is  
not used.  
30  
VS  
Buck Supply Voltage. Connected to Battery Voltage or Boost output voltage  
with reverse protection diode. Use a filter against EMC in case that the Boost is  
not used.  
31  
32  
33  
n.c.  
not connected. Not bondend internally.  
Ground. Boost regulator ground.  
Ground. Boost regulator ground.  
GND  
GND  
Datasheet  
8
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Pin Configuration  
Pin  
34  
Symbol  
n.c.  
Function  
not connected. Not bondend internally.  
35  
BSTD  
Boost Transistor Drain. Connected between inductor and diode for boost  
functionality (refer to Chapter 14.1 for additional information). Connect to  
ground if the Boost regulator is not used.  
36  
BSTD  
Boost Transistor Drain. Connected between inductor and diode for boost  
functionality (refer to Chapter 14.1 for additional information). Connect to  
ground if the Boost regulator is not used.  
37  
38  
39  
40  
41  
42  
43  
44  
CSN  
SPI Chip Select Not Input.  
SPI Data Output. Out of SBC (=MISO).  
SPI Data Input. Into SBC (=MOSI).  
SPI Clock Input.  
SDO  
SDI  
CLK  
GND  
Ground. Common digital ground.  
Wake Input.  
WK  
VBSENSE  
VEXTIN  
Battery Voltage Monitoring Input.  
Input Supply Voltage for VEXT. Connected to Battery Voltage with Reverse  
Protection Diode and Filter against EMC.  
45  
46  
47  
48  
VEXTSH  
VEXTB  
VEXTSH. Emitter connection for external PNP, shunt connection to VEXTIN.  
VEXTB. Base connection for external PNP.  
VEXTREF  
FO/TEST  
VextREF. Collector connection for external PNP, reference input.  
Fail Output. active LOW, open-drain;  
TEST. Connect to GND to activate SBC Development Mode; Integrated pull-up  
resistor. Connect to VS with a pull-up resistor or leave open for normal operation.  
Cooling GND  
Tab  
Cooling Tab - Exposed Die Pad; For cooling purposes only, do not use as an  
electrical ground.1)  
1) The exposed die pad at the bottom of the package allows better power dissipation of heat from the SBC via the PCB.  
The exposed die pad is not connected to any active part of the IC and can be left floating or it can be connected to  
GND (recommended) for the best EMC performance.  
Note:  
All VS pins must be connected to battery potential or insert a reverse polarity diodes where required;  
All GND pins as well as the Cooling Tab must be connected to one common GND potential.  
Datasheet  
9
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Pin Configuration  
3.3  
Unused Pins  
It must be ensured that the correct configurations are also selected, i.e. in case functions are not used that  
they are disabled via SPI:  
CANHx, CANLx, TXDCANx, RXDCANx: leave pins open.  
BSTD: connect to GND.  
WK: connect to GND and disable WK input via SPI.  
RSTN / INTN: leave open.  
FO/TEST: connect to GND during power-up to activate SBC Development Mode; connect to VS or leave  
open for normal user mode operation.  
VBSENSE: connect to VS in case that Fast Battery Voltage Monitoring and Boost deactivation features are  
not used and keep them disabled.  
VEXT: See Chapter 7.5.  
n.c.: leave open.  
Unused pins routed to an external connector which leaves the ECU should feature a zero ohm jumper  
(depopulated if unused) or ESD protection.  
Datasheet  
10  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltages  
Supply Voltage VS and  
VEXTIN pin  
VS1, max  
VS2, max  
-0.3  
-0.3  
28  
40  
28  
40  
V
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
P_4.1.4  
Supply Voltage VS and  
VEXTIN pin  
Load Dump,  
max. 400 ms  
Boost drain Voltage BSTD  
pin  
VBSTD2, max -0.3  
VBSTD2, max -0.3  
VBCKSW, max -0.3  
Boost drain Voltage BSTD  
pin  
Load Dump,  
max. 400 ms  
Buck switch BCKSW pin  
VS + 0.3  
5.5  
V
V
P_4.1.8  
P_4.1.9  
Buck Regulator feedback,  
pin VCC1  
VCC1, max  
-0.3  
External Voltage Regulator VEXTREF, max -0.3  
(VEXTREF)  
28  
V
V
VEXTREF = 40 V for P_4.1.26  
Load Dump,  
max. 400 ms  
External Voltage Regulator VEXTB, max -0.3  
(VEXTB)  
VEXTIN  
+ 10  
VEXTB = 40 V for  
Load Dump,  
max. 400 ms  
P_4.1.27  
External Voltage Regulator VEXTSH, max VEXTIN  
VEXTIN  
+ 0.3  
V
V
P_4.1.11  
P_4.1.12  
(VEXTSH)  
- 0.3  
Battery Voltage Monitoring VVBSENSE, -18  
40  
max  
Wake Input  
VWK, max  
VHV, max  
-0.3  
-0.3  
40  
40  
5.5  
V
V
V
P_4.1.13  
P_4.1.14  
P_4.1.15  
Fail Pins FO/TEST  
Interrupt/Configuration Pin VINTN, max -0.3  
INTN  
Configuration Pin PCFG  
Configuration Pin VIO  
CANH, CANL  
VPCFG, max -0.3  
40  
V
V
V
V
V
V
P_4.1.25  
P_4.1.28  
P_4.1.16  
P_4.1.17  
P_4.1.18  
P_4.1.30  
VVIO, max  
VBUS, max  
-0.3  
-40  
5.5  
40  
Digital Input / Output pin’s VIO, max  
VCAN Input Voltage  
-0.3  
5.5  
5.5  
10  
VVCAN, max -0.3  
Maximum Differential CAN VCAN_DIFF, -5  
Bus Voltage  
max  
Datasheet  
11  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
Table 1  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
ESD Resistivity to GND  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.19  
P_4.1.20  
Tstg  
VESD  
VESD  
-2  
-8  
2
8
kV  
kV  
HBM2)  
HBM2)3)  
P_4.1.21  
P_4.1.22  
ESD Resistivity to GND,  
CANH, CANL  
ESD Resistivity to GND  
VESD  
-500  
500  
750  
V
V
CDM4)  
CDM4)  
P_4.1.23  
P_4.1.24  
ESD Resistivity Pin 1,  
12,13,24,25,36,37,48 (corner  
pins) to GND  
VESD1,12,13,2 -750  
4,25,36,37,48  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF).  
3) ESD “GUN” Resistivity with ±6 KV (according to IEC61000-4-2 “GUN test” (300 , 150 pF)) it is shown in Application  
Information and test will be provided from IBEE institute.  
4) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1, usually not tested but rather  
ESD SDM.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
12  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Supply Voltage  
VS,func  
VPOR  
28  
V
V
seesection P_4.2.1  
POR  
Chapter 12.12  
CANx Supply Voltage  
SPI frequency  
VCAN  
fSPI  
4.75  
5.25  
4
V
P_4.2.2  
P_4.2.3  
MHz see  
Chapter 13.7 for  
fSPI,max  
Junction Temperature  
Tj  
-40  
150  
°C  
P_4.2.4  
1) Including Power-On Reset, Over- and Undervoltage Protection.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Device Behavior Outside of Specified Functional Range:  
28 V < VS,func < 40 V: Device will still be functional; the specified electrical characteristics might not be  
ensured anymore. The absolute maximum ratings are not violated. However, a thermal shutdown might  
occur due to high power dissipation.  
VCAN < 4.75 V: The undervoltage bit VCAN_UV will be set in the SPI register BUS_STAT_0 and the transmitter  
will be disabled as long as the UV condition is present.  
5.25 V < VCAN < 5.5 V: CANx transceiver still functional. However, the communication might fail due to out-  
of-spec operation.  
V
POR,f < VS < 5.5 V: Device will be still functional; the specified electrical characteristics might not be ensured  
anymore:  
The voltage regulators will enter the low-drop operation mode.  
VIO_UV reset could be triggered depending on the VRTx settings.  
Datasheet  
13  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
4.3  
Thermal Resistance  
Table 3  
Thermal Resistance1)  
Symbol  
Parameter  
Values  
Typ.  
7
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Junction to Soldering Point RthJSP  
Junction to Ambient RthJA  
K/W Exposed Pad  
P_4.3.1  
P_4.3.2  
2)  
33  
K/W  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board for 1.5 W. Board: 76.2 × 114.3 × 1.5 mm3  
with 2 inner copper layers (35 µm thick), with thermal via array under the exposed pad . Top and bottom layers are  
70 µm thick.  
4.4  
Current Consumption  
Table 4  
Current Consumption  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SBC Normal Mode  
Normal Mode current  
consumption  
INormal  
10  
16  
mA  
VS = 5.5 V to 28 V;  
Tj = -40°C to +150°C;  
BOOST/VEXT/CANx=  
OFF  
P_4.4.1  
SBC Stop Mode  
Stop Mode current  
Consumption  
IStop,25  
55  
70  
µA  
1) Buck in PFM  
P_4.4.2  
P_4.4.3  
BOOST/VEXT = OFF;  
No load on VCC1  
VBSENSE_EN = 0B  
CANx/WK not wake  
capable  
Watchdog = OFF  
2) Tj = 85°C;  
Stop Mode current  
IStop,85  
95  
µA  
Consumption, Tj = 85°C  
Buck in PFM  
BOOST/VEXT = OFF;  
No load on VCC1  
VBSENSE_EN = 0B  
CANx/WK not wake  
capable  
Watchdog = OFF  
SBC Sleep Mode  
Sleep Mode current  
consumption  
ISleep,25  
30  
50  
µA  
BOOST/VEXT = OFF; P_4.4.4  
VBSENSE_EN = 0B  
CANx/WK not wake  
capable  
Datasheet  
14  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
65  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Sleep Mode current  
ISleep,85  
µA  
2) Tj = 85°C;  
P_4.4.5  
consumption, Tj = 85°C  
BOOST/VEXT = OFF;  
VBSENSE_EN = 0B  
CANx/WK not wake  
capable  
Feature Incremental Current Consumption  
Current consumption per  
CAN module, recessive state  
ICAN,rec  
2
3
3
mA  
mA  
SBC Normal Mode; P_4.4.6  
CAN Normal Mode;  
V
V
CAN = 5 V;  
TXDCAN = VIO;  
no RL on CANx  
2) SBC Normal Mode; P_4.4.7  
CAN Normal Mode;  
Current consumption per  
CAN module, dominant  
state  
ICAN,dom  
4.5  
V
V
CAN = 5 V;  
TXDCAN= GND;  
no RL on CANx  
Current consumption per  
CAN module, Receive Only  
Mode, SBC Normal Mode  
ICAN,RcvOnly,N  
0.4  
1
0.6  
1.4  
mA  
mA  
2) CAN Receive Only P_4.4.8  
Mode; VCAN = 5 V;  
M
V
TXDCAN = VIO;  
no RL on CANx  
2) CAN Receive Only P_4.4.25  
Mode; VCAN = 5 V;  
Current consumption per  
CAN module, Receive Only  
Mode, SBC Stop Mode  
ICAN,RcvOnly,St  
M
VTXDCAN = VIO;  
no RL on CANx  
Current consumption for WK IWake,WK,25  
wake capability  
0.5  
2.0  
1.5  
4.0  
µA  
µA  
3)4) SBC Sleep Mode; P_4.4.11  
CANx = OFF  
2)3)4) SBCSleep Mode; P_4.4.12  
Tj = 85°C;  
Current consumption for WK IWake,WK,85  
wake capability Tj = 85°C  
CANx = OFF  
Current consumption for  
CAN wake capability  
IWake,CAN,25  
4.5  
6
6
µA  
µA  
1)3) SBC Sleep Mode; P_4.4.13  
WK = OFF  
tSILENCE expired  
Current consumption for  
CAN wake capability  
IWake,CAN,85  
10  
1)2)3) SBCSleep Mode; P_4.4.14  
Tj = 85°C;  
WK = OFF  
t
SILENCE expired  
Current consumption for  
VEXT in SBC Sleep Mode  
ISleep,VEXT,25  
45  
60  
µA  
3) SBC Sleep Mode;  
VEXT = ON (no load);  
CANx / WK = OFF  
P_4.4.15  
Datasheet  
15  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
55  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current consumption for  
VEXT in SBC Sleep Mode,  
Tj = 85°C  
ISleep,VEXT,85  
70  
µA  
2)3) SBC Sleep Mode; P_4.4.16  
Tj = 85°C; VEXT = ON  
(no load);  
CANx / WK = OFF  
Current consumption for  
cyclic wake function  
IStop,C25  
IStop,C85  
20  
24  
26  
35  
µA  
µA  
3)5) SBC Stop Mode; P_4.4.17  
WD = OFF  
2)3)5) SBC Stop Mode; P_4.4.18  
Tj = 85°C;  
Current consumption for  
cyclic wake function,  
Tj = 85°C  
WD = OFF  
Current consumption for  
watchdog active in Stop  
Mode  
IStop,WD25  
IStop,WD85  
IStop,FO  
20  
24  
0.5  
5
26  
35  
1.5  
µA  
µA  
mA  
µA  
mA  
2) SBC Stop Mode;  
Watchdog running  
P_4.4.19  
P_4.4.20  
P_4.4.21  
Current consumption for  
watchdog active in Stop  
Mode  
2) SBC Stop Mode;  
Tj = 85°C;  
Watchdog running  
2) All SBC Modes;  
Tj = 25°C;  
FO = ON (no load);  
2) SBC Stop Modes; P_4.4.30  
VBSENSE_EN = 1B  
Tj = 25°C;  
2) SBC Normal / Stop P_4.4.31  
Modes;  
Current consumption for  
active fail output (FO)  
Current consumption Fast IStop,FBM  
Battery Monitoring in SBC  
Stop Mode  
Additional VS current  
consumption with Boost  
Module Active  
IBOOST,ON  
10  
20  
V
BSTx < VS< VBST,thx  
BOOST_EN = 1B;  
1) Current consumption for CANx transceiver and WK input to be added if set to be wake capable or receiver only.  
2) Not subject to production test, specified by design.  
3) Current consumption adders of features defined for SBC Sleep Mode also apply for SBC Stop Mode and vice versa  
(unless otherwise specified).  
4) No pull-up or pull-down configuration selected.  
5) Cyclic wake configuration: Timer with 20 ms period.  
Datasheet  
16  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
5
System Features  
This chapter describes the system features and behavior of the TLE9278BQX V33:  
State machine and SBC mode control.  
Device configurations.  
State of supply and peripherals.  
Wake features.  
Supervision and diagnosis functions.  
The System Basis Chip is controlled via a 16-bit SPI interface. A detailed description can be found in  
Chapter 13. The configuration as well as the diagnosis is handled via the SPI. The SPI mapping of the  
TLE9278BQX V33 is compatible to other devices of TLE926x and TLE927x family.  
The System Basis Chip (SBC) offers six operating modes:  
SBC Init Mode: power-up of the device and after soft reset.  
SBC Normal Mode: the main operating mode of the device.  
SBC Stop Mode: the first-level power saving mode with the main voltage regulator enabled.  
SBC Sleep Mode: the second-level power saving mode with Buck regulator disable.  
SBC Restart Mode: an intermediate mode after a wake event from SBC Sleep or SBC Fail-Safe Mode or after  
a failure (e.g. WD failure in config 1/3) to bring the microcontroller into a defined state via a reset. Once the  
failure condition is not present anymore, the device will automatically change to SBC Normal Mode after a  
delay time (tRD1).  
SBC Fail-Safe Mode: a safe-state mode after critical failures (e.g. TSD2 thermal shutdown) to bring the  
system into a safe state and to ensure a proper restart of the system. Buck regulator is disabled.  
A special mode called SBC Development Mode is available during software development or debugging of the  
system. All of the operating modes mentioned above can be accessed in this mode. However, the watchdog  
counter is stopped and does not need to be triggered. This mode can be accessed by setting the TEST pin to  
GND during SBC Init Mode.  
5.1  
State Machine Description and SBC Mode Control  
The different SBC Modes are selected via SPI by setting the respective SBC MODE bits in the register  
M_S_CTRL.  
The SBC MODE bits are cleared when going trough SBC Restart Mode, so the current SBC mode is always  
shown.  
Figure 3Figure 4 shows the SBC State Diagram.  
Datasheet  
17  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
First battery connection  
SBC Soft Reset  
Config.: settings can be configured in  
this SBC mode;  
SBC Init Mode  
*
(Long open window )  
Fixed: settings stay as defined in  
SBC Normal Mode  
VCC1  
ON  
VEXT  
OFF  
Boost  
OFF  
FO  
CAN  
WD  
Cyc.Wake  
OFF  
inact. OFF (3) Config.  
*
The SBC Development Mode is a  
super set of state machine where the  
WD timer is stopped and CANx  
Any SPI  
command  
behavior differs in SBC Init Mode.  
Otherwise, there are no differences in  
behavior (see also Chapter 5.1.7).  
(1) After Fail-Safe Mode entry , the device will stay for at least  
typ. 1s in this mode (with RO low) after a TSD2 event and min.  
typ. 100ms after other Fail -Safe Events. Only then the device  
can leave the mode via a wake-up event. Wake events are  
stored during this time.  
SBC Normal Mode  
VCC1  
ON  
VEXT  
Boost(6)  
config.  
conf./OFF  
(2) according to VEXT configuration  
WD trigger  
(3) For SBC Development Mode CAN is in Normal Mode in  
SBC Init Mode and will stay ON when going from there to SBC  
Normal Mode  
FO  
CAN  
WD  
Cyc.Wake  
config.  
act/inact Config.(3) Config.  
(4) See chapter CAN for detailed behavior in SBC Restart Mode  
(5) CAN transceiver can be SWK capable , depending on  
configuration  
Automatic  
SPI cmd  
§
§
Reset is released  
WD starts with long open window  
(6) The Boost regulator activation depends from the VS value.  
SPI cmd  
SPI cmd  
SBC Sleep Mode  
SBC Stop Mode  
VCC1  
OFF  
VEXT(2)  
Fixed/OFF  
Boost  
OFF  
VCC1  
ON  
VEXT  
fixed  
Boost(6)  
fixed/OFF  
VIO over voltage  
Config 1/3 (if VIO_OV_RST set)  
CAN (5)  
CAN (5)  
WD  
fixed  
fixed  
FO  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
FO  
fixed  
Cyc.Wake  
fixed  
Wake  
cap./OFF  
SBC Restart Mode  
(RO pin is asserted)  
Wake up event  
via CANx or WK  
Watchdog Failure :  
Config 1/3 (MAX_3_RST not set)  
& 1st WD failure in Config4  
4th consecutive VIO  
under voltage event  
(if VS > VS_UV_TO)  
VCC1  
ON  
VEXT(2)  
Fixed/OFF  
Boost(6)  
fixed/OFF  
VIO over voltage  
Config 2/4 (if VIO_OV_RST set)  
VIO Undervoltage  
CAN (4)  
FO  
active/  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
Woken /  
OFF  
TSD2 event  
SBC Fail-Safe Mode (1)  
1st Watchdog Failure Config 2,  
2nd Watchdog Failure , Config 4  
VCC1  
OFF  
VEXT  
OFF  
Boost  
OFF  
CAN  
VIO Short to GND  
FO  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
Wake  
capable  
CANx, WK wake-up event  
Figure 3  
State Diagram showing the SBC Operating Modes  
Datasheet  
18  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
First battery connection  
SBC Soft Reset  
Config.: settings can be configured in  
this SBC mode;  
SBC Init Mode  
*
(Long open window )  
Fixed: settings stay as defined in  
SBC Normal Mode  
VCC1  
ON  
VEXT  
OFF  
Boost  
OFF  
FO  
CAN  
WD  
Cyc.Wake  
OFF  
inact. OFF (3) Config.  
*
The SBC Development Mode is a  
super set of state machine where the  
WD timer is stopped and CANx  
Any SPI  
command  
behavior differs in SBC Init Mode.  
Otherwise, there are no differences in  
behavior (see also Chapter 5.1.7).  
SBC Normal Mode  
(1) After Fail-Safe Mode entry , the device will stay for at least  
typ. 1s in this mode (with RO low) after a TSD2 event and min.  
typ. 100ms after other Fail -Safe Events. Only then the device  
can leave the mode via a wake-up event. Wake events are  
stored during this time.  
VCC1  
ON  
VEXT  
config.  
Boost(5)  
conf./OFF  
WD trigger  
(2) according to VEXT configuration  
FO  
CAN  
WD  
Cyc.Wake  
config.  
act/inact Config.(3) Config.  
(3) For SBC Development Mode CAN is in Normal Mode in  
SBC Init Mode and will stay ON when going from there to SBC  
Normal Mode  
(4) See chapter CAN for detailed behavior in SBC Restart Mode  
(5) The Boost regulator activation depends from the VS value.  
Automatic  
SPI cmd  
§
§
Reset is released  
WD starts with long open window  
SPI cmd  
SPI cmd  
SBC Sleep Mode  
SBC Stop Mode  
VCC1  
OFF  
VEXT(2)  
Fixed/OFF  
Boost  
OFF  
VCC1  
ON  
VEXT  
fixed  
Boost(5)  
fixed/OFF  
VIO over voltage  
Config 1/3 (if VIO_OV_RST set)  
CAN  
FO  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
FO  
fixed  
WD  
fixed  
Cyc.Wake  
fixed  
CAN  
fixed  
Wake  
cap./OFF  
SBC Restart Mode  
(RO pin is asserted)  
Wake up event  
via CANx or WK  
Watchdog Failure :  
Config 1/3 (MAX_3_RST not set)  
& 1st WD failure in Config4  
4th consecutive VIO  
under voltage event  
(if VS > VS_UV_TO)  
VCC1  
ON  
VEXT(2)  
Fixed/OFF  
Boost(5)  
fixed/OFF  
VIO over voltage  
Config 2/4 (if VIO_OV_RST set)  
VIO Undervoltage  
CAN (4)  
FO  
active/  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
Woken /  
OFF  
TSD2 event  
SBC Fail-Safe Mode (1)  
1st Watchdog Failure Config 2,  
2nd Watchdog Failure , Config 4  
VCC1  
OFF  
VEXT  
OFF  
Boost  
OFF  
CAN  
VIO Short to GND  
FO  
fixed  
WD  
OFF  
Cyc.Wake  
OFF  
Wake  
capable  
CANx, WK wake-up event  
Figure 4  
State Diagram showing the SBC Operating Modes  
Datasheet  
19  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
5.1.1  
Device Configuration and SBC Init Mode  
The SBC Init Mode is the mode where the hardware configuration of the SBC is stored and where the  
microcontroller finishes the initialization phase.  
The SBC starts up in SBC Init Mode after crossing the power-on reset VPOR,r threshold (see also Chapter 12.3)  
and the watchdog will start with a long open window (tLW typical 200ms) after the RSTN is released.  
During this power-on phase following configurations are stored in the device:  
Supply and Power up configurability.  
The device behavior regarding a watchdog trigger failure and a VIO overvoltage condition is determined by  
the external circuitry on the INTN pin (see below).  
The selection of the normal device operation or the SBC Development Mode (watchdog disabled for  
debugging purposes) will be set depending on the voltage level of the FO/TEST pin (see also  
Chapter 5.1.7).  
5.1.1.1 Supply and Power up configurability  
The pin VIO of TLE9278BQX V33 has to be connected to VCC1. The pin PCFG can be left open or connected to  
GND.  
The Table 5 shows the only allowed combinations and related behavior.  
Table 5  
Supply and power up Configurability  
PCFG pin VIO Supply µC Supply VEXT  
VCC1  
VEXT  
Supervision  
Functions  
Output  
Voltage  
Output voltage Behavior  
V
CC1 = 3.3 V Open  
VCC1  
VCC1  
VCC1  
VCC1  
Configurable via SPI  
Supervision  
functions on VIO  
SPI using  
configurable,  
VEXT_VCFG  
OFF after Power with 3.3 V level;  
Up  
VREG_UV SPI  
status bit active  
VCC1 = 3.3 V GND  
Configurable via SPI  
Supervision  
functions on VIO  
SPI using  
configurable,  
VEXT_VCFG  
OFF after Power with 3.3 V level;  
Up  
VREG_UV SPI  
status bit active  
Note:  
VIO can be connected only to VCC1.  
5.1.1.2 Watchdog trigger failure configuration  
There are four different device configurations (Table 6) available defining the watchdog failure and the VIO  
overvoltage behavior. The configurations can be selected via the external connection on the INTN pin and the  
SPI bit CFG2 in the HW_CTRL_0 register (see also Chapter 13.4):  
A watchdog trigger failures leads to SBC Restart Mode (Config 1/3) and depending on CFG2 the Fail Output  
(FO) are activated after the 1st or 2nd watchdog trigger failure;  
If VIO_OV_RST is set and in Config 1/3, then SBC Restart Mode will be entered in case of VIO_OV and the  
FO is activated.  
A watchdog trigger failures leads to SBC Fail-Safe Mode (Config 2/4) and depending on CFG2 the Fail  
Output (FO) are activated after the 1st or 2nd watchdog trigger failure. The first watchdog trigger failure in  
Config 4 will lead to SBC Restart Mode;  
Datasheet  
20  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
If VIO_OV_RST is set and in Config 2/4, then SBC Fail-Safe Mode will be entered in case of VIO_OV and the  
FO is activated.  
The respective device configuration can be identified by reading the SPI bits CFG2_STATE and CFG1_STATE  
in the WK_LVL_STAT register.  
Table 6  
Watchdog Trigger Failure Configuration  
FO Activation SBC Mode Entry  
Config Event  
SPI Bit CFG2 INTN Pin  
(CFG1_STATE)  
1
2
3
4
1 × Watchdog Failure after 1st WD Failure SBC Restart Mode  
1 × Watchdog Failure after 1st WD Failure SBC Fail-Safe Mode  
2 × Watchdog Failure after 2nd WD Failure SBC Restart Mode  
2 × Watchdog Failure after 2nd WD Failure SBC Fail-Safe Mode  
1
1
0
0
External pull-up  
No ext. pull-up  
External pull-up  
No ext. pull-up  
The respective configuration will be stored for all conditions and can only be changed by powering down the  
device (VS < VPOR,f).  
Table 7 shows the possible SBC hardware configurations.  
Table 7  
SBC Configuration  
Configuration Description  
FO/Test  
Pin  
INTN Pin CFG2_STA CFG1_STA  
(CFG1_ST TE  
ATE)  
TE  
Config 0  
Config 1  
SBC Development Mode: no reset is  
triggered in case of watchdog trigger  
failure. After the Power Up, one  
0
-
X
X
arbitrary SPI command must be sent.  
After missing the WD trigger for the first Open or  
External  
pull-up to  
VIO  
1
1
time, the state of VCC1 remains  
unchanged, FO pin is active, SBC in  
Restart Mode  
>VTEST,H  
Config 2  
Config 3  
After missing the WD trigger for the first Open or  
time,VCC1 turns OFF, FO pin are active, >VTEST,H  
SBC in Fail-Safe mode  
Open or  
GND  
1
0
0
1
After missing the WD trigger for the  
Open or  
External  
pull-up to  
VIO  
second time, the state of VCC1 remains >VTEST,H  
unchanged, FO pin is active, SBC in  
Restart Mode  
Config 4  
After missing the WD trigger for the  
second time,VCC1 turns OFF, FO pin is >VTEST,H  
Open or  
Open or  
GND  
0
0
active, SBC in Fail-Safe mode  
In case of 3 consecutive resets due to WD fail, it is possible in Config 1 and 3 not to generate additional reset  
by setting the MAX_3_RST on WD_CTRL.  
Figure 5 shows the timing diagram of the hardware configuration selection. The hardware configuration is  
defined during SBC Init Mode. The INTN pin is internally pulled LOW with a weak pull-down resistor during the  
reset delay time tRD1, i.e. after VIO crosses the reset threshold VRT1 and before the RSTN pin goes HIGH. The  
Datasheet  
21  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
INTN pin is monitored during this time and the configuration (depending on the voltage level at INTN) is read  
and stored at the rising edge of RSTN (with a filter time of tCFG_F).  
VS  
VPOR,r  
t
VIO  
VRT1,r  
t
RSTN  
tCFG_F  
Config Select filter time  
t
tRD1  
Configuration selection monitoring period  
Figure 5  
Hardware Selection Timing Diagram  
Note:  
If the POR bit is not cleared then the internal pull-down resistor will be reactivated every time RSTN  
is pulled LOW the configuration will be updated at the rising edge of RSTN. Therefore it is  
recommended to clear the POR bit right after initialization.  
5.1.1.3 SBC Init Mode  
In SBC Init Mode, the device waits for the microcontroller to finish its startup and initialization sequence. In  
the SBC Init Mode any SPI command will bring the SBC to SBC Normal Mode. During the long open window  
the watchdog has to be triggered. Thereby the watchdog will be automatically configured. A missing  
watchdog trigger during the long open window will cause a watchdog failure and the device will enter SBC  
Restart Mode.  
Wake events are ignored during SBC Init Mode and will therefore be lost.  
Note:  
Note:  
Any SPI command will bring the SBC to SBC Normal Mode even if non-valid (see Chapter 13.2).  
For a safe start-up, it is recommended to use the first SPI command to trigger and to configure the  
watchdog (see Chapter 12.2).  
Note:  
At power up, no VIO_UV will be issued nor will FO be triggered as long as VIO is below the VRT1  
threshold and VS is below the VIO short circuit detection threshold VS,UV. The RSTN pin will be kept  
low as long as VIO is below the selected VRT1 threshold. As soon as the VIO is higher than VRT1, the  
RSTN is released after tRD1  
.
Datasheet  
22  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
5.1.2  
SBC Normal Mode  
The SBC Normal Mode is the standard operating Mode for the SBC. All configurations have to be done in SBC  
Normal Mode before entering a low-power mode (see also Chapter 5.1.6 for the device configuration defining  
the Fail-Safe Mode behavior). A wake-up event on CANx and WK will create an interrupt on pin INTN however,  
no change of SBC Mode will occur. The configuration options are listed below:  
VCC1 is active, Buck in PWM Mode.  
VEXT can be switched ON or OFF .  
CANx is configurable (OFF coming from SBC Init Mode; OFF or wake capable coming from SBC Restart  
Mode, see also Chapter 5.1.5).  
Wake pin level can be monitored and can be selected to be wake capable.  
Cyclic wake period can be configured using TIMER_CTRL_0 and enabled by setting TIMER1_WK_ EN.  
Watchdog is configurable.  
FO is OFF by default.  
In SBC Normal Mode, there is the possibility of testing the FO output, i.e. to verify if setting the FO pin to low  
will create the intended behavior within the system. The FO output can be enabled and then disabled again  
by the microcontroller by setting the FO_ON SPI bit. This feature is only intended for testing purposes.  
5.1.3  
SBC Stop Mode  
The SBC Stop Mode is the first level technique to reduce the overall current consumption. All kind of settings  
have to be done before entering SBC Stop Mode. In SBC Stop Mode any kind of SPI write commands are  
ignored and the SPI_FAIL bit is set, except for changing to SBC Normal Mode, triggering a SBC Soft Reset,  
refreshing the watchdog, changing modulation of the buck. The configuration options are listed below:  
VCC1 is ON, Buck in PFM Mode if IVCC1 < IPFM-PWM,TH.  
VEXT is fixed ON or OFF in accordance with SPI configuration.  
CANx can be selected for ‘Receive Only Mode’, to be wake capable or OFF.  
WK pin can be selected to be wake capable, PWM_BY_WK (switch PFM/PWM buck modulation) or OFF.  
Wake capability via cyclic wake can be selected.  
Watchdog is fixed or OFF (if WD disable sequence was executed).  
A wake-up event on CANx and WK will create an interrupt on pin INTN however, no change of SBC Mode will  
occur.  
In SBC Stop Mode, it is allowed to use the Boost module (enabled before to enter in SBC Stop Mode) in case of  
the VS is dropping. The Boost works only in PWM and therefore the total amount of current consumption will  
increase.  
Note:  
It is not possible to switch directly from SBC Stop Mode to SBC Sleep Mode. Doing so will also set the  
SPI_FAIL flag and will bring the SBC into Normal Mode via SBC Restart Mode.  
5.1.4  
SBC Sleep Mode  
The SBC Sleep Mode is the second level technique to reduce the overall current consumption to a minimum  
needed to react on wake-up events.  
All settings must be done before entering SBC Sleep Mode. In case that SPI configurations in Sleep Mode have  
been sent to the SBC, the commands are ignored and no reactions from the SBC.  
The configuration options are listed below:  
Datasheet  
23  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
VCC1 is OFF.  
VEXT is fixed ON or OFF in accordance with SPI configuration.  
CANx can be selected to be wake capable or OFF.  
WK pin can be selected to be wake capable or OFF.  
A wake-up event on CANx or WK pin will bring the device via SBC Restart Mode into SBC Normal Mode again  
and signal the wake event and corresponding sources.  
It is not possible to switch off all wake sources in Sleep Mode. This will lead to SBC Normal Mode via SBC  
Restart Mode instead.  
In order to enter SBC Sleep Mode successfully, all wake source signalization flags from WK_STAT_0 and  
WK_STAT_2 need to be cleared. If a failure to do so, will result in an immediate wake-up from SBC Sleep Mode  
by going via SBC Restart to Normal Mode.  
Note:  
As soon as the Sleep Command is sent, the Reset will go low to avoid any undefined behavior  
between SBC and microcontroller.  
5.1.5  
SBC Restart Mode  
There are multiple reasons to enter the SBC Restart Mode. The purpose of the SBC Restart Mode is to reset the  
microcontroller:  
From SBC Normal and Stop Mode, it is reached in case of undervoltage on VIO. In case of 4 consecutive  
VIO_UV events, SBC Fail-Safe Mode is entered.  
From SBC Normal and Stop Mode it is reached in case of overvoltage on VIO in config 1/3 if VIO_OV_RST is  
set.  
Incorrect Watchdog triggering (depending of the configuration).  
From SBC Sleep and Fail-Safe Mode to ramp up VIO supply after wake event.  
From SBC Restart Mode, the SBC goes automatically to SBC Normal Mode, i.e the mode is left automatically  
by the SBC without any microcontroller influence once the VIO_UV condition is not present anymore and  
when the reset delay time (tRD1) has expired. The Reset Output (RSTN) is released at the transition.  
Entering or leaving the SBC Restart Mode will not result in deactivation of the Fail output.  
The following functions are not changed in SBC Restart mode:  
VEXT is fixed ON or OFF in accordance with SPI configuration.  
VCC1 is ON or ramping up.  
BOOST is fixed or OFF.  
Table 8 contains detailed descriptions of the reason to restart:  
Table 8  
Reasons for Restart - State of SPI Status Bits after Return to Normal Mode  
SBC Mode  
Normal  
Event  
DEV_STAT WD_FAIL  
VIO_UV  
VIO_OV  
Watchdog Failure  
VIO undervoltage reset  
01  
01  
01  
xx  
xx  
xx  
01  
x
1
x
x
x
x
x
1
x
x
Normal  
Normal  
VIO overvoltage (VIO_OV_RST=1) 01  
Sleep Mode  
Stop Mode  
Wake-up event  
10  
01  
Watchdog Failure  
Datasheet  
24  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
Table 8  
Reasons for Restart - State of SPI Status Bits after Return to Normal Mode (cont’d)  
SBC Mode  
Stop Mode  
Stop Mode  
Fail-Safe  
Event  
DEV_STAT WD_FAIL  
VIO_UV  
VIO_OV  
VIO undervoltage reset  
01  
xx  
xx  
1
x
x
VIO overvoltage (VIO_OV_RST=1) 01  
1
Wake-up event  
01  
see “Reasons for Fail-Safe, Table 9”  
5.1.6  
SBC Fail-Safe Mode  
The purpose of this mode is to bring the system in a safe status after a failure condition by turning off the VCC1  
and VEXT supply and the FO pin is automatically activated. After a wake-up event the system is then able to  
restart again.  
The Fail-Safe Mode is automatically reached in case of:  
Overtemperature condition (TSD2).  
After 1 or 2 watchdog fails (depending on config setting).  
At the 4th consecutive VIO undervoltage event.  
From SBC Normal and Stop Mode, in case of overvoltage on VIO in config 2/4, if VIO_OV_RST is set.  
VIO is shorted to GND.  
VIO is below the VRTx for time longer than tVIO,SC  
.
In this case, the default wake sources are activated, the wake-up events are cleared in the register WK_STAT_0  
and WK_STAT_2.  
The mode will be maintained for at least tTSD2 in case of TSD2 event and tFS,min in case of other failure events  
to avoid any fast toggling behavior. All wake sources will be masked during this time but the wake-up events  
will be stored. Stored wake-up events and wake-up event after this minimum waiting time, will lead to SBC  
Restart Mode. Leaving the SBC Fail-Safe Mode will not result in deactivation of the Fail Output pin.  
The following functions are influenced during SBC Fail-Safe Mode:  
FO output is activated.  
VCC1 is OFF.  
VEXT is OFF.  
CANx is wake capable.  
WK is wake capable (in case that PWM_BY_WK was set, moving to SBC Fail-Safe Mode will clear the bit).  
Cyclic wake is disabled.  
Table 9  
Mode  
Reasons for Fail-Safe - State of SPI Status Bits after Return to Normal Mode  
Config Event DEV_STAT TSD2 WD_FAIL VIO_UV VIO_SC VIO_OV  
Normal  
2
1 × watchdog  
01  
x
01  
x
0
x
failure  
Normal  
4
2 × watchdog  
failure  
01  
x
10  
x
0
x
Normal  
Normal  
Normal  
1, 2, 3, 4 TSD2  
01  
01  
01  
1
x
x
xx  
xx  
xx  
x
1
x
0
1
0
x
x
1
1, 2, 3, 4 VIO short to GND  
2, 4  
VIO overvoltage  
(VIO_OV_RST=1,  
CFG2=1)  
Datasheet  
25  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
Table 9  
Mode  
Reasons for Fail-Safe - State of SPI Status Bits after Return to Normal Mode (cont’d)  
Config Event DEV_STAT TSD2 WD_FAIL VIO_UV VIO_SC VIO_OV  
Stop Mode  
2
1 × watchdog  
01  
x
01  
x
0
x
failure  
Stop Mode  
4
2 × watchdog  
failure  
01  
x
10  
x
0
x
Stop Mode 1, 2, 3, 4 TSD2  
01  
01  
01  
1
x
x
xx  
xx  
xx  
x
1
x
0
1
0
x
x
1
Stop Mode 1, 2, 3, 4 VIO short to GND  
Stop Mode 2, 4  
VIO overvoltage  
(VIO_OV_RST=1,  
CFG2=1)  
5.1.7  
SBC Development Mode  
The SBC Development Mode is used during development phase of the application, especially for software  
development.  
Compared to the default SBC user mode operation, this mode is a super set of the state machine. The device  
will start also in SBC Init Mode and it is possible to use all the SBC Modes and functions with following  
differences:  
Watchdog is stopped and does not need to be triggered. Therefore no reset is triggered due to watchdog  
failure.  
SBC Fail-Safe and Restart Mode are not reached due to watchdog failure but the other reasons to enter  
these modes are still valid.  
CANx default value in SBC INIT MODE is ON instead of OFF.  
The mode is reached by setting the FO/TEST pin to LOW for the entire SBC INIT Mode and by sending an  
arbitrary SPI command. The SBC Init Mode is reachable after the power-up or sending a software reset.  
SBC Development Mode can only be left by a power-down or by providing a SBC Software Reset using the  
MODE bits on M_S_CTRL register regardless the FO/TEST pin level.  
When the FO/TEST pin is left open, or connected to VS during the start-up, the SBC starts into normal  
operation. The FO/TEST pin has an integrated pull-up resistor (switched ON only during SBC Init Mode) to  
prevent the SBC device from starting in SBC Development Mode during normal life of the vehicle. To avoid any  
disturbances, the FO/TEST pin is monitored during the SBC Init Mode when the RSTN is HIGH until SBC Init  
Mode is left. Only if the FO/TEST pin is LOW for the Init Mode time when the RSTN is HIGH, SBC Development  
Mode is reached and stored.  
Datasheet  
26  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
System Features  
5.2  
Wake Features  
Following wake sources are implemented in the device:  
Static Sense: WK input is permanently active (see Chapter 9).  
Cyclic Wake: internal wake source controlled via internal timer (see Chapter 5.2.1).  
CANx wake: wake-up via CAN message (see Chapter 8).  
The wake source must be set before entering in SBC Sleep Mode. In case of critical situation, when the device  
will be set into SBC Fail-Safe mode, all default wake sources will be activated. For additional information  
about setting, refer to the respective chapters.  
5.2.1  
Cyclic Wake  
The cyclic wake feature is intended to reduce the quiescent current of the device and application.  
When the cyclic wake is enabled, a periodic INTN is generated in SBC Normal and Stop Mode based on the  
setting of TIMER_CTRL_0.  
The correct sequence to configure the cyclic wake is shown in Figure 6. The sequence is as follows:  
Disable the cyclic wake feature to ensure that there is not unintentional interrupt when activating cyclic  
wake (TIMER1_WK_ EN = 0).  
Configure the cyclic wake timer period in TIMER_CTRL_0 register.  
Enable the cyclic wake as a wake-up source in the register WK_CTRL_0 (TIMER1_WK_ EN = 1).  
Cyclic Wake Configuration  
Reset the TIMER1_WK_EN bit on  
To avoid unintentional interrupts  
WK_CTRL_0 register  
Select Timer Period in  
Periods: 10, 20, 50, 100, 200ms, 1s, 2s  
TIMER_CTRL_0  
No interrupt will be generated,  
if the timer is not enabled as a wake source  
Set the TIMER1_WK_EN bit on  
WK_CTRL_0 register  
Cyclic Wake starts / ends by  
setting / clearing On-time  
INT is pulled low at every rising edge  
of On-time except first one  
Figure 6  
Cyclic Wake: Configuration and Sequence  
5.2.2  
Internal Timer  
The integrated timer is typically used to wake up the microcontroller periodically (cyclic wake).  
Following periods can be selected via the register TIMER_CTRL_0:  
Period: 10ms / 20ms / 50ms / 100ms / 200ms / 1s / 2s  
Datasheet  
27  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
6
DC/DC Regulator  
6.1  
Block Description  
The SMPS module in the TLE9278BQX V33 is implemented as a cascade of a step-up regulator followed by a  
step-down post-regulator. The step-up regulator (DC/DC Boost converter) provides a VS level which permits  
the step-down post-regulator (DC/DC Buck converter) to regulate without entering a low-drop condition.  
The SMPS module is active in SBC Normal, Stop and Restart Mode. In SBC Sleep and Fail-Safe Mode, the SMPS  
module is disabled.  
Comparator  
VS  
D1  
L1  
D2  
Vbat  
SPI  
VSUP  
VS  
Boost  
Converter  
C1  
C2  
C3  
Cf1  
BSTD  
BSTD  
GND  
GND  
Feedforward  
Buck  
Converter  
L2  
BCKSW  
C4  
C5  
GND  
Bandgap  
Reference  
VCC1  
Soft Start  
Ramp  
Generator  
Figure 7  
DC/DC Block Diagram  
Functional Features  
3.3 V SMPS (DC/DC) Buck Regulator with integrated high-side and low-side power switching transistor.  
SMPS (DC/DC) Boost Regulator for low VSUP supply voltage with integrated power transistor.  
Adjustable output DC/DC Boost pre-regulator voltage via SPI.  
Fixed switching frequency for Buck and Boost Regulator in SBC Normal Mode in PWM (Pulse Width  
Modulation).  
PFM (Pulse Frequency Modulation) for Buck converter in SBC Stop Mode to reduce the quiescent current.  
Automatic transition PFM to PWM in SBC Stop Mode.  
Soft start-up.  
Datasheet  
28  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
Edge Shaping for better EMC performances for Buck and Boost regulator.  
Undervoltage monitoring via VIO pin with adjustable reset level (refer to Chapter 12.7).  
Overvoltage detection via VIO pin activates the FO pin in case that VIO_OV_RST bit is set (refer to  
Chapter 12.8).  
Buck short circuit detection.  
Buck 100% Duty Cycle at low VS operation.  
Buck overcurrent peak detection.  
Boost overcurrent peak detection.  
6.1.1  
Functional Description of the Buck Converter  
SPI  
Logic  
L1  
D1  
VS  
C3  
VSUP  
Vbat  
Feedforward  
C2  
C1  
Buck  
Converter  
L2  
BCKSW  
C5  
C6  
GND  
Bandgap  
Reference  
VCC1  
Soft Start  
Ramp  
Generator  
Figure 8  
Buck Block Diagram  
The DC/DC Buck converter is intended as post-regulator (VCC1) and it provides a step down converter function  
transferring energy from VS to a lower output voltage with high efficiency (typically more than 80%). The  
output voltage is 3.3 V in a current range up to 750 mA. It is regulated via a digital loop with a precision of ±2%.  
It requires an external inductor and capacitor filter on the output switching pin (BCKSW). The Buck regulator  
has integrated high-side and low-side power switching transistors. The compensation of the regulation loop  
is done internally and no additional external components are needed.  
A typical application example and external components proposal is available in Chapter 14.1.  
The Buck converter is active in SBC Normal, Stop and Restart Mode and it is disabled in SBC Sleep and Fail-  
Safe Mode.  
Depending on the SBC Mode, the Buck converter works in two different modes:  
PWM Mode (Pulse Width Modulation): This mode is available in SBC Normal Mode, SBC Restart Mode and  
SBC Stop Mode (only for automatic or manual PFM to PWM transitions. Refer to Chapter 6.2.2). In PWM,  
the Buck converter operates with a fixed switching frequency (fBUK). The duty cycle is calculated internally  
based on input voltage, output voltage and output current. The precision is ±2% on input supply and  
output current range (refer to Figure 13 for more information). In PWM Mode, the Buck converter is  
capable of a 100% duty cycle in case of low VS conditions. In order to reduce EMC, the edge shaping feature  
has been implemented to control the activation and deactivation of the two power switches.  
Datasheet  
29  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
PFM Mode (Pulse Frequency Modulation): This mode is activated automatically when the SBC Stop Mode  
is entered. The PFM Mode is an asynchronous mode. PFM Mode does not have a controller switching  
frequency. The switching frequency depends on conditions of the Buck regulator such as the following:  
input supply voltage, output voltage, output current and external components. A typical timing diagram is  
shown in Figure 9. The Buck converter in PFM Mode has a tolerance of ±4%. The transition from PFM mode  
to PWM mode is described in Chapter 6.2.2.  
Tristate  
HS  
LS  
Tristate  
Feedback Voltage VCC 1  
LVL  
UCL  
LCL  
Coil Current  
start biasing  
&
oscillator  
OFF  
ON  
OFF  
ON  
PFM active  
Iq  
Iq  
Quiescent Current  
Figure 9  
Typical PFM timing diagram  
6.1.1.1 Startup Procedure (Soft Start)  
The Startup Procedure (Soft Start) permits to achieve the Buck regulator output voltage avoiding large  
overshoot on the output voltage. This feature is activated during the power-up, from SBC Sleep to Restart  
Mode and from SBC Fail-Safe to SBC Restart Mode.  
When the Buck regulator is activated, it starts in open loop with a minimum duty cycle which is maintained for  
a limited number of switching periods. After this first phase, the duty cycle is linearly increased by a fixed step  
and it is maintained for a limited number of switching periods for each duty cycle step. This procedure is  
repeated until the target output voltage value of the Buck regulator is reached. As soon as the Buck regulator  
output voltage is reached, the regulation loop is closed and it starts to operate normally using PWM Mode  
adjusting the duty cycle according to the Buck input and output voltages and the output current.  
6.1.1.2 Buck regulator Status register  
The register SMPS_STAT contains information about the open or short conditions on BCKSW pin. No SBC  
Mode or configuration changes are triggered if one bit on SMPS_STAT register is set.  
6.1.1.3 External components  
The Buck converter needs one inductor and output capacitor filter. The inductor has a fixed value of 47 µH.  
Secondary parameters such as saturation current must be selected based on the maximum current capability  
needed in the application.  
The output filter capacitors are two parallel 22 µF ceramic capacitor. For additional information, refer to  
Chapter 14.1.  
Datasheet  
30  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
6.1.2  
Functional Description of the Boost Converter  
Comparator  
VS  
VS  
D1  
L1  
D2  
Vbat  
SPI  
VSUP  
Boost  
Converter  
C1  
C3  
C4  
C2  
BSTD  
BSTD  
GND  
GND  
VS  
Figure 10 Boost Block Diagram  
The Boost converter is intended as a pre-regulator and it provides a step up converter function. It transfers  
energy from an input supply VSUP (battery voltage after reverse protection circuit) to a higher output voltage  
(VS) with high efficiency (typically more than 80%).  
The regulator integrates the power switching and the sense resistor for overcurrent detection.  
The Boost regulator can be enabled in SBC Normal Mode via SPI (register HW_CTRL_0, bit BOOST_EN) and  
four output voltage values are selectable via BOOST_V. The Boost regulator can also be active in SBC Stop and  
Restart Mode. The selected boost output voltage will automatically define the voltage thresholds where the  
boost will be ON (VBST,TH1, VBST,TH2, VBST,TH3 and VBST,TH4). If the Boost regulator is enabled, it switches ON  
automatically when VS falls below the selected threshold voltage and switches OFF when crossing this  
threshold including hysteresis again. The bit BST_ACT on SMPS_STAT register indicates that the Boost has  
been activated.  
The Boost output voltage can be changed only if BOOST_EN is set to 0. In case that the boost output voltage  
configuration changes with BOOST_EN set to 1, the SPI_FAIL bit is set and the command is ignored.  
Figure 11 shows the typical timing for enabling the Boost converter.  
VSUP  
VS  
VBST,THx  
VBSTx  
VBST,HYSx  
0
1
0
BST_ACT  
BSTD  
Figure 11 Boost converter activation  
Datasheet  
31  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
The Boost regulator works in PWM Mode with fixed frequency (fBST) and a tolerance of ±3%.  
If the Boost is enabled in Stop Mode, the quiescent current in the SBC is increased (P_4.4.31).  
6.1.2.1 Boost Regulator Status register  
The register SMPS_STAT contains information about the open or short conditions on Boost pins including loss  
of GND detection. No SBC mode or configuration is triggered if one bit is set on the SMPS_STAT register.  
6.1.2.2 External Components  
The Boost converter requires a number of external components such as the following: input buffer capacitor  
on the battery voltage, inductor, freewheeling diode and filter capacitors.  
For recommend external components and corresponding values, refer to Chapter 14.1.  
Datasheet  
32  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
6.2  
Power Scenarios  
The chapter describes the features and performance of the Buck regulator according to SBC modes. The Boost  
module works only in SBC Normal or Stop Mode using PWM modulation (refer also to Chapter 6.1.2).  
6.2.1  
Buck behavior in SBC Normal Mode  
In SBC Normal Mode the Buck works is in PWM mode with fixed switching frequency. All supervision functions  
for Buck converter are available in SBC Normal Mode and available depending the device configuration  
(Chapter 5.1.1). For additional details on the supervision functions, refer to Chapter 12.7, Chapter 12.8,  
Chapter 12.9 and Chapter 12.11.  
6.2.2  
Buck behavior in SBC Stop Mode  
The SBC Stop Mode operation is intended to reduce the total amount of quiescent current while still providing  
output voltage. In order to achieve this, the Buck regulator changes the modulation from PWM (Pulse Width  
Modulation) to PFM (Pulse Frequency Modulation) when entering SBC Stop Mode.  
In SBC Stop Mode, the Buck modulation can change as follow:  
Buck module always in PFM modulation (default setting).  
Automatically change from PFM to PWM (setting PWM_AUTO).  
Modulation is controlled by the WK pin (setting PWM_BY_WK).  
If the PWM_BY_WK and PWM_AUTO are set at the same time, the PWM_AUTO has highest priority and PWM  
automatic transition will be used.  
If PWM_BY_WK and PWM_AUTO are at the same time set to 0, the buck module remains in PFM in SBC Stop  
Mode.  
If in SBC Stop Mode the Buck modulation is PWM, the buck output voltage tolerance and output current  
capability are like SBC Normal Mode (P_6.5.13 and P_6.5.46).  
6.2.2.1 Automatic Transition from PFM to PWM in SBC Stop Mode  
If more current is needed, an automatic transition from PFM to PWM mode is implemented. When the Buck  
regulator output current exceeds the IPFM-PWM,TH threshold, the Buck module changes the modulation to PWM  
and an INTN event is generated. In addition, the PFM_PWM bit on WK_STAT_0 is set.  
In order to set the Buck modulation again in PFM mode, a SBC Stop Mode command has to be write to  
M_S_CTRL register. This command has to be sent when the required Buck output current is below the IPFM-  
PWM,TH threshold.  
By default, the feature is disable. To enable the automatic transition from PFM to PWM, the PWM_AUTO bit in  
HW_CTRL_0 has to be set before entering SBC Stop Mode.  
When entering SBC Stop Mode, the automatic transition from PFM to PWM mode is activated after the  
transition time (tlag), during which the Buck regulator loop changes the modulation technique. Figure 12  
shows the timing transition from SBC Normal to Stop Mode.  
The transition time tlag is always implemented in case of transition from PWM to PFM modulation.  
Datasheet  
33  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
SPI Commands  
Buck modulation  
Normal Mode  
PWM  
Stop Mode  
Auto PFM ↔ PWM  
PWM  
t
tlag  
Figure 12 Transition from SBC Normal to SBC Stop Mode  
The tlag can be configured via SPI using the PWM_TLAG in HW_CTRL_0 register.  
The automatic transition from PFM to PWM can be disabled by setting the PWM_AUTO to 0 in the HW_CTRL_0  
register.  
6.2.2.2 Manual Transition from PFM to PWM in SBC Stop Mode  
The PFM to PWM transition can also be controlled by the microcontroller or an external signal by using the WK  
pin as a trigger signal in SBC Stop Mode.  
When the PWM_BY_WK bit is set to 1, the Buck regulator can be switched from PFM to PWM using the WK pin.  
A LOW level at the WK pin will switch the Buck converter to PFM mode, a HIGH level will switch the Buck  
converter to PWM Mode. In this configuration, the transition time tlag is not taken into account because a  
defined signal from microcontroller or external source is expected.  
6.2.2.3 SBC Stop to Normal Mode transition  
The microcontroller sends an SPI command to switch from SBC Stop Mode to SBC Normal Mode. In this  
transition, the Buck regulator changes the modulation from PFM to PWM.  
Once the SPI command for the SBC Normal Mode transition is received, the Buck output current is able to rise  
above the specified maximum Stop Mode current (IPFM-PWM,TH).  
If the transition from SBC Stop Mode to SBC Normal Mode is carried out when the Boost is enabled and  
operating, it will continue to operate without any changes.  
6.2.3  
Buck behavior in SBC Sleep or Fail Safe Mode  
In SBC Sleep or Fail Safe Mode, the Buck and Boost converter are off and not operating. The lowest quiescent  
current is achievable.  
6.2.3.1 SBC Sleep/Fail Safe Mode to SBC Normal Mode transition  
In case of a wake-up event from WK pin or transceivers, the SBC will be set to SBC Restart Mode and as soon  
as the reset is released, into SBC Normal Mode.  
In SBC Restart Mode, the Buck regulator is activated and ramping-up. The Boost regulator is activated and  
ramping-up again (in case the VS is below the selected threshold) in according the configuration selected in  
SBC Normal Mode. As soon as the Buck output voltage exceeds the reset threshold, the RSTN pin is released.  
Datasheet  
34  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
6.3  
Electrical Characteristics  
Table 10 Electrical Characteristics  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Buck Regulator  
Output Voltage PWM including VCC1,out1 3.23 3.3  
Line and Load regulation  
3.37  
3.37  
3.44  
3.39  
V
V
V
V
SBC Normal Mode  
(PWM)  
1 mA < IVCC1 < 750 mA  
6.5 V < VS < 28 V  
Boost Disable  
1) SBC Normal Mode  
(PWM)  
P_6.5.13  
Output Voltage PWM including VCC1,out1 3.23 3.3  
Line and Load regulation  
P_6.5.46  
IVCC1 = 400 mA  
VS =4 V  
Boost Disable  
Output Voltage PFM including VCC1,out2 3.16 3.3  
Line and Load regulation  
SBC Stop Mode (PFM) P_6.5.14  
10 µA < IVCC1 < IPFM-  
PWM,TH  
6.5 V < VS < 28 V  
Boost Disable  
Output Voltage PFM including VCC1,out3 3.18 3.3  
Line and Load regulation  
SBC Stop Mode (PFM) P_6.5.48  
10 µA < IVCC1 < 50 mA  
6.5 V < VS < 28 V  
Boost Disable  
Power Stage on-resistance  
High-Side  
RDSON1,HS  
RDSON1,LS  
1.3  
1.3  
Ω
Ω
A
VS = 6.5 V  
VS = 100 mA  
P_6.5.3  
P_6.5.20  
P_6.5.40  
P_6.5.5  
P_6.5.6  
I
Power Stage on-resistance  
Low-Side  
IBCKSW = 100 mA  
Overcurrent peak limitation  
internal high side  
IBCK_LIM,TH 0.85 1.05 1.2  
VS > 6.5 V  
Buck switching frequency  
fBUK  
405 450 495 kHz SBC Normal Mode  
(PWM)  
Automatic transition PFM to  
PWM threshold  
80  
110 150 mA  
1) SBC Stop Mode  
(PFM)  
IPFM-  
PWM,TH  
6.5 V < VS < 28 V  
Transition time from PWM to tlag  
PFM  
1
ms  
µs  
1) PWM_TLAG=1  
(on HW_CTRL_0)  
1) PWM_TLAG=0  
(on HW_CTRL_0)  
P_6.5.15  
P_6.5.16  
Transition time from PWM to tlag  
PFM  
100  
Boost Regulator  
Datasheet  
35  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
Table 10 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Boost Voltage 1 including Line VBST1  
and Load regulation  
6.5  
6.7  
6.9  
V
V
V
2) SBC Normal Mode  
SUP = 3 V  
VS = 550 mA  
Boost enabled  
BOOST_V = 00B  
P_6.5.7  
V
I
Boost Voltage 2 including Line VBST2  
and Load regulation  
7.76  
9.7  
8
8.24  
10.3  
2) SBC Normal Mode  
P_6.5.8  
V
SUP = 3V  
IVS = 450 mA  
Boost enabled  
BOOST_V = 01B  
2) SBC Normal Mode  
Boost Voltage 3 including Line VBST3  
and Load regulation  
10  
P_6.5.28  
P_6.5.31  
V
SUP = 3 V  
IVS = 300 mA  
Boost enabled  
BOOST_V = 10B  
2) SBC Normal Mode  
Boost Voltage 4 including Line VBST4  
11.64 12  
12.36 V  
and Load regulation  
V
SUP = 3 V  
IVS = 250 mA  
Boost enabled  
BOOST_V = 11B  
Boost Switch ON voltage  
Boost Switch ON voltage  
Boost Switch ON voltage  
Boost Switch ON voltage  
VBST,TH1  
6.50  
7
7.30  
8.90  
V
V
Boost enabled, VS  
falling  
BOOST_V = 00B  
P_6.5.9  
VBST,TH2  
VBST,TH3  
VBST,TH4  
VBST,HYS  
7.90 8.5  
Boost enabled, VS  
falling  
BOOST_V = 01B  
P_6.5.18  
P_6.5.34  
P_6.5.35  
9.80 10.5 10.80 V  
Boost enabled, VS  
falling  
BOOST_V = 10B  
11.7 12.5 13.0  
V
Boost enabled, VS  
falling  
BOOST_V = 11B  
Boost Switch ON/OFF  
hysteresis  
0.35 0.5  
2.0  
0.70  
2.3  
V
A
Boost enabled  
P_6.5.10  
P_6.5.11  
P_6.5.12  
Overcurrent peak limitation  
internal switch  
IBST_LIM,TH 1.7  
fBST  
Boost enable  
VSUP 3 V  
Boost switching frequency  
405 450 495 kHz SBC Normal Mode  
(PWM)  
1) Not subject to production test, specified by design.  
2) Values verified in characterization with Boost converter external components specified in Chapter 14.1. No subject  
to production test; specified by design. Refer to Figure 14 for additional information.  
Datasheet  
36  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
DC/DC Regulator  
800  
750  
700  
650  
600  
550  
500  
450  
400  
VCC1 tolerance +/-2%  
4
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5 6.5  
8
10 12 18 20 24 28  
VS (V)  
Figure 13 Maximum DCDC Buck current capability versus VS  
Note:  
Figure 13is based on characterization results overtemperature with external components specified  
in Chapter 14.1.  
1.8  
1.6  
1.4  
1.2  
1
0.8  
VBST1  
0.6  
VBST2  
VBST3  
VBST4  
11  
0.4  
0.2  
3
4
5
6
7
8
9
10  
12  
VSUP (V)  
Figure 14 Maximum DCDC Boost current capability versus VSUP  
Note:  
Figure 14 is based on simulation results (specified by design), with Boost converter external  
components specified in Chapter 14.1.  
Datasheet  
37  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
7
External Voltage Regulator  
7.1  
Block Description  
VEXTIN  
VEXTSH  
VEXTB  
VEXTREF  
RBE  
IEXTbase  
VEXTIN - VEXTshunt  
> Vshunt_threshold  
+
-
VREF  
State Machine  
Figure 15 Functional Block Diagram  
Functional Features  
Low-drop voltage regulator with external PNP transistor (up to 400 mA with 470 mshunt resistor).  
Four high voltage pins are used: VEXTIN, VEXTB, VEXTSH, VEXTREF.  
Dedicated supply input VEXTIN to supply from VS or from VCC1 (Buck regulator output voltage) depending  
on the application.  
Configurable output voltages via SPI: 5.0 V, 3.3 V (default), 1.8 V and 1.2 V.  
4.7 µF ceramic capacitor at output voltage for stability, with ESR < 150 m@ f = 10 kHz to achieve the  
voltage regulator control loop stability based on the safe phase margin (bode diagram).  
Overcurrent limitation can be configured with external shunt resistor.  
Datasheet  
38  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
7.2  
General Description  
The external voltage regulator is used as an independent voltage regulator. The VEXT_VCFG in HW_CTRL_1  
register set the VEXT output voltage. The VEXT_ON in the M_S_CTRL register in SBC Normal Mode activates  
the VEXT voltage regulator.  
The regulator will act in the respective SBC Mode as described in Table 11.  
The maximum current IEXT_max is defined by the shunt used. To protect the VEXT against overtemperature  
condition, the base driver has a dedicate temperature sensor. For detailed temperature protection features,  
refer to Chapter 12.11.  
The status of VEXT is reported in the SUP_STAT_1 register (for detailed protection features refer to  
Chapter 12.10).  
Table 11 External Voltage Regulator State by SBC Mode  
SBC Mode  
Voltage Regulator Behavior  
INIT Mode  
OFF  
Normal Mode  
Stop Mode  
Configurable  
Fixed  
Sleep Mode  
Restart Mode  
Fail-Safe Mode  
Fixed  
Fixed  
OFF  
Note:  
The configuration of the VEXT voltage regulator behavior must be implemented immediately when  
the SBC Normal Mode is reached after power-up of the device. As soon as the bit VEXT_ON is set for  
the first time, the configuration for VEXT cannot be changed anymore. The configuration cannot be  
changed as long as the device is supplied.  
Note:  
If the VEXT output voltage is supplying external off-board loads, the application must consider the  
series resonance circuit built by cable inductance and decoupling capacitor at load. Sufficient  
damping must be provided(e.g. series resistor with capacitor directly at device or 100 Resistor  
between PNP collector and VEXTREF with 10 µF cap on collector (see Figure 16).  
7.2.1  
Functional Description  
This regulator offers with VEXT a second supply which could be used as off-board supply e.g. for sensors due  
to the integrated HV pins VEXTB, VEXTSH, VEXTREF.  
Datasheet  
39  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
VS ,VCC1 or VSUP  
VEXT  
RSHUNT  
T1  
IEXT  
C2  
C1  
RLim  
100Ω  
VEXTIN  
VEXTSH  
VEXTB  
RBE  
VEXTREF  
IEXTbase  
VEXTIN - VEXTshunt  
> Vshunt_threshold  
+
-
VREF  
State Machine  
Figure 16 VEXT Hardware Setup  
VEXT can be switched ON or OFF but the output voltage configuration cannot no longer be changed once  
activated.  
An overcurrent detection function is realized with the external shunt (see Chapter 7.4 for calculating the  
desired shunt value) and output current shunt voltage threshold (Vshunt_threshold). When this threshold is  
reached, IEXT is limited and only the overcurrent detection bit VEXT_OC is set (no other reactions). This bit can  
be cleared via SPI once the overcurrent condition is no longer present. If the overcurrent detection feature is  
not needed, connect the VEXTSH pin to VEXT supply (VEXTIN pin).  
If the VEXT is enabled, an undervoltage event is signaled with the bit VREG_UV in the SUP_STAT_0 register.  
7.3  
External Components  
The characterization is done with the BCP52-16 from Infineon (IEXT < 200 mA) and with MJD253 from ON  
Semi.Other PNP transistors can be used. The functionality must be checked in the application.  
Figure 16 shows the hardware set up used.  
Table 12 Bill of Materials for VEXT with BCP52-16  
Device  
C2  
Vendor  
Murata  
Reference / Value  
10 µF/10V GCM31CR71A106K64L  
RSHUNT  
T1  
1 Ω  
Infineon  
BCP52-16  
Note:  
The SBC is not able to ensure a thermal protection of the external PNP transistor. The power  
handling capabilities for the application must therefore be chosen according to the selected PNP  
device and according to the PCB layout and the properties of the application to prevent thermal  
damage.  
Datasheet  
40  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
Table 13 Bill of Materials for VEXT with MJD-253  
Device  
C2  
Vendor  
Murata  
Reference / Value  
10 µF/10V GCM31CR71A106K64L  
470 mΩ  
RSHUNT  
T1  
ON-Semi  
MJD253  
7.4  
Calculation of RSHUNT  
The maximum current IEXT_max where the overcurrent detection bit is set (VEXT_OC = 1 on the SUP_STAT_1  
register), is determined by the shunt resistor RSHUNT and the Output Current Shunt Voltage Threshold  
(Vshunt_threshold).  
The resistor can be calculated as following:  
Vshunt _ threshold  
(7.1)  
RSHUNT  
=
IEXT _ max  
7.5  
Unused Pins  
In case the VEXT is not used in the application, connect the unused pins of VEXT as followed:  
Connect VEXTSH, VEXTIN to VS or leave open.  
Leave VEXTB open.  
Leave VEXTREF open.  
Keep VEXT disabled.  
Datasheet  
41  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
7.6  
Electrical Characteristics  
Table 14 Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all outputs open; all voltages with respect to ground;  
positive current defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Parameters independent from Test Set-up  
Max.  
External Regulator IEXTbase  
Control Drive  
40  
60  
80  
mA  
VEXTbase = 13.5 V  
P_7.6.1  
Current Capability  
Input Current  
VEXTref  
IEXTref  
1
3
10  
µA  
µA  
mV  
VEXTref = 3.3 V, 5 V, 1.8 V, P_7.6.2  
1.2 V  
Input Current VEXT IEXTshunt  
Shunt Pin  
3
10  
VEXTshunt = VS  
P_7.6.3  
P_7.6.4  
1)  
Output Current  
Shunt Voltage  
Threshold  
Vshunt_threshold 180  
245  
310  
Leakage current of IEXTbase_lk  
EXTbase when VEXT  
disabled  
5
5
µA  
µA  
VEXTbase = VS;  
Tj = 25°C  
P_7.6.7  
V
Leakage current of IEXTshunt_lk  
VEXTshunt when VEXT  
disabled  
VEXTshunt = VS;  
Tj = 25°C  
P_7.6.25  
Base to emitter  
resistor  
RBE  
120  
150  
50  
185  
kΩ  
VEXTbase = VS - 0.3 V;  
VEXT OFF  
2) Drive current I_EXTbase  
IEXTbase rising  
P_7.6.9  
Active Peak  
Threshold VEXT  
(Transition  
IVEXT,Ipeak,r  
µA  
;
P_7.6.26  
VS =13.5 V;  
threshold between  
high-power and  
low-power mode  
regulator)  
-40°C < Tj < 150°C  
Active Peak  
Threshold VEXT  
(Transition  
IVEXT,Ipeak,f  
30  
µA  
2) Drive current I_EXTbase  
IEXTbase falling  
VS = 13.5 V;  
;
P_7.6.27  
P_7.6.10  
threshold between  
high-power and  
low-power mode  
regulator)  
-40°C < Tj < 150°C  
Parameters dependent on the Test Set-up (with external PNP device MJD-253)  
External Regulator VEXT,out1  
Output Voltage  
4.9  
5
5.1  
V
3) SBC Normal Mode;  
VEXT_VCFG=00B  
including Line and  
Load regulation  
5.5 V < VINEXT < 28 V  
10 mA < IEXT < 400 mA;  
Datasheet  
42  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
External Voltage Regulator  
Table 14 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all outputs open; all voltages with respect to ground;  
positive current defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
5
Unit Note or Test Condition Number  
Min.  
Max.  
External Regulator VEXT,out2  
Output Voltage  
including Line and  
Load regulation  
4.8  
5.2  
V
V
V
V
V
V
V
3) SBC Stop, Sleep Mode; P_7.6.21  
VEXT_VCFG=00B  
5.5 V < VINEXT < 28 V  
10 µA < IEXT < 20 mA;  
External Regulator VEXT,out3  
Output Voltage  
including Line and  
Load regulation  
3.23  
3.15  
1.75  
1.7  
3.3V  
3.3V  
1.8  
3.37  
3.45  
1.85  
1.9  
3) SBC Normal Mode;  
VEXT_VCFG=01B  
P_7.6.11  
5.5 V < VINEXT < 28 V  
10 mA < IEXT < 300 mA;  
3) SBC Stop, Sleep Mode; P_7.6.12  
VEXT_VCFG=01B  
5.5 V < VINEXT < 28 V  
10 µA < IEXT < 20 mA;  
External Regulator VEXT,out4  
Output Voltage  
including Line and  
Load regulation  
External Regulator VEXT,out5  
Output Voltage  
including Line and  
Load regulation  
3) SBC Normal Mode;  
VEXT_VCFG=10B  
P_7.6.13  
5.5 V < VINEXT < 28 V  
10 mA < IEXT < 300 mA;  
3) SBC Stop, Sleep Mode; P_7.6.14  
VEXT_VCFG=10B  
5.5 V < VINEXT < 28 V  
10 µA < IEXT < 20 mA;  
External Regulator VEXT,out6  
Output Voltage  
including Line and  
Load regulation  
1.8  
External Regulator VEXT,out7  
Output Voltage  
including Line and  
Load regulation  
1.16  
1.15  
1.2  
1.24  
1.25  
3) SBC Normal Mode;  
VEXT_VCFG=11B  
P_7.2.22  
5.5 V < VINEXT < 28 V  
10 mA < IEXT < 300 mA;  
3) SBC Stop, Sleep Mode; P_7.6.23  
VEXT_VCFG=11B  
External Regulator VEXT,out8  
Output Voltage  
1.2  
including Line and  
Load regulation  
5.5 V < VINEXT < 28 V  
10 µA < IEXT < 20 mA;  
1) Threshold at which the current limitation starts to operate.  
2) Not subject to production test, specified by design.  
3) Tolerance includes load regulation and line regulation.  
Datasheet  
43  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
8
High Speed CAN Transceiver  
8.1  
Block Description  
VCAN  
VIO  
SPI Mode  
Control  
RTD  
Driver  
CANHx  
CANLx  
Output  
Stage  
TXDCANx  
Temp.-  
Protection  
+
timeout  
To SPI diagnostic  
VCAN  
VIO  
RXDCANx  
MUX  
Receiver  
Vs  
Wake  
Receiver  
Figure 17 Functional Block Diagram  
8.2  
Functional Description  
The Controller Area Network (CAN) transceiver part of the SBC provides high-speed (HS) differential mode  
data transmission (up to 5 Mb) and reception in automotive and industrial applications. It works as an  
interface between the CAN protocol controller and the physical bus lines compatible with ISO 11898-2, 11898-  
5 as well as SAE J2284.  
The CAN transceiver offers low power modes to reduce current consumption. This supports networks with  
partially powered down nodes. To support software diagnostic functions, a CAN Receive-only Mode is  
implemented.  
It is designed to provide excellent passive behavior when the transceiver is switched off (mixed networks,  
clamp15/30 applications).  
A wake-up from the CAN wake capable mode is possible via a message on the bus. Thus, the microcontroller  
can be powered down or idled and will be woken up by the CAN bus activities.  
The CAN transceiver is designed to withstand the severe conditions of automotive applications and to support  
12 V applications.  
The different transceiver modes can be controlled via the SPI CANx bits.  
Figure 18 shows the possible transceiver mode transitions when changing the SBC mode.  
Datasheet  
44  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
SBC Mode  
CAN Transceiver Mode  
SBC Stop Mode  
Receive Only Wake Capable  
OFF  
OFF  
SBC Normal Mode  
SBC Sleep Mode  
SBC Restart Mode  
SBC Fail-Safe Mode  
Receive Only Wake Capable Normal Mode  
Wake Capable  
OFF  
OFF  
Woken1  
Wake Capable  
1after a wake event on CAN Bus  
Behavior after SBC Restart Mode - not coming from SBC Sleep Mode due to a wake up of the respective transceive:r  
If the transceivers had been configured to NormalMode, or Receive Only Mode, then the mode will be changed toWake  
Capable. If it was Wake Capable, then it will remainWake Capable. If it had been OFF before SBC Restart Mode, then it  
will remain OFF.  
Behavior in SBC Development Mode:  
CAN default value in SBC INIT MODE and entering SBC Normal Mode from SBC Init Mode is ON instead of OFF.  
Figure 18 CAN Mode Control Diagram  
CAN FD Support  
CAN FD stands for ‘CAN with Flexible Data Rate’. It is based on the well established CAN protocol as specified  
in ISO 11898-1. CAN FD still uses the CAN bus arbitration method. The benefit is that the bit rate can be  
increased by switching to a shorter bit time at the end of the arbitration process and then returning to the  
longer bit time at the CRC delimiter before the receivers transmit their acknowledge bits. See also Figure 19.  
In addition, the effective data rate is increased by allowing longer data fields. CAN FD allows the transmission  
of up to 64 data bytes compared to the 8 data bytes from the standard CAN.  
Standard CAN  
message  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
Example:  
- 11 bit identifier + 8Byte data  
CAN FD with  
reduced bit time  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
- Arbitration Phase  
- Data Phase  
500kbps  
2Mbps  
à average bit rate  
1.14Mbps  
Figure 19 Bit Rate Increase with CAN FD vs. Standard CAN  
CAN FD has to be supported by both the physical layer and the CAN controller. If the CAN controller cannot  
support CAN FD, then the respective CAN node must at least tolerate CAN FD communication. This CAN FD  
tolerant mode is implemented in the physical layer.  
Datasheet  
45  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
8.2.1  
CAN OFF Mode  
The CAN OFF Mode is the default mode after power-up of the SBC. It is available in all SBC Modes and is  
intended to completely stop CAN activities or when CAN communication is not needed. The CANH/L bus  
interface acts as a high impedance input with a very small leakage current. In CAN OFF Mode, a wake-up event  
on the bus will be ignored.  
8.2.2  
CAN Normal Mode  
The CAN Transceiver is enabled via SPI in SBC Normal Mode. CAN Normal Mode is designed for normal data  
transmission/reception within the HS-CAN network. The mode is only available in SBC Normal Mode or SBC  
Init Mode if the SBC Development Mode is used. The bus biasing is set to VCAN/2.  
Transmission  
The signal from the microcontroller is applied to the TXDCANx input of the SBC. The bus driver switches the  
CANH/L output stages to transfer this input signal to the CAN bus lines.  
Enabling sequence  
The CAN transceiver requires an enabling time tCAN,EN before a message can be sent on the bus. This means  
that the TXDCANx signal can only be pulled LOW after the enabling time. If this is not ensured, then the  
TXDCANx needs to be set back to HIGH (=recessive) until the enabling time is completed. Only the next  
dominant bit will be transmitted on the bus. Figure 20 shows different scenarios and explanations for CAN  
enabling.  
V
TXDCAN  
t
CAN  
Mode  
t CAN,EN  
tCAN,EN  
t CAN,EN  
CAN  
NORMAL  
CAN  
OFF  
t
t
V
CANDIFF  
Dominant  
Recessive  
recessive  
TXDCAN  
level required  
recessive TXDCAN  
level required before  
start of transmission  
Correct sequence ,  
Bus is enabled after tCAN,  
tCAN, EN not ensured , no  
transmission on bus  
tCAN, EN not ensured ,  
no transmission on bus  
EN  
Figure 20 CAN Transceiver Enabling Sequence  
Reduced Electromagnetic Emission  
To reduce electromagnetic emissions (EME), the bus driver controls CANH/L slopes symmetrically.  
The slope control can be disabled using the CAN_x_Flash bits to achieve bite rate higher than 5 Mb.  
Reception  
Analog CAN bus signals are converted into digital signals at RXDCANx via the differential input receiver.  
8.2.3  
CAN Receive Only Mode  
In CAN Receive Only Mode (RXD only), the driver stage is de-activated but reception is still operational. This  
mode is available in SBC Normal and Stop Mode. The bus biasing is set to VCAN/2.  
Datasheet  
46  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
8.2.4  
CAN Wake Capable Mode  
This mode can be used in SBC Stop, Sleep, Restart and Normal Mode and it is used to monitor bus activities. It  
is automatically accessed in SBC Fail-Safe Mode. A valid wake-up pattern (WUP) on the bus results in a change  
of behavior of the SBC, as described in Table 15. As a signalization to the microcontroller, the RXDCANx pin is  
set LOW and will stay LOW until the CANx transceiver is changed to any other mode. After a wake-up event, the  
transceiver can be switched to CAN Normal Mode for communication using SPI command.  
As shown in Figure 21, a wake-up pattern is signaled on the bus by two consecutive dominant bus levels for  
at least tWake1 (filter time t > tWake1), each separated by a recessive bus level of less than tWake2  
.
Entering low-power mode,  
when selective wake-up  
function is disabled  
or not supported  
Bus recessive > tWAKE1  
Ini  
Wait  
Bias off  
Bias off  
Bus dominant > tWAKE1  
optional:  
tWAKE2 expired  
1
Bias off  
Bus recessive > tWAKE1  
optional:  
tWAKE2 expired  
2
Bias off  
Bus dominant > tWAKE1  
Silence expired AND  
t
Entering CAN Normal  
or CAN Recive Only  
Device in low-power mode  
3
Bias on  
Bus dominant > tWAKE1  
Bus recessive > tWAKE1  
tSilence expired AND  
device in low-power mode  
4
Bias on  
Figure 21 WUP detection following the definition in ISO 11898-5  
Rearming the Transceiver for Wake Capability  
After a bus wake-up event, the transceiver is woken. However, the CANx transceiver mode bits will still show  
wake capable (=‘01’) so that the RXDCAN signal will be pulled low. There are two possibilities how the CAN  
transceiver’s wake capable mode is enabled again after a wake event:  
The CAN transceiver mode must be toggled, i.e. switched from Wake Capable Mode to CAN Normal Mode,  
CAN Receive Only Mode or CAN Off, before switching to CAN Wake Capable Mode again.  
Rearming is done automatically when the SBC is changed to SBC Stop, Sleep, or SBC Fail-Safe Mode to  
ensure wake-up capability.  
Datasheet  
47  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Note:  
It is not necessary to clear the CAN wake-up bit CAN_x_WU to become wake capable again. It is  
sufficient to toggle the CAN mode.  
Wake-Up in SBC Stop and Normal Mode  
In SBC Stop Mode, if a wake-up is detected, it is always signaled by the INTN output and in the WK_STAT_0,  
WK_STAT_2 SPI registers. It is also signaled by RXDCANx pulled to low. The same applies for the SBC Normal  
Mode. The microcontroller should set the device from SBC Stop Mode to SBC Normal Mode; there is no  
automatic transition to SBC Normal Mode.  
For functional safety reasons, the watchdog will be automatically enabled in SBC Stop Mode after a bus wake  
event in case it was disabled before (if bit WD_EN_WK_ BUS was configured to HIGH before).  
Wake-Up in SBC Sleep Mode  
Wake-up is possible via a CAN message (filter time t > tWake1). The wake-up automatically transfers the SBC into  
the SBC Restart Mode and from there to Normal Mode the corresponding RXDCANx pin in set to LOW. The  
microcontroller is able to detect the low signal on RXDCANx and to read the wake source out of the  
WK_STAT_0 or WK_STAT_2 register via SPI. No interrupt is generated when coming out of SBC Sleep Mode.  
The microcontroller can now for example switch the CAN transceiver into CAN Normal Mode via SPI to start  
communication.  
Table 15 Action due to CAN Bus Wake-Up  
SBC Mode  
SBC Mode after Wake  
Normal Mode  
Stop Mode  
VCC1  
INTN  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
RXD  
LOW  
LOW  
LOW  
LOW  
LOW  
Normal Mode  
Stop Mode  
ON  
ON  
Sleep Mode  
Restart Mode  
Fail-Safe Mode  
Restart Mode  
Restart Mode  
Restart Mode  
Ramping Up  
ON  
Ramping up  
8.2.5  
TXD Time-out Feature  
If the TXDCANx signal is dominant for a time t > tTXD_CAN_TO, in CAN Normal Mode, the TXD time-out function  
deactivates the transmission of the signal at the bus. This is implemented to prevent the bus from being  
blocked permanently due to an error. The transmitter is disabled and the transceiver is switched to Receive  
Only Mode. The failure is stored in the SPI flag CAN_x_FAIL. The CAN transmitter stage is activated again after  
the dominant time-out condition is removed and the transceiver is automatically switched back to CAN  
Normal Mode.The transceiver configuration stays unchanged.  
8.2.6  
Bus Dominant Clamping  
If the HS-CAN bus signal is dominant for a time t > tBUS_CAN_TO, regardless of the CAN transceiver mode a bus  
dominant clamping is detected and the SPI bit CAN_x_FAIL is set. The transceiver configuration stays  
unchanged.  
8.2.7  
Undervoltage Detection  
The voltage at the CAN supply pin is monitored in CAN Normal Mode and CAN Receiver Only Mode . In case of  
VCAN undervoltage, the bit VCAN_UV is set and the SBC disables the transmitter stage. If the undervoltage  
condition is not present anymore (VCAN > VCAN_UV,f), the transceiver is automatically switched back to CAN  
Normal Mode. The transceiver configuration stays unchanged.  
Datasheet  
48  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
8.3  
Electrical Characteristics  
Table 16 Electrical Characteristics  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CAN Supply Voltage  
CAN Supply undervoltage  
detection threshold  
VCAN_UV,f  
4.5  
4.75  
V
V
CAN Normal Mode;  
VCAN falling;  
P_8.3.1  
P_8.3.2  
CAN Bus Receiver  
Differential Receiver  
Threshold Voltage,  
recessive to dominant edge  
Vdiff,rd_N  
0.80  
0.90  
8.0  
Vdiff = VCANH - VCANL;  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
1)  
Dominant state differential Vdiff_D_range 0.9  
input voltage range  
V
V
V
V
= VCANH - VCANL  
;
P_8.3.60  
P_8.3.3  
P_8.3.61  
P_8.3.4  
diff  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
Differential Receiver  
Threshold Voltage,  
dominant to recessive edge  
Vdiff,dr_N  
0.50  
0.60  
Vdiff = VCANH -VCANL;  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
1)  
Recessive state differential Vdiff_R_range -3.0  
input voltage range  
0.5  
V
= VCANH - VCANL  
diff  
;
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
1)  
Common Mode Range  
CMR  
-12  
20  
12  
50  
V
CANH, CANL Input  
Resistance  
Ri  
40  
kΩ  
CAN Normal / Wake P_8.3.5  
capable Mode;  
-2 V VCANH/L +7 V  
Recessive state  
Differential Input Resistance Rdiff  
40  
80  
100  
kΩ  
CAN Normal / Wake P_8.3.6  
capable Mode;  
-2 V VCANH/L +7 V  
Recessive state  
Input Resistance Deviation DRi  
between CANH and CANL  
-3  
3
%
1) Recessive state  
VCANH = VCANL =5 V  
2)  
P_8.3.7  
P_8.3.8  
P_8.3.9  
Input Capacitance CANH,  
CANL versus GND  
Cin  
20  
10  
40  
20  
pF  
pF  
V
= 5 V  
TXD  
2)  
Differential Input  
Capacitance  
Cdiff  
V
= 5 V  
TXD  
Datasheet  
49  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Table 16 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
0.8  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Wake-up Receiver  
Threshold Voltage,  
recessive to dominant edge  
Vdiff, rd_W  
1.15  
V
V
V
V
-12 V VCM(CAN) ≤  
+12 V;  
CAN Wake Capable  
Mode  
1) -12 V VCM(CAN) P_8.3.62  
+12 V;  
P_8.3.10  
Wake-up Receiver Dominant Vdiff,D_range_ 1.15  
state differential input  
voltage range  
8.0  
W
CAN Wake Capable  
Mode  
Wake-up Receiver  
Threshold Voltage,  
dominant to recessive edge  
Vdiff, dr_W  
0.4  
0.7  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Wake Capable  
Mode  
P_8.3.11  
Wake-up Receiver Recessive Vdiff,R_range_W -3.0  
state differential input  
0.4  
1) -12 V VCM(CAN) P_8.3.63  
+12 V;  
voltage range  
CAN Wake Capable  
Mode  
CAN Bus Transmitter  
CANH/CANL Recessive  
Output Voltage  
(CAN Normal Mode)  
VCANL/H_NM 2.0  
3.0  
0.1  
50  
V
CAN Normal Mode;  
TXD = VIO;  
no load  
P_8.3.12  
P_8.3.13  
P_8.3.14  
P_8.3.15  
V
CANH/CANL Recessive  
Output Voltage  
(CAN Wake Capable Mode)  
VCANL/H_LP  
-0.1  
V
CAN Wake Capable  
Mode; VTXD = VIO;  
no load  
CANH, CANL Recessive  
Output Voltage Difference  
Vdiff_r_N  
-500  
-100  
mV  
mV  
CAN Normal Mode  
VTXD = VIO;  
no load  
Vdiff = VCANH - VCANL  
CANH, CANL Recessive  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
Vdiff_r_W  
100  
CAN Wake Capable  
Mode;  
V
TXD = VIO;  
no load  
CANL Dominant Output  
Voltage  
VCANL  
0.5  
2.25  
4.5  
V
V
V
CAN Normal Mode;  
P_8.3.16  
P_8.3.17  
P_8.3.18  
V
TXD = 0 V;  
50 Ω ≤ RL 65 Ω  
CANH Dominant Output  
Voltage  
VCANH  
2.75  
1.5  
CAN Normal Mode;  
VTXD = 0 V;  
50 Ω ≤ RL 65 Ω  
CANH, CANL Dominant  
Vdiff_d_N  
2.0  
2.5  
CAN Normal Mode;  
Output Voltage Difference  
V
TXD = 0 V;  
Vdiff = VCANH - VCANL  
50 Ω ≤ RL 65 Ω  
Datasheet  
50  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Table 16 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CANH, CANL Dominant  
Vdiff_d_N  
1.5  
5.0  
V
1) CAN Normal Mode; P_8.3.58  
Output Voltage Difference  
V
TXD = 0 V;  
Vdiff = VCANH - VCANL on  
RL = 2240 Ω  
extended bus load range  
CANH, CANL output voltage Vdiff_slope_rd  
difference slope, recessive  
to dominant  
70  
70  
V/us 1) 30% to 70% of  
measured  
P_8.3.47  
P_8.3.48  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
CANH, CANL output voltage Vdiff_slope_dr  
difference slope, dominant  
to recessive  
V/us 1) 70% to 30% of  
measured  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
CANH Short Circuit Current ICANHsc  
CANL Short Circuit Current ICANLsc  
-100  
50  
-80  
80  
5
-50  
100  
7.5  
mA  
mA  
µA  
CAN Normal Mode;  
VCANHshort = -3 V  
P_8.3.20  
P_8.3.21  
P_8.3.22  
CAN Normal Mode  
VCANLshort = 18 V  
Leakage Current  
ICANH,lk  
ICANL,lk  
VS = VCAN = 0 V;  
(unpowered device)  
0 V < VCANH,L 5 V;  
3)  
R
= 0 / 47 kΩ  
test  
Receiver Output RXD  
HIGH level Output Voltage VRXD,H  
0.8 ×  
VIO  
V
V
CAN Normal Mode  
IRXD(CAN) = -2 mA;  
P_8.3.23  
P_8.3.24  
LOW Level Output Voltage  
VRXD,L  
0.2 ×  
CAN Normal Mode  
VIO  
IRXD(CAN) = 2 mA;  
Transmission Input TXD  
HIGH Level Input Voltage  
Threshold  
VTXD,H  
VTXD,L  
0.7 ×  
VIO  
V
CAN Normal Mode  
recessive state  
P_8.3.25  
P_8.3.26  
P_8.3.27  
P_8.3.28  
LOW Level Input Voltage  
Threshold  
0.3 ×  
VIO  
V
CAN Normal Mode  
dominant state  
1)  
TXD Input Hysteresis  
VTXD,hys  
0.12 ×  
VIO  
mV  
TXD Pull-up Resistance  
RTXD  
20  
8
40  
13  
80  
18  
kΩ  
CAN Transceiver Enabling  
Time  
tCAN,EN  
µs  
8) CSN = HIGH to first P_8.3.29  
valid transmitted  
TXD dominant  
Datasheet  
51  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Table 16 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Dynamic CAN-Transceiver Characteristics  
Max.  
Driver Symmetry  
VSYM = VCANH + VCANL  
VSYM  
4.5  
0.5  
5.5  
V
1)4) CAN Normal  
Mode;  
P_8.3.19  
V
V
TXD = 0 V / 5 V;  
CAN= 5 V;  
CSPLIT = 4.7 nF;  
50 Ω ≤ RL 60 Ω  
Min. Dominant Time for Bus tWake1  
Wake-up  
1.2  
1.8  
µs  
-12 V VCM(CAN) ≤  
+12 V;  
P_8.3.30  
CAN Wake capable  
Mode  
Wake-up Time-out,  
Recessive Bus  
tWake2  
0.5  
10  
ms  
µs  
8) CAN Wake capable P_8.3.31  
Mode  
WUP Wake-up  
Reaction Time  
tWU_WUP  
100  
5)6)8) Wake-up  
reaction time after a  
valid WUP on CAN  
bus;  
P_8.3.32  
ISO: Loop Delay (recessive to tloop,f  
dominant)  
150  
150  
255  
255  
ns  
ns  
CAN Normal Mode  
CL = 100 pF;  
RL = 60 ;  
P_8.3.33  
C
RXD = 15 pF  
(see Figure 22)  
ISO: Loop Delay (dominant tloop,r  
to recessive)  
CAN Normal Mode  
CL = 100 pF;  
P_8.3.34  
RL = 60 ;  
C
RXD = 15 pF  
(see Figure 22)  
Propagation Delay  
TXD LOW to bus dominant  
td(L),T  
td(H),T  
td(L),R  
50  
ns  
ns  
ns  
CAN Normal Mode  
CL = 100 pF;  
RL = 60 ;  
P_8.3.35  
P_8.3.36  
P_8.3.37  
(see Figure 22)  
Propagation Delay  
TXD HIGH to bus recessive  
50  
CAN Normal Mode  
CL = 100 pF;  
RL = 60 ;  
(see Figure 22)  
Propagation Delay  
bus dominant to RXD LOW  
100  
CAN Normal Mode  
CL = 100 pF;  
RL = 60 ;  
CRXD = 15 pF  
(see Figure 22)  
Datasheet  
52  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Table 16 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
100  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Propagation Delay  
bus recessive to RXD HIGH  
td(H),R  
ns  
ns  
CAN Normal Mode  
CL = 100 pF;  
RL = 60 ;  
CRXD = 15 pF  
(see Figure 22)  
P_8.3.38  
Received Recessive bit width tbit(RXD)  
CAN FD up to 2 Mbps  
400  
435  
120  
155  
550  
530  
220  
210  
CAN Normal Mode  
CL = 100 pF  
P_8.3.45  
P_8.3.52  
P_8.3.46  
P_8.3.53  
RL = 60 Ω  
CRXD = 15 pF  
tbit(TXD) = 500 ns  
Parameter definition  
in according to  
Figure 23.  
Transmitted Recessive bit  
width  
CAN FD up to 2 Mbps  
tbit(BUS)  
ns  
ns  
ns  
CAN Normal Mode  
CL = 100 pF  
RL = 60 Ω  
CRXD = 15 pF  
tbit(TXD) = 500 ns  
Parameter definition  
in according to  
Figure 23.  
Received Recessive bit width tbit(RXD)  
CAN FD up to 5 Mbps  
CAN Normal Mode  
CL = 100 pF  
RL = 60 Ω  
CRXD = 15 pF  
tbit(TXD) = 200 ns  
Parameter definition  
in according to  
Figure 23.  
Transmitted Recessive bit  
width  
tbit(BUS)  
CAN Normal Mode  
CL = 100 pF  
CAN FD up to 5 Mbps  
RL = 60 Ω  
C
RXD = 15 pF  
tbit(TXD) = 200ns  
Parameter definition  
in according to  
Figure 23.  
Datasheet  
53  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
Table 16 Electrical Characteristics (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Receiver timing symmetry7) tRec  
CAN FD up to 2 Mbps  
-65  
40  
ns  
7) CAN Normal Mode P_8.3.39  
CL = 100 pF  
RL = 60 Ω  
CRXD = 15 pF  
tbit(TXD) = 500 ns  
Parameter definition  
according to  
Figure 23.  
Receiver timing symmetry  
CAN FD up to 5 Mbps  
tRec  
-45  
15  
ns  
7) CAN Normal Mode P_8.3.43  
CL = 100 pF  
RL = 60 Ω  
CRXD = 15 pF  
tbit(TXD) = 200 ns  
Parameter definition  
according to  
Figure 23.  
TXD Permanent Dominant tTXD_CAN_TO  
Time-out  
2
2
ms  
ms  
s
8) CAN Normal Mode P_8.3.40  
BUS Permanent Dominant tBUS_CAN_TO  
Time-out  
8) CAN Normal Mode P_8.3.41  
8)  
Time-out for bus inactivity tSILENCE  
0.6  
1.2  
P_8.3.44  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design, S2P - Method; f = 10 MHz.  
3) Rtest between VS/VCAN and 0 V (GND).  
4)  
V
SYM shall be observed during dominant and recessive state and also during the transition from dominant to recessive  
and vice versa while TxD is simulated by a square signal (50% duty cycle) a frequency of 1 MHz.  
5) Wake-up is signalized via INTN pin activation in SBC Stop Mode and via VCC1 ramping up with wake from SBC Sleep  
Mode.  
6) Time starts with end of last dominant phase of WUP.  
7) tRec = tbit(RXD) - tbit(BUS)  
8) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
54  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
High Speed CAN Transceiver  
V
TXDCAN  
VIO  
GND  
t
t
VDIFF  
td(L),T  
td(H),T  
Vdiff, rd_N  
Vdiff, dr_N  
t d(L),R  
td(H),R  
t
t
loop,r  
VRXDCAN  
VIO  
loop,f  
0.8 x VIO  
0.2 x VIO  
GND  
t
Figure 22 Timing Diagrams for Dynamic Characteristics  
70%  
TXDCAN  
30%  
tLoop_f  
5x tBit(TXD)  
tBit(TXD)  
Vdiff=CANH-CANL  
900mV  
tBit(Bus)  
500mV  
70%  
RXDCAN  
30%  
tLoop_r  
tBit(RXD)  
Figure 23 From ISO 11898-2: tLoop, tBit(TXD), tBit(RXD) Definition  
Datasheet  
55  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Wake Input  
9
Wake Input  
9.1  
Features  
V5V,in  
IPU_WK  
WK  
+
-
tWK  
IPD_WK  
Logic  
Figure 24 Wake Input Block Diagram  
Features  
One HIGH-voltage inputs with VWKth threshold voltage.  
Wake-up capability for power saving modes.  
Switch feature for DC/DC Mode (PFM/PWM) in SBC Stop Mode.  
Sensitive for level changes LOW to HIGH and HIGH to LOW.  
Pull-up and Pull-down current, selectable via SPI.  
In SBC Normal and Stop Mode, the WK pin level can be read via SPI.  
9.2  
Functional Description  
The SBC can wake up following a voltage level change at the wake input. The WK input pin is sensitive to level  
changes. This means that both transitions, HIGH to LOW and LOW to HIGH, result in SBC signalling (see also  
Figure 25). The signal is created in one of the following ways:  
By triggering the interrupt in SBC Normal and SBC Stop Mode.  
By waking up the device in SBC Sleep and SBC Fail-Safe Mode.  
Datasheet  
56  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Wake Input  
WK_LVL_STAT  
WK  
VWKth,hys  
1
0
VWKth,min  
VWKth,max VWK  
Figure 25 Wake Input Threshold Levels and Hysteresis  
The wake-up capability, using WK pin, can be enabled or disabled via SPI command.  
When the WK is enabled (WK_EN set to 1 on WK_CTRL_1 register), the device wakes up from Sleep Mode with  
a HIGH to LOW or LOW to HIGH transition on the WK pin. In SBC Stop and Normal Mode, an Interrupt will be  
generated after tFWK (filter time). In SBC Fail-Safe Mode, the WK is automatically selected as wake-up source  
and the device will always go to SBC Restart Mode with a HIGH to LOW or LOW to HIGH transition. The wake  
source for WK pin can be read in the register WK_STAT_0 at the bit WK_WU.The state of the WK pin (LOW or  
HIGH) can always be read in SBC Normal and Stop Mode at the bit WK on register WK_LVL_STAT.  
The WK pin can also be configured as a selection pin for PFM / PWM mode in SBC Stop Mode using the bit  
PWM_BY_WK of register HW_CTRL_0. In this case a LOW level at the WK pin will switch the Buck converter to  
PFM mode, a HIGH level will switch the Buck converter to PWM Mode maintaining the SBC in SBC Stop Mode.  
The filter time is not taken into account because a defined signal is expected (refer to Chapter 6.2.2.2).  
In case that the PWM_BY_WK is used, it is still possible to use the WK pin to wake-up from SBC Sleep Mode to  
SBC Normal Mode.  
Figure 26 shows a typical wake-up timing:  
VWK  
VWKth  
VWKth  
t
t
VINTN  
tFWK  
tFWK  
tINTN  
No Wake Event  
Wake Event  
Figure 26 Wake-up Filter Timing for Static Sense  
9.2.1  
Wake Input Configuration  
To ensure a defined and stable voltage level at the internal comparator input, it is possible to configure an  
integrated current source via the SPI register WK_PUPD_CTRL.  
Table 17 shows the possible pull-up and pull-down current configuration.  
Datasheet  
57  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Wake Input  
Table 17 Pull-Up / Pull-Down Resistor  
WK_PUPD_1 WK_PUPD_0 Output Current Note  
0
0
no current  
source  
WK is floating if left open (default setting)  
0
1
pull-down  
current  
WK input internally pulled to GND  
1
1
0
1
pull-up current WK input internally pulled to 5V  
automatic  
switching  
If a HIGH level is detected, the pull-up current is activated  
If low level is detected, the pull down current is activated.  
Note:  
If there is no pull-up or pull-down configured on the WK input, then the respective input should be  
tied to GND or VS on board to avoid unintended floating and waking of the pin.  
VWKth_min  
VWKth_max  
IWK  
VWKth  
Figure 27 Illustration for Pull-Up / Down Current Sources with Automatic Switching Configuration  
Datasheet  
58  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Wake Input  
9.3  
Electrical Characteristics  
Table 18 Electrical Characteristics  
Tj = -40°C to +150°CTj = -40°C to +150°C; VS = 5.5 V to 28 V; all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Numbe  
r
Min.  
Max.  
WK Input Pin characteristics  
Wake-up/monitoringthreshold VWKth  
voltage  
2
3
4
V
Falling and rising  
edge included  
2)  
P_9.3.1  
Threshold hysteresis  
WK pin Pull-up Current  
WK pin Pull-down Current  
Input leakage current  
Timing  
VWKNth,hys 0.1  
0.7  
-3  
20  
2
V
P_9.3.2  
P_9.3.3  
P_9.3.4  
IPU_WK  
IPD_WK  
ILK,l  
-20  
3
-10  
10  
µA  
µA  
µA  
VWK_IN = 4 V  
VWK_IN = 2 V  
0 V < VWK_IN < VS+0.3 V1) P_9.3.5  
-2  
2)  
Wake-up filter time  
tFWK  
12  
16  
20  
µs  
P_9.3.6  
1) With pull-up, pull down current disabled.  
2) Not subject to production test; specified by design.  
Datasheet  
59  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Interrupt Function  
10  
Interrupt Function  
10.1  
Block and Functional Description  
VIO  
INTN  
Time  
out  
Interrupt logic  
Figure 28 Interrupt Block Diagram  
The interrupt is used to signal wake-up events in real time to the microcontroller. The interrupt block is  
designed as a push/pull output stage as shown in Figure 28. An interrupt is triggered and the INTN pin is pulled  
low (active low) for tINTN in SBC Normal and Stop Mode and it is released again once tINTN is expired. The  
minimum HIGH-time of INTN between two consecutive interrupts is tINTD. An interrupt does not automatically  
cause a SBC mode change.  
The following wake-up events will be signalized via INTN:  
All wake-up events stored in the wake status SPI register WK_STAT_0 and WK_STAT_2.  
If the bit CANTO_x is set and if it was not masked out.  
The VBAT (at pin VBSENSE) monitoring threshold is triggered.  
An interrupt is only triggered if the respective function is also enabled as a wake source.  
Automatic transition from PFM to PWM mode in SBC Stop Mode.  
The register WK_LVL_STAT is not generating interrupt events.  
In addition to this behavior, an INTN will be triggered when the SBC is sent to SBC Stop Mode and not all bits  
were cleared in the WK_STAT_0 and WK_STAT_2registers.  
The SPI status registers are updated at every falling edge of the INTN pulse. All interrupt events are stored in  
the respective register (except the register WK_LVL_STAT) until the register is read and cleared via an SPI  
command. The interrupt behavior is shown in Figure 29.  
Datasheet  
60  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Interrupt Function  
WK event 1  
WK event 2  
INTN  
tINTD  
tINT  
Update of  
WK_STAT register  
Update of  
WK_STAT register  
optional  
no WK  
SPI  
Read & Clear  
WK_STAT  
contents  
WK event 1  
no WK  
WK event 2  
SPI  
Read & Clear  
No SPI Read & Clear  
Command sent  
WK event 1 and WK  
event 2  
WK_STAT  
contents  
no WK  
Figure 29 Interrupt Signaling Behavior  
Datasheet  
61  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Interrupt Function  
10.2  
Electrical Characteristics  
Table 19 Interrupt Output  
VS = 6 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Interrupt output; Pin INTN  
INTN HIGH Output Voltage VINTN,H 0.8 × VIO  
V
V
IINTN = -2 mA;  
INTN = OFF  
P_10.2.1  
P_10.2.2  
INTN LOW Output Voltage VINTN,L  
0.2 × VIO  
IINTN = 2 mA;  
INTN = ON  
1)  
INTN Pulse Width  
tINTN  
tINTD  
80  
80  
100  
100  
120  
120  
µs  
µs  
P_10.2.3  
P_10.2.4  
INTN Pulse Minimum  
Delay Time  
1) Between  
consecutive pulses  
Configuration Select; Pin INTN  
Config Pull-down  
Resistance  
RCFG  
6
250  
8
kΩ  
VINTN = 5 V  
P_10.2.5  
P_10.2.6  
1)  
Config Select Filter Time tCFG_F  
10  
µs  
1) Not subject to production test; specified by design.  
Datasheet  
62  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Fail Output  
11  
Fail Output  
11.1  
Functional Description  
5V_int  
Ttest  
SBC Init  
Mode  
RTEST  
FO/TEST  
TFO  
Failure Logic  
Figure 30 Fail Output Block Diagram  
The Fail Output consists of a failure logic block and one LOW-side switch. In case of a failure, the FO output is  
activated and the SPI bit FO_ON_STATE, in the register DEV_STAT, is set.  
The Failure Output is activated due to the following failure conditions.  
Failure Conditions  
After one or two Watchdog Trigger failures depending on the configuration.  
Thermal Shutdown TSD2.  
VIO short to GND.  
VIO overvoltage in case that VIO_OV_RST bit is set.  
After four consecutive VIO undervoltage detection.  
Configurations  
Four different configurations can be selected. The selection is done using the pin INTN and the SPI bit CFG2.  
Table 20 Reasons for Fail  
Config  
Event  
Fail-Safe Mode Entered SPI CFG2 bit  
INTN pin  
1
1 × watchdog failure  
no  
1
External pull-up  
2
1 × watchdog failure  
yes  
1
No ext. pull-up  
Datasheet  
63  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Fail Output  
Table 20 Reasons for Fail (cont’d)  
Config  
Event  
Fail-Safe Mode Entered SPI CFG2 bit  
INTN pin  
3
2 × watchdog failure  
no  
0
External pull-up  
4
2 × watchdog failure  
yes  
0
No ext. pull-up  
In order to deactivate the Fail Output, the failure conditions (e.g. TSD2) must not be present anymore and the  
bit FO_ON_STATE needs to be cleared via SPI command.  
In case of Watchdog fail, the deactivation of the Fail Output is only allowed after a successful WD trigger, i.e.  
the FO_ON_STATE bit must be cleared.  
Note:  
The Fail Output pin is triggered for any of the above described failure and not only for failures  
leading to the SBC Fail-Safe Mode.  
Datasheet  
64  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Fail Output  
11.2  
Electrical Characteristics  
Table 21 Interrupt Output  
VS = 6 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Fail Output; Pin FO/TEST  
FO LOW output voltage  
(active)  
VFO,L  
IFO,H  
0.6  
1
V
IFO = 5 mA  
P_11.2.1  
P_11.2.2  
P_11.2.3  
P_11.2.4  
P_11.2.6  
P_11.2.7  
FO HIGH output leakage  
current (inactive)  
0
2
µA  
V
VFO = 28 V  
FO/TEST HIGH-input voltage VTEST,H  
threshold  
3.5  
FO/TEST LOW-input voltage VTEST,L  
threshold  
1.5  
2.5  
52  
V
1)  
FO/Pull-up Resistance at pin RTEST  
TEST  
5
10  
81  
kΩ  
µs  
V
= 0 V  
TEST  
1)  
FO/TEST Input Filter Time  
tTEST  
64  
1) Not subject to production test; specified by design.  
Datasheet  
65  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12  
Supervision Functions  
12.1  
Reset Function  
VIO  
RSTN  
Resetlogic  
Incl. filter & delay  
Figure 31 Reset Block Diagram  
12.1.1  
Reset Output Description  
The reset output pin RSTN provides a reset information to the microcontroller, e.g. when the VIO voltage falls  
below the undervoltage threshold VRT1/2/3/4. In case of a reset event due to an undervoltage on VIO, the reset  
output RSTN is pulled to LOW after the filter time tRF and stays LOW as long as the reset event is present plus  
a reset delay time tRD1. When connecting the SBC to battery voltage, the reset signal remains LOW initially.  
When the output voltage VIO has reached the default reset threshold VRT1,f, the reset output RSTN is released  
to HIGH after the reset delay time tRD1. A reset can also occur due to a Watchdog trigger failure. The reset  
threshold can be adjusted via SPI; the default reset threshold is VRT1,f. The RSTN pin has an integrated pull-up  
resistor. In case reset is triggered, RSTN will pull LOW for VS VPOR,f  
.
The RSTN trigger timing regarding the VIO undervoltage and watchdog trigger is shown in Figure 32.  
VIO  
VRT1  
t < tRF  
The reset threshold can be  
configured via SPI in SBC  
Normal Mode, default is VRT1  
undervoltage  
t
t
tCW  
tOW  
tRD1  
tCW  
tLW  
tRD1  
tLW  
tCW  
tOW  
SPI  
SPI  
Init  
WD  
Trigger  
WD  
Trigger  
SPI  
Init  
tRF  
RSTN  
tLW= long open window  
tCW= closed window  
tOW= open window  
t
SBC Init  
SBC Normal  
SBC Restart  
SBC Normal  
Figure 32 Reset Timing Diagram  
Datasheet  
66  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12.1.2  
Soft Reset Description  
In SBC Normal and Stop Mode, It is also possible to trigger a Soft Reset via an SPI command in order to bring  
the SBC into a defined state in case of failures. In this case the microcontroller must send an SPI command and  
set the MODE bits to ‘11’ in the M_S_CTRL register. As soon as this command becomes valid, the SBC is set  
back to SBC Init Mode and all SPI registers are set to their default values (see SPI Chapter 13.5 and  
Chapter 13.6).  
As soon as the SBC is in SBC Init Mode due to a software reset, it is possible to change the device configuration  
according to the FO/Test, INTN pins and CFG2 bit value. For more information, refer to Chapter 5.1.1.  
Two different soft reset configurations are possible via the SPI bit SOFT_RESET_ RSTN:  
The reset output (RSTN) is triggered when the soft reset is executed (default setting, the same reset delay  
time tRD1 applies).  
The reset output (RSTN) is not triggered when the soft reset is executed.  
Note:  
The device must be in SBC Normal Mode or SBC Stop Mode when sending this command.  
Otherwise, the command will be ignored.  
12.2  
Watchdog  
The watchdog is used to monitor the software execution of the microcontroller and to trigger a reset if the  
microcontroller stops serving the watchdog due to a lock up in the software.  
Two different types of watchdog functions are implemented and can be selected via the bit WD_WIN on the  
WD_CTRL register:  
Time-Out Watchdog (default value).  
Window Watchdog.  
The respective watchdog function can be selected and programmed in SBC Normal Mode. The configuration  
remains unchanged in SBC Stop Mode.  
Refer to Table 22 to match the SBC Modes with the respective Watchdog Modes.  
Table 22 Watchdog Functionality by SBC Modes  
SBC Mode  
Watchdog Mode  
Remarks  
INIT Mode  
Start with Long Open Window Watchdog starts with Long Open Window after RSTN  
is released.  
Normal Mode  
WD Programmable  
Window Watchdog, Time-Out watchdog or switched  
OFF for SBC Stop Mode.  
Stop Mode  
Sleep Mode  
Watchdog is fixed or OFF  
OFF  
SBC will start with Long Open Window when  
entering Normal Mode.  
Restart Mode  
OFF  
OFF  
SBC will start with Long Open Window when  
entering Normal Mode.  
Fail-Safe Mode  
SBC will start with Long Open Window when  
entering Normal Mode.  
Watchdog timing is programmed via an SPI command. As soon as the Watchdog is programmed, the timer  
starts with the new setting and the Watchdog must be served.  
The Watchdog is triggered by sending a valid SPI command with write access to WD_CTRL register. The trigger  
SPI command is executed when the Chip Select input (CSN) becomes HIGH.  
Datasheet  
67  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
When coming from SBC Init, Restart or in certain cases Stop Mode, the watchdog timer starts with a long open  
window.  
The long open window (tLW) allows the microcontroller to run its initialization sequences and then to trigger  
the Watchdog via the SPI.  
The watchdog timer period can be selected via the watchdog timing bit field (WD_TIMER on WD_CTRL  
register) and it is in the range of 10 ms up to 1000 ms. The timer setting is valid for both watchdog types.  
The following Watchdog timer periods are available:  
WD Setting 1: 10 ms  
WD Setting 2: 20 ms  
WD Setting 3: 50 ms  
WD Setting 4: 100 ms  
WD Setting 5: 200 ms (reset value)  
WD Setting 6: 500 ms  
WD Setting 7: 1000 ms  
In case of a watchdog reset, SBC Restart Mode is started or SBC Fail-Safe Mode is entered according to the  
configuration and WD_FAIL bits are set.  
Once the RSTN goes HIGH again, the watchdog immediately starts with a long open window and the SBC  
enters automatically in SBC Normal Mode.  
In SBC Development Mode, no reset is generated due to watchdog failure; the watchdog is OFF.  
In case of 3 consecutive resets due to WD fail, it is possible in config 1/3 not to generate additional resets by  
setting the MAX_3_RST bit on WD_CTRL register.  
12.2.1  
Time-Out Watchdog  
The time-out watchdog is an easier and less secure watchdog than a window watchdog as the watchdog  
trigger can become active at any time within the configured watchdog timer period.  
A correct watchdog service immediately results in starting a new watchdog timer period. Taking the  
tolerances of the internal oscillator into account leads to the safe trigger area defined in Figure 33.  
Typical timout watchdog trigger period  
tWD x 1.50  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
tWD x 1.20  
tWD x 1.80  
t / [tWD_TIMER  
]
safe trigger area  
Figure 33 Time-Out Watchdog Definitions  
Datasheet  
68  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
If the time-out watchdog period elapses, a watchdog reset is created by setting the reset output RSTN LOW  
and the SBC switches to SBC Restart or SBC Fails-Safe Mode.  
12.2.2  
Window Watchdog  
Compared to the time-out watchdog, the characteristic of the window watchdog is that the watchdog timer  
period is divided between a closed and an open window. The watchdog must be triggered inside the open  
window.  
A correct watchdog trigger results in starting the window watchdog period by a closed window followed by an  
open window.  
The watchdog timer period is at the same time the typical trigger time and defines the middle of the open  
window.  
Taking the oscillator tolerances into account leads to a safe trigger area of:  
tWD × 0.72 < safe trigger area < tWD × 1.20.  
The typical closed window is defined to a width of 60% of the selected window watchdog timer period. Taking  
the tolerances of the internal oscillator into account leads to the timings as defined in Figure 34.  
A correct Watchdog service immediately results in starting the next closed window.  
Should the trigger signal meet the closed window or should the watchdog timer period elapse, a watchdog  
reset is created by setting the reset output RSTN LOW and the SBC switches to SBC Restart or Fail-Safe Mode.  
tWD x 0.6  
tWD x 0.9  
Typ. closed window  
Typ. open window  
tWD x 0.48  
tWD x 0.72  
tWD x 1.0  
tWD x 1.20  
tWD x 1.80  
closed window  
uncertainty  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
t / [tWD_TIMER  
]
safe trigger area  
Figure 34 Window Watchdog Definitions  
12.2.3  
Checksum  
A checksum bit is part of the SPI command to trigger the watchdog and to set the watchdog setting. The sum  
of the 8 bits in the register WD_CTRL needs to be even. This is realized by either setting the bit CHECKSUM to  
“0” or “1”. If the checksum is wrong, the SPI command is ignored (watchdog not triggered, settings not  
changed) and the bit SPI_FAIL is set.  
The checksum is calculated by taking all 8 data bits into account.  
(12.1)  
CHKSUM = Bit15  
Bit8  
Datasheet  
69  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12.2.4  
Watchdog during Stop Mode  
The watchdog can be disabled via SPI in Stop Mode.  
For safety reasons, there is a special sequence to be ensured in order to disable the watchdog as described in  
Figure 35. Two dedicated SPI bits (WD_STM_EN_0 and WD_STM_EN_1) in the registers WD_CTRL and  
WK_CTRL_0.  
If this sequence is not fulfilled, then the bit WD_STM_EN_1 will be cleared and the sequence has to be started  
again. As soon as the SBC is set to SBC Normal Mode, then the bits WD_STM_EN_1 and WD_STM_EN_0 are  
cleared and this sequence must be followed again to switch OFF the watchdog.  
The watchdog can be enabled by triggering the watchdog in SBC Stop Mode or by switching back to SBC  
Normal Mode via SPI. In both cases, the watchdog will start with a long open window and the bits  
WD_STM_EN_1 and WD_STM_EN_0 are cleared. After the long open window, the watchdog has to be served  
as configured in the WD_CTRL register.  
Correct WD disabling  
Sequence Errors  
sequence  
Missing to set bit  
Set bit  
WD_STM_EN_1 = 1  
WD_STM_EN_0 with the  
next watchdog trigger after  
having set WD_STM_EN_1  
with next WD Trigger  
Staying in Normal Mode  
Set bit  
WD_STM_EN_0 = 1  
Before subsequent WD Trigger  
Will enable the WD :  
Change to  
SBC Stop Mode  
Switching back to SBC  
Normal Mode  
Triggering the watchdog  
WD is switched off  
Figure 35 Watchdog Disabling Sequence  
Note:  
The bit WD_STM_EN_0 will be cleared automatically when the sequence is started and it was “1”  
before.  
12.2.4.1 Watchdog Start in SBC Stop Mode due to BUS Wake  
In SBC Stop Mode the watchdog can be disabled. In addition a feature can be enabled to start the watchdog  
with any BUS wake during Stop Mode. The feature is enabled by setting the bit WD_EN_WK_ BUS. The bit can  
only be changed in SBC Normal Mode and needs to be programmed before entering SBC Stop Mode: it is not  
reset by the SBC. The sequence described in Chapter 12.2.4 needs to be followed to disable the WD.  
With the function enabled, the watchdog will start again with any wake on CANx. The wake on CANx will  
generate an interrupt and the RXDCANx is pulled to low. The watchdog starts a with long open window. The  
watchdog can be triggered in SBC Stop Mode or the SBC can be switched to SBC Normal Mode. To disable the  
watchdog again, the SBC needs to be switched to Normal Mode and the sequence needs to be sent again.  
The sequence is shown in Figure 36.  
Datasheet  
70  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
Correct WD disabling  
sequence  
Sequence Errors  
Missing to set bit  
Set bit  
WD_EN_WK_BUS = 1  
WD_STM_EN_0 with the  
next watchdog trigger after  
having set WD_STM_EN_1  
Staying in Normal Mode  
Set bit  
WD_STM_EN_1 = 1  
with next WD Trigger  
Will enable the WD:  
Set bit  
WD_STM_EN_0 = 1  
Switching back to SBC  
Normal Mode  
Before subsequent WD Trigger  
Triggering the watchdog  
Wake on CANx  
Change to  
SBC Stop Mode  
WD is switched off  
Figure 36 Watchdog Disabling Sequence (with wake via BUS)  
12.3  
VS Power ON Reset  
When powering up, the device detects the VS Power ON Reset when VS > VPOR,f, and the POR is set to indicate  
that all SPI registers are set to POR default setting. The Buck regulator starts up. The RSTN output is kept LOW  
and is only released when VIO has exceeded VRT1,r and after tRD1 has elapsed.  
If VS<VPOR,f, an internal reset is generated and the SBC is switched OFF. The SBC will restart in SBC INIT Mode  
when VS>VPOR,r rising. Timing behavior is shown in Figure 37.  
Datasheet  
71  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
VS  
VPOR,r  
VPOR,f  
t
t
VIO  
VRT1,r  
The reset threshold can be  
configured via SPI in SBC  
Normal Mode, default is VRT1  
VRTx,f  
RSTN  
SBC Restart Mode is  
entered whenever the  
Reset is triggered  
t
tRD1  
SBC Mode  
Re-  
start  
SBC OFF  
SBC INIT MODE  
Any SBC MODE  
SBC OFF  
t
SPI  
Command  
Figure 37 Ramp up / down example of Supply Voltage  
12.4  
Measurement Interface  
The measurement interface is sensing the voltage on WK and VBSENSE pin, converting to digital using a 8 bit  
SAR high input voltage analog to digital converter and store the value in ADC_STAT.  
The input selection (between WK pin or VBSENSE pin) is made by ADC_SEL bit on HW_CTRL_1 register.  
The feature is available only in SBC Normal Mode. In SBC Stop, Sleep and Fail Safe Mode, the feature is  
automatically disabled to reduce current consumption. Figure 38 shows the block diagram.  
WK  
8 bit ADC  
External Voltage 1  
External Voltage 2  
ADC_STAT  
MUX  
VBSENSE  
ADC_sel bit  
On HW_CTRL_1  
Figure 38 Measure Interface: basic concept implementation.  
Datasheet  
72  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12.5  
Fast Battery Voltage Monitoring  
A battery monitoring feature is implemented in the TLE9278BQX V33 in order to provide a fast signalization  
path to the microcontroller in case of low battery voltage condition.  
The block diagram is shown in Figure 39. The functionality is as follows:  
The battery voltage is monitored on the dedicated pin VBSENSE (see also the application diagram in  
Chapter 14.1).  
If the voltage falls below the selected threshold, an interrupt is triggered at the INTN pin and the bit  
VBAT_UV_ LATCH in the register WK_STAT_2 is set.  
The bit can be cleared via an SPI if the voltage is above the thresholds again.  
The bit VBAT_UV_ STATE in the register WK_LVL_STAT is showing the actual level of the comparator  
output, i.e. if the battery voltage is below or above the selected monitoring threshold.  
The monitoring threshold can be selected via SPI bit with VBSENSE_CFG in the WK_CTRL_0 register. The  
feature can be enable in SBC Normal, Stop and Restart Mode using VBSENSE_EN bit on the WK_CTRL_0  
register. Four thresholds are available: VBSENSE0,f...VBSENSE3,f  
.
The Fast Battery voltage monitoring feature is filtered with the time tF_VBSENSE  
.
VBSENSE  
Vref  
State  
Machine  
INTN  
SPI  
controlled  
GND  
Figure 39 Fast Battery Voltage Monitoring Block Diagram  
12.6  
VBSENSE Boost deactivation  
In case of low battery voltage conditions, where the Boost module can operate out of nominal functional  
range, it is possible to disable the boost and supply the VS pin only with the output boost capacitor.  
The BST_VB_UV_ OFF bit enable this feature.  
As soon as the battery voltage is crossing the BoostOFF,th threshold, the boost is disabled and VB_UV_BST is  
set.  
The Boost is automatically enabled when the VBSENSE is crossing BoostON,th threshold.  
The VB_UV_BST bit has to be cleared manually.  
Datasheet  
73  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12.7  
VIO Undervoltage and Undervoltage Prewarning  
A first-level voltage detection threshold is implemented as a prewarning for microcontroller. The prewarning  
event is signaled with the bit VIO_WARN. No other actions are taken.  
As described in Chapter 12.1 and shown in Figure 40, when the VIO voltage reaches the undervoltage  
threshold (VRTx), a reset will be triggered (RSTN pulled ‘LOW’), the bit VIO_UV is set and the SBC will enter SBC  
Restart Mode.  
Note:  
The VIO_WARN and VIO_UV bits are not set in SBC Sleep Mode as VIO = 0 V in this case.  
VIO  
VRTx  
t
t
tRF  
tRD1  
RSTN  
SBC Normal  
Figure 40 VIO Undervoltage Timing Diagram  
SBC Restart  
SBC Normal  
An additional safety mechanism is implemented to avoid repetitive VIO undervoltage resets:  
A counter is increased for every consecutive VIO undervoltage event.  
The counter is active in SBC Init, Normal and Stop Mode and as VS > VS,UV  
.
A 4th consecutive VIO undervoltage events will lead to SBC Fail-Safe Mode entry and to setting the bit  
VIO_UV_FS.  
The counter is cleared when:  
SBC Fail-Safe Mode is entered.  
The bit VIO_UV is cleared.  
A Soft Reset is triggered.  
Note:  
It is recommended to clear the VIO_UV bit once it was set and detected.  
12.8  
VIO Overvoltage  
For fail safe reasons, a configurable VIO overvoltage detection feature is implemented.  
In case the VIO,OV,r threshold is crossed, the SBC triggers following measures depending on the configuration:  
The bit VIO_OV is always set.  
If the bit VIO_OV_RST is set in config 1/3, then SBC Restart Mode is entered. The FO output is activated.  
After the reset delay time (tRD1), the SBC Restart Mode is exited and SBC Normal Mode is resumed even if  
the VIO overvoltage event is still present (see also Figure 41). The VIO_OV_RST bit is cleared  
automatically.  
If the bit VIO_OV_RST is set in config 2/4, then SBC Fail-Safe Mode is entered and FO output is activated.  
Datasheet  
74  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
If the VIO_OV_RST bit is not set, one overvoltage event on VIO pin will set the VIO_OV bit but no reset is  
generated and FO remains OFF. The SBC doesn’t change the SBC mode.  
VIO  
VIO,OV  
t
tOV_filt  
RSTN  
tRD1  
t
SBC Normal  
SBC Restart  
SBC Normal  
Figure 41 VIO Overvoltage Timing Diagram  
12.9  
VIO Short Circuit  
The following protection feature is implemented for VIO:  
When VIO stays below the undervoltage threshold VRTx for more than tVIO,SC, the SBC enters SBC Fail-Safe  
Mode and turns off VCC1. This feature is available only if Vs > VS,UV. In addition the SPI status bit VIO_SC is  
set. The SBC can exited SBC Fail Safe Mode via a wake-up event on CANx and/or WK pin.  
12.10  
VEXT Undervoltage  
Following protection feature is implemented for VEXT:  
If VEXT drops below the VEXT,UV threshold, the SPI bit VREG_UV is set and can only be cleared via SPI.  
Note:  
The VREG_UV flag is not set during turn-on or turn-off of VEXT.  
12.11  
Thermal Protection  
The thermal protection mechanism is designed in such a way that the individual modules (VCC1, CANx, Boost  
and VEXT) can remain active on as long as possible in case of high temperature. The following thermal  
protection features are available and signaled via SPI:  
Thermal Prewarning TjPW  
Overtemperature Protection:  
Overtemperature shut down with 2 levels of priority (TSD1 for peripherals and TSD2 for  
microcontroller supply).  
The TSD1 status bit is a combination of CANx, Boost and VEXT thermal shutdown.  
The TSD2 status bit is related to VCC1.  
If the VEXT base driver sensor detected that TjTSD1 has been reached, it is switched OFF as an initial  
protection measure. The control bits (VEXT_ON bits on M_S_CTRL register) are reset and the bits  
VEXT_OT and TSD1 are set. The other output stages are not affected if their TjTSD1 threshold is not  
reached. When the overtemperature event is not present anymore, the VEXT must be switched ON by  
setting the VEXT_ON bit.  
Datasheet  
75  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
If one of the CANx output stages reaches the TjTSD1 temperature threshold, then the transmitter is  
switched OFF individually as first-level protection measure. The respective control bits are not reset  
and the TSD1 and CAN_x_FAIL bits are set. The CANx drivers are automatically switched on again when  
the overtemperature condition is no longer present. The user has to reset the BUS_STAT_0 and  
BUS_STAT_2 registers via SPI.  
If VCC1 reaches the TjTSD2 temperature threshold, the SBC is sent to SBC Fail-Safe Mode. The SBC stays  
in SBC Fail-Safe Mode for at least tTSD2 (typ.1s) after the TSD2 event is not present anymore. The  
VCC1_OT is set.The default wake sources CANx and WK are enabled together with the Fail Safe output.  
Boost Switched OFF in case of TSD1 along with the BOOST_OT bit. The Boost has to activate again  
setting the BOOST_EN after the thermal shutdown event.  
Once the respective bits (TSD1, TSD2) are set, they can be cleared via SPI if the condition is not present  
anymore.  
12.11.1 Temperature Prewarning  
As a next level of thermal protection a temperature prewarning is implemented if the main supply VCC1  
reaches the thermal prewarning temperature threshold TjPW. Then the status bit TPW is set. This bit can only  
be cleared via SPI once the overtemperature is not present anymore. The thermal prewarning is only active if  
the VCC1 is in PWM mode.  
Datasheet  
76  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
12.12  
Electrical Characteristics  
Table 23 Electrical Specification  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Number  
Test Condition  
Min.  
Max.  
VIO Monitoring, Reset Generator with VIO = VCC1 = 3.3 V; Pin RSTN  
Undervoltage Prewarning  
Threshold Voltage  
VPW,f  
3.0  
3.1  
3.2  
V
VIO falling,  
VIO_WARN bit is  
set  
P_12.10.57  
Undervoltage Prewarning  
Threshold Voltage  
VPW,r  
VRT1,f  
VRT1,r  
VRT2,f  
VRT2,r  
VRT3,f  
3.10  
2.95  
3.0  
3.2  
3.27  
3.15  
3.2  
V
V
V
V
V
V
VIO rising  
P_12.10.58  
P_12.10.34  
P_12.10.35  
P_12.10.36  
P_12.10.37  
P_12.10.38  
Reset Threshold  
Voltage RT1,f  
3.05  
3.1  
Default setting;  
VIO falling  
Reset Threshold  
Voltage RT1,r  
Default setting;  
VIO rising  
Reset Threshold  
Voltage RT2,f  
2.5  
2.6  
2.7  
SPI option;  
VIO falling  
Reset Threshold  
Voltage RT2,r  
2.55  
2.2  
2.65  
2.3  
2.75  
2.4  
SPI option;  
VIO rising  
Reset Threshold  
Voltage RT3,f  
SPI option;  
VS 4 V;  
VIO falling  
Reset Threshold  
Voltage RT3,r  
VRT3,r  
VRT34f  
VRT4,r  
2.25  
2.0  
2.35  
2.1  
2.45  
2.2  
V
V
V
SPI option;  
VS 4 V;  
VIO rising  
P_12.10.39  
P_12.10.55  
P_12.10.56  
Reset Threshold  
Voltage RT4,f  
SPI option;  
VS 4 V;  
VIO falling  
Reset Threshold  
Voltage RT4,r  
2.05  
2.15  
2.25  
SPI option;  
VS 4 V;  
VIO rising  
VIO Monitoring, Overvoltage detection  
VIO Overvoltage Detection VIO,OV,r  
Threshold  
3.5  
3.45  
12  
3.63  
3.56  
15  
3.75  
3.7  
21  
V
1) Rising VIO  
PCFG = GND  
1) Falling VIO  
PCFG = GND  
1)  
P_12.10.41  
P_12.10.45  
P_12.10.60  
VIO Overvoltage Detection VIO,OV,f  
Threshold  
V
VIO Overvoltage filter time tVIO,OV  
µs  
Datasheet  
77  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
Table 23 Electrical Specification (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VIO Monitoring, Reference Supply Undervoltage detection  
VS Undervoltage Detection VS,UV  
3.7  
4
4.4  
V
Supply UV  
P_12.10.43  
Threshold  
supervision for  
VIO PCFG = open;  
includesrisingand  
falling threshold  
1)  
VIO Short to GND Filter Time tVIO,SC  
Electrical Characteristics RSTN  
Reset LOW Output Voltage VRSTN,LOW  
3.2  
4
4.8  
ms  
P_12.10.10  
0.2  
0.4  
V
V
IRSTN = 1 mA for  
VIO1 V  
P_12.10.12  
P_12.10.13  
Reset HIGH Output Voltage VRSTN,HIGH  
0.7 ×  
VIO  
+
IRSTN = -20 µA  
VIO  
0.3 V  
Reset Pull-up Resistor  
Reset Filter Time  
RRSTN  
tRF  
10  
4
20  
10  
40  
kΩ  
VRSTN = 0 V  
P_12.10.14  
P_12.10.15  
1)  
26  
µs  
V < VRT1×  
IO  
to RSTN = L  
1)2)  
Reset Delay Time  
tRD1  
1.5  
4.5  
2
2.5  
ms  
V
P_12.10.16  
P_12.10.17  
VEXT Monitoring  
VEXT Undervoltage Detection VEXT,UV  
4.6  
4.75  
5 V option  
VEXT_VCFG=00B  
falling  
VEXT Undervoltage Detection VEXT,UV  
VEXT Undervoltage Detection VEXT,UV  
2.65  
1.45  
0.94  
20  
2.85  
1.52  
1.03  
100  
3.00  
1.6  
V
3.3 V option  
VEXT_VCFG=01B  
falling  
P_12.10.46  
P_12.10.61  
P_12.10.62  
P_12.10.63  
V
1.8 V option  
VEXT_VCFG=10B  
falling  
VEXT Undervoltage Detection VEXT,UV  
1.1  
V
1.2 V option  
VEXT_VCFG=11B  
falling  
1)  
VEXT Undervoltage detection VEXT,UV, hys  
250  
mV  
hysteresis  
Watchdog Generator  
1)  
Long Open Window  
Internal Oscillator  
tLW  
160  
0.8  
200  
1.0  
240  
1.2  
ms  
P_12.10.18  
P_12.10.19  
fCLKSBC  
MHz  
Minimum Waiting Time during SBC Fail-Safe Mode  
1)3)  
Min. waiting time in Fail-Safe tFS,min  
80  
100  
120  
5
ms  
V
P_12.10.20  
P_12.10.21  
Power-ON Reset, Over-/Undervoltage Protection  
Vs Power ON reset rising  
VPOR,r  
4.5  
Vs increasing  
Datasheet  
78  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
Table 23 Electrical Specification (cont’d)  
VS = 5.5 V to 28 V; Tj = -40°C to +150°C; SBC Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Vs Power ON reset falling  
VPOR,f  
3
V
Vs decreasing  
P_12.10.22  
Battery Voltage Monitoring  
VBSENSE Monitoring  
Threshold 0  
VBSENSE0,f  
VBSENSE1,f  
VBSENSE2,f  
VBSENSE3,f  
7.5  
5.7  
4.2  
3.2  
8.0  
6.0  
8.5  
6.3  
4.8  
3.8  
200  
21  
2
V
VBSENSE  
decreasing  
P_12.10.24  
P_12.10.25  
P_12.10.26  
P_12.10.27  
P_12.10.28  
P_12.10.48  
P_12.10.49  
P_12.10.80  
VBSENSE Monitoring  
Threshold 1  
V
VBSENSE  
decreasing  
VBSENSE Monitoring  
Threshold 2  
4.5  
V
VBSENSE  
decreasing  
VBSENSE Monitoring  
Threshold 3  
3.5  
V
VBSENSE  
decreasing  
1)  
VBSENSE Monitoring  
Threshold Hysteresis  
VBSENSE,hys 50  
100  
16  
mV  
µs  
V
1)  
VBSENSE Monitoring Filter tF_VBSENSE  
Time  
13  
VBSENSEBoostdeactivation BoostOFF,th 1.5  
threshold  
1.75  
2.75  
VBSENSE falling  
VBSENSE rising  
VBSENSE Boost activation  
threshold  
BoostON,th 2.5  
3
V
Overtemperature Shutdown  
1)  
Thermal Prewarning ON  
Temperature  
TjPW  
125  
145  
165  
°C  
P_12.10.29  
1)  
1)  
1)  
Thermal Shutdown TSD1  
Thermal Shutdown TSD2  
TjTSD1  
TjTSD2  
THYS  
165  
165  
185  
185  
20  
200  
200  
°C  
°C  
°C  
P_12.10.30  
P_12.10.31  
P_12.10.81  
Thermal Shutdown  
Hysteresis  
1)  
Deactivation time after  
thermal shutdown TSD2  
tTSD2  
0.8  
1
1.2  
s
P_12.10.32  
Measurement Interface  
Resolution  
8
Bits  
Input voltage full P_12.10.70  
scale = 0V ..39 V  
Guarantee offset error  
-1  
+1  
LSB Input voltage full P_12.10.71  
scale = 0V ..39 V  
Gain error  
-1.5  
-1.5  
1.5  
1.5  
%FSR Full scale range  
P_12.10.72  
Differential non-linearity  
(DNL)  
LSB Input voltage full P_12.10.73  
scale = 0 V..39 V  
Integral non-linearity (INL)  
-1.5  
1.5  
LSB Input voltage full P_12.10.74  
scale = 0 V..39 V  
1) Not subject to production test; specified by design.  
Datasheet  
79  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Supervision Functions  
2) The reset delay time will start when VIO crosses above the selected VRTx threshold.  
3) This time applies for all failure entries except a device thermal shutdown (TSD2 has a 1 s waiting time tTSD2).  
Datasheet  
80  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13  
Serial Peripheral Interface  
13.1  
SPI Protocol Description  
The 16-bit wide Control Input Word is read via the data input SDI, which is synchronized with the clock input  
CLK provided by the microcontroller. The output word appears synchronously at the data output SDO (see  
Figure 42).The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), LOW  
active. After the CSN input returns from LOW to HIGH, the word that has been read is interpreted according to  
the content. The SDO output switches to tristate status (HIGH impedance) at this point, thereby releasing the  
SDO bus for other use.The state of SDI is shifted into the input register with every falling edge on CLK. The state  
of SDO is shifted out of the output register after every rising edge on CLK. The SPI of the SBC is not daisy-chain  
capable.  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
CLK  
time  
Actual data  
New data  
0 1  
+ +  
SDI  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
time  
SDI: will accept data on the falling edge of CLK signal  
Actual status  
New status  
0
1
+
ERR  
SDO  
ERR  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
-
+
time  
SDO: will change state on the rising edge of CLK signal  
Figure 42 SPI Data Transfer Timing (note the reversed order of LSB and MSB shown in this figure  
compared to the register description)  
Datasheet  
81  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.2  
Failure Signalization in the SPI Data Output  
When the microcontroller sends a wrong SPI command to the SBC, the SBC ignores the information. Wrong  
SPI commands are either invalid SBC mode commands or commands which are prohibited by the state  
machine to avoid undesired device or system states (see below). In this case the diagnosis bit ‘SPI_FAIL’ is set  
and the SPI Write command is ignored (mostly no partial interpretation). This bit can only be reset by actively  
clearing it via a SPI command.  
Invalid SPI Commands leading to SPI_FAIL are listed below:  
Illegal state transitions: going from SBC Stop to SBC Sleep Mode. In this case the SBC additionally enters  
the SBC Restart Mode.  
Trying to go to SBC Stop or SBC Sleep mode from SBC Init Mode. In this case SBC Normal Mode is entered.  
Uneven parity in the data bit of the WD_CTRL register. In this case either the watchdog trigger is ignored  
or the new watchdog settings are ignored.  
In SBC Stop Mode: attempting to change any SPI settings , e.g. changing the watchdog configuration  
during SBC Stop Mode.  
the SPI command is ignored in this case.  
The following are allowed in SBC Stop Mode: WD trigger, returning to SBC Normal Mode , triggering a SBC  
Soft Reset, set to SBC Stop Mode (to return from PWM to PFM following an automatic Buck mode  
transition) and Read & Clear status register commands are valid SPI commands in SBC Stop Mode.  
When entering SBC Stop Mode and WK_STAT_0 and WK_STAT_2 are not cleared; SPI_FAIL will not be set  
but the INTN pin will be triggered.  
When changing from SBC Stop to Normal Mode, any attempt to change the bits on the M_S_CTRL register  
will be ignored (SBC remains in SBC Stop Mode). Only VIO_OV_RST and VIO_RT set the SPI_FAIL bit.  
SBC Sleep Mode: attempt to go to Sleep Mode when all bits in the BUS_CTRL_0, BUS_CTRL_2,  
BUS_CTRL_3 and WK_CTRL_1 registers are cleared (i.e. no wake sources are activated). In this case the  
SPI_FAIL bit is set and the SBC enters SBC Restart Mode.  
Even though the SBC Sleep Mode command is not entered in this case, the rest of the command (e.g  
modifying VEXT) is executed and the values stay unchanged during SBC Restart Mode.  
Note: at least one wake source must be activated in order to avoid a deadlock situation in SBC Sleep Mode,  
i.e. the SBC would not be able to wake up anymore.  
No failure handling occurs for the attempt to go to SBC Stop Mode when all bits in the registers  
BUS_CTRL_0, BUS_CTRL_2, BUS_CTRL_3 and WK_CTRL_1 are cleared because the microcontroller can  
leave this mode via SPI.  
After the first VEXT on command, the VEXT_VCFG bits can no longer be changed. if the microcontroller  
tries to modify the VEXT_VCFG bits, then the rest of the command is executed but VEXT_VCFG will remain  
unchanged.  
The Boost output voltage can be changed only if BOOST_EN is set to 0. If the Boost output voltage is  
changed with BOOST_EN=1, the SPI_FAIL bit is set and the SPI command is ignored.  
SDI stuck at HIGH or LOW, e.g. SDI received all ‘0’ or all ‘1’.  
Signalization of the ERR flag in the SPI data output (see Figure 42):  
The ERR flag presents an additional diagnosis possibility for the SPI communication. The ERR flag is being set  
for the following conditions:  
In case the number of received SPI clocks is not 0 or 16.  
In case RSTN is LOW and SPI frames are being sent at the same time.  
Datasheet  
82  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Note:  
In order to read the SPI ERR flag property, CLK must be low when CSN is triggered, i.e. the ERR bit is  
not valid if the CLK is high on a falling edge of CSN.  
The number of received SPI clocks is not 0 or 16:  
The number of received input clocks is supervised to be 0 or 16 clock cycles and the input word is discarded in  
case of a mismatch (0 clock cycle to enable ERR signalization). The error logic also recognizes if CLK was high  
during the CSN edges. Both errors, 0 bit and 16 bit CLK mismatch or CLK high during CSN edges are flagged in  
the following SPI output by a “HIGH” at the data output (SDO pin, bit ERR) before the first rising edge of the  
clock is received. The error logic also recognizes if CLK was HIGH during CSN edges. The entire SPI command  
is ignored in these cases.  
RSTN is LOW and SPI frames are being sent at the same time:  
The ERR flag will be set when the RSTN pin is triggered (during SBC Restart Mode) and SPI frames are being  
sent to the SBC at the same time. The behavior of the ERR flag signaled at the next SPI command when the  
condition below are present:  
If the command begins when RSTN is HIGH and ends when RSTN is LOW.  
If an SPI command is sent while RSTN is LOW.  
If an SPI command begins when RSTN is LOW and ends when RSTN is HIGH.  
And the SDO output will behave as follows:  
When RSTN is LOW, SDO is always HIGH.  
When SPI command begins with RSTN is LOW and ends when RSTN is HIGH, then the SDO should be  
ignored because wrong data will be sent.  
Note:  
Note:  
It is possible to quickly check for the ERR flag without sending any data bits. i.e. only the CSN is pulled  
low and SDO is observed - no SPI clocks are sent in this case.  
The ERR flag could also be set after the SBC has entered SBC Fail-Safe Mode because SPI  
communication stops immediately.  
Datasheet  
83  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.3  
SPI Programming  
For TLE9278, 7 bits are used for the address selection (6...0). Bit 7 is used to control the SPI Access, i.e. to decide  
between Read Only (if set to ‘0’) and Read_Clear (if set to ‘1’) for the status bits, and between Write (if set to  
‘1’) and Read Only (if set to ‘0’) for configuration bits. For the actual configuration and status information, 8  
data bits (15...8) are used.  
Writing, clearing and reading is done byte wise. SPI configuration and status bits are not cleared automatically  
and must be cleared by the microcontroller, e.g. if the TSD2 was set due to overtemperature. The  
configuration bits will be partially automatically cleared by the SBC (refer to the description of the individual  
registers for detailed information). During SBC Restart, Sleep or Fail-Safe mode, the SPI communication is  
ignored by the SBC, i.e. it is not interpreted.  
There are two types of SPI registers:  
Control registers: Those are the registers to configure the SBC, e.g. SBC mode, watchdog trigger, etc.  
Status registers: Those are the registers where the status of the SBC is signalled, e.g. wake-up events,  
warnings, failures, etc.  
For the status registers, the requested information is given in the same SPI command in DO.  
For the control registers, also the status of the respective bit is shown in the same SPI command, but if the  
setting is changed this is only shown with the next SPI command (it is only valid after CSN HIGH) of the same  
register.  
The SBC status information from the SPI status registers, is transmitted in a compressed way with each SPI  
response on SDO in the so called Status Information Field register (see also Figure 43).  
LSB  
MSB  
DI  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15  
R/W  
Address Bits  
Data Bits  
x
x
x
x
x
x
Register content of  
selected address  
DO  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15  
Data Bits  
Status Information Field  
x
x
x
x
x
x
time  
LSB is sent first in SPI message  
Figure 43 SPI Operation Mode  
The purpose of this register is to quickly signal the information to the microcontroller if there was a change in  
one of the SPI status registers. In this way, the microcontroller does not need to read constantly all the SPI  
status registers but only those registers, which were changed. Each bit in the Status Information Field  
Datasheet  
84  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
represents a SPI status register or a combinational OR of two status registers (see Table 24). As soon as one  
bit is set in one of the status registers, the respective bit in the Status Information Field register is set. The  
register WK_LVL_STAT is not included in the status information field. This is listed in Table 24:  
Table 24 Status Information Field  
Status Information Bit Symbol Address Bit  
Status Register  
0
100 0001  
SUP_STAT_0 & SUP_STAT_1 (Combinational OR):  
Supply Status (VCC1 and VEXT), POR  
1
2
100 0010  
100 0011  
THERM_STAT: Thermal Protection Status  
DEV_STAT: Device Status - Mode before Wake, WD Fail,  
SPI Fail, Failure  
3
4
100 0100  
100 0101  
BUS_STAT_0: Bus Failure Status: CAN0, VCAN  
BUS_STAT_2 & BUS_STAT_3 (Combinational OR): Bus  
Failure Status: CAN1, CAN2 and CAN3  
5
6
7
100 0110  
100 1001  
100 1100  
WK_STAT_0: Wake Source Status for CAN0, WK, Timer  
and PFM-to-PWM transition  
WK_STAT_2: Wake Source Status for CAN1, CAN2,  
CAN3, and VBAT_UV  
SMPS_STAT: SMPS Status  
For example if bit 2 in the Status Information Field is set to 1, one or more bits of the register DEV_STAT is set  
to 1. Then this register needs to be read in a second SPI command. The bit in the Status Information Field will  
be set to 0 when all bits in the register DEV_STAT are set back to 0.  
Datasheet  
85  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.4  
SPI Bit Mapping  
13.4.1  
SPI Mapping Structure  
Figure 44 and Figure 45 show the mapping of the SPI bits and the respective registers.  
Depending on bit 7, the bits are only read or also written. The Control Registers ‘000 0001’ to ‘011 1111’ are  
READ/WRITE Registers.  
The new setting of the bit after write can be seen with the next read / write command. .  
The registers ‘100 0000’ to ‘111 1110’ are Status Registers and can be read or read with clearing the bit (if  
possible) depending on bit 7. To clear a Data Byte of one of the Status Registers, bit 7 must be set to 1. The  
register WK_LVL_STAT is an exception as it shows the actual voltage level at the respective pin (LOW/HIGH)  
and thus can not be cleared.  
When changing to a different SBC Mode, certain configurations and status bits will be modified by the SBC:  
The SBC Mode bits are updated to the actual status, e.g. when returning to SBC Normal Mode.  
In SBC Sleep Mode the CANx control bits will be modified in CANx wake capable if they were ON before.  
FO will stay activated if it was triggered before.  
In general, the configurations is only possible in SBC Normal Mode. Diagnosis are also active in SBC Stop  
Mode (e.g. UV, OT). VEXT can be also active in Low power mode (Stop/Sleep).  
Depending on the respective configuration, CANx transceivers will be either OFF, woken or still wake  
capable.  
Datasheet  
86  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.4.2  
SPI Mapping Tables  
7
6...0  
Register Short Name  
banked  
Access  
Control  
Address  
A6…A0  
C O N T R O L R E G I S T E R S  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
0000001  
0000010  
0000011  
0000100  
0000110  
0000111  
0001000  
0001010  
0001011  
0001100  
0001110  
0011110  
M_S_CTRL  
HW_CTRL_0  
WD_CTRL  
BUS_CTRL_0  
WK_CTRL_0  
WK_CTRL_1  
WK_PD_CTRL  
BUS_CTRL_2  
BUS_CTRL_3  
TIMER_CTRL  
HW_CTRL_1  
SYS_STAT_CTRL  
S T A T U S R E G I S T E R S  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
1000000  
1000001  
1000010  
1000011  
1000100  
1000110  
1001000  
1001001  
1001010  
1001011  
1001100  
1011000  
SUP_STAT_1  
SUP_STAT_0  
THERM_STAT  
DEV_STAT  
BUS_STAT_0  
WK_STAT_0  
WK_LVL_STAT  
WK_STAT_2  
BUS_STAT_2  
BUS_STAT_3  
SMPS_STAT  
ADC_STAT  
F A M I LY A N D P R O D U C T R E G I S T E R S  
no read 1111110  
FAM_PROD_STAT  
Figure 44 SPI Register Mapping  
Datasheet  
87  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
15  
14  
13  
12  
Data Bit 15…8  
D4  
11  
10  
9
8
7
Register Short Name  
banked  
Read-Only (1)  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
C O N T R O L R E G I S T E R S  
MODE_1  
reserved  
CHECKSUM  
reserved  
reserved  
reserved  
reserved  
CAN_2_FLASH  
reserved  
reserved  
reserved  
MODE_0  
PWM_TLAG  
WD_STM_EN_0  
reserved  
TIMER_WK_EN VBSENSE_CFG_1 VBSENSE_CFG_0  
reserved  
reserved  
CAN_1_FLASH  
reserved  
reserved  
SOFT_RESET_RSTNBST_VB_UV_OFF  
SYS_STAT_6  
VEXT_ON  
FO_ON  
WD_WIN  
reserved  
reserved  
PWM_BY_WK  
WD_EN_WK_BUS  
reserved  
reserved  
PWM_AUTO  
MAX_3_RST  
reserved  
reserved  
reserved  
reserved  
CAN2_0  
CAN_3_FLASH  
reserved  
BOOST_V_1  
SYS_STAT_3  
VIO_OV_RST  
reserved  
WD_TIMER_2  
reserved  
WD_STM_EN_1  
reserved  
reserved  
reserved  
reserved  
TIMER_PER_2  
BOOST_V_0  
SYS_STAT_2  
VIO_RT_1  
BOOST_EN  
WD_TIMER_1  
CAN0_1  
reserved  
reserved  
WK_PUPD_1  
CAN1_1  
CAN3_1  
TIMER_PER_1  
VEXT_VCFG_1  
SYS_STAT_1  
VIO_RT_0  
CFG2  
WD_TIMER_0  
CAN0_0  
VBSENSE_EN  
WK_EN  
WK_PUPD_0  
CAN1_0  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
M_S_CTRL  
HW_CTRL_0  
WD_CTRL  
BUS_CTRL_0  
WK_CTRL_0  
WK_CTRL_1  
WK_PUPD_CTRL  
BUS_CTRL_2  
BUS_CTRL_3  
TIMER_CTRL_0  
HW_CTRL_1  
SYS_STAT_CTRL  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
CAN2_1  
CAN_0_FLASH  
reserved  
reserved  
CAN3_0  
TIMER_PER_0  
VEXT_VCFG_0  
SYS_STAT_0  
SYS_STAT_7  
SYS_STAT_5  
SYS_STAT_4  
S T A T U S R E G I S T E R S  
BVB_UV_BST  
POR  
reserved  
DEV_STAT_1  
reserved  
PFM_PWM  
TEST  
VBAT_UV_LATCH  
reserved  
reserved  
BST_ACT  
VS_UV  
reserved  
VCC1_OT  
DEV_STAT_0  
reserved  
reserved  
CFG1_STATE  
reserved  
reserved  
reserved  
BOOST_OT  
reserved  
VEXT_OC  
reserved  
reserved  
reserved  
reserved  
TIMER_WU  
PCFG_STATE VBAT_UV_STATE  
reserved  
CAN_2_FAIL_0  
reserved  
VREG_UV  
reserved  
reserved  
WD_FAIL_1  
reserved  
reserved  
VEXT_OT  
VIO_SC  
TSD2  
WD_FAIL_0  
CAN_0_FAIL_1  
reserved  
reserved  
CAN_3_WU  
reserved  
reserved  
BCK_SH  
VIO_OV  
VIO_UV_FS  
TSD1  
SPI_FAIL  
CAN_0_FAIL_0  
reserved  
VIO_WARN  
VIO_UV  
TPW  
FO_ON_STATE  
VCAN_UV  
WK_WU  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read/clear  
read  
read/clear  
read/clear  
read/clear  
read/clear  
SUP_STAT_1  
SUP_STAT_0  
THERM_STAT  
DEV_STAT  
BUS_STAT_0  
WK_STAT_0  
WK_LVL_STAT  
WK_STAT_2  
BUS_STAT_2  
BUS_STAT_3  
SMPS_STAT  
reserved  
CAN_0_WU  
CFG2_STATE  
reserved  
CAN_2_FAIL_1  
reserved  
reserved  
WK  
reserved  
reserved  
reserved  
reserved  
CAN_2_WU  
CAN_1_FAIL_1  
CAN_3_FAIL_1  
BCK_OP  
CAN_1_WU  
CAN_1_FAIL_0  
CAN_3_FAIL_0  
reserved  
reserved  
reserved  
BST_SH  
BST_OP  
reserved  
F A M I LY A N D P R O D U C T R E G I S T E R S  
FAM_1 FAM_0 PROD_3 PROD_2  
FAM_3  
FAM_2  
PROD_1  
PROD_0  
no  
read  
FAM_PROD_STAT  
Figure 45 Detailed SPI Bit Mapping  
Datasheet  
88  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.5  
SPI Control Registers  
Read / Write Operation (see Chapter 13.3):  
The ‘POR / Soft Reset Value’ defines the register content after POR or SBC Software Reset.  
The ‘Restart Value’ defines the register content after SBC Restart; ‘x’ means the bit is unchanged.  
‘y’ in ‘Restart Value’ means the bit can be changed by SBC.  
One 16-bit SPI command consist of two bytes:  
- the 7-bit address and one additional bit for the register access mode and  
- following the data byte  
The numbering of following bit definitions refers to the data byte and correspond to the bits D0...D7 and to  
the SPI bits 8...15.  
There are three different bit types:  
r’ = READ; read only bits (or reserved bits).  
rw’ = READ/WRITE; readable and writable bits.  
rwh’ = READ/WRITE/HARDWARE; as rw with the possibility that the hardware can change the bits.  
Reading a register is done byte wise by setting the SPI bit 7 to “0” (= Read Only).  
Writing to a register is done byte wise by setting the SPI bit 7 to “1”.  
SPI control bits are not cleared or changed automatically. This must be done by the microcontroller via SPI  
programming.  
The registers are addressed wordwise.  
Datasheet  
89  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.5.1  
General Control Registers  
Datasheet  
90  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Mode- and Supply Control  
M_S_CTRL  
Mode- and Supply Control (Address 000 0001B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 00x0 00xxB  
7
6
5
4
3
2
1
0
MODE  
VEXT_ON  
Reserved  
VIO_OV_RST  
VIO_RT  
rwh  
rw  
r
rwh  
rw  
Field  
Bits  
Type Description  
MODE  
7:6  
rwh  
SBC Mode Control  
00B SBC Normal Mode  
01B SBC Sleep Mode  
10B SBC Stop Mode  
11B SBC Reset: Soft Reset is executed (configuration of RSTN triggering  
in bit SOFT_RESET_ RSTN)  
VEXT_ON  
Reserved  
5
rw  
VEXT Mode Control  
0B VEXT OFF  
1B VEXT is enabled  
4:3  
2
r
Reserved, always reads as 0  
VIO_OV_RST  
rwh  
VIO Overvoltage Reset / Fail-Safe enable  
0B VIO_OV is set in case of VIO_OV; no SBC Restart or Fail-Safe is  
entered for VIO_OV  
1B VIO_OV is set in case of VIO_OV; depending on the device  
configuration SBC Restart or SBC Fail-Safe Mode is entered (see  
Chapter 5.1.1);  
VIO_RT  
Notes  
1:0  
rw  
VIO Reset Threshold Control  
00B Vrt1 selected (highest threshold)  
01B Vrt2 selected  
10B Vrt3 selected  
11B Vrt4 selected  
1. It is not possible to change from SBC Stop to Sleep Mode via an SPI Command. See also the State Machine  
Chapter.  
2. After entering SBC Restart Mode, the MODE bits will be automatically set to SBC Normal Mode.  
3. The SPI output will always show the previously written state with a Write Command (what has been  
programmed before).  
Datasheet  
91  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Hardware Control 0  
HW_CTRL_0  
Hardware Control 0 (Address 000 0010B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0x0x xxxxB  
7
6
5
4
3
2
1
0
Reserved  
PWM_TLAG  
FO_ON  
PWM_BY_WK PWM_AUTO  
rwh rw  
Reserved  
BOOST_EN  
CFG2  
r
rw  
rwh  
r
rwh  
rw  
Field  
Bits  
7
Type Description  
Reserved  
r
Reserved, always reads as 0  
PWM Lag time  
PWM_TLAG  
6
rw  
This bit permits to set the time between the PWM to PFM transition.  
0B 100µs  
1B 1ms  
FO_ON  
5
4
3
rwh  
rwh  
rw  
Failure Output activation  
This bit is used to activate the Fail Output by software.  
0B FO not activated by software, FO can be activated by defined failure  
1B FO activated by software.  
PWM_BY_WK  
PWM_AUTO  
PWM of Buck converter enabled by WK pin  
0B Buck converter uses PFM in SBC Stop Mode  
1B Buck converter can be switched between PFM and PWM by the WK  
pin in SBC Stop Mode.  
Automatic transition PFM-PWM in SBC Stop Mode  
This bit is used to activate the automatic transition PFM to PWM.  
0B Buck converter always uses PFM in SBC Stop Mode (default)  
1B Buck converter uses automatic transition PFM to PWM in case large  
current needed in SBC Stop Mode. To come back in PFM, write a SBC  
Stop Mode command to M_S_CTRL.  
Reserved  
2
1
r
Reserved, always reads as 0  
BOOST_EN  
rwh  
Boost converter enable  
0B Boost Off  
1B Boost enabled, automatic switch ON for LOW VS Voltage  
CFG2  
0
rw  
Configuration Select 2  
0B Fail Output (FO) enabled after 2nd watchdog trigger fail  
Config 3/4  
1B Fail Output (FO) enabled after 1st watchdog trigger fail  
Config 1/2  
Notes  
1. The FO_ON bit is cleared by the SBC after SBC Restart Mode. Clearing the bit via SPI or via SBC Restart Mode  
will not disable the FO output, if the failure condition is still present. See also Chapter 11for FO activation and  
deactivation. Setting the FO output via an SPI should be used for testing purposes only.  
2. The selection between Config 1/3 respectively Config 2/4 is done by the pin INTN. The INTN pin defines if the  
SBC enters to SBC Fail-Safe Mode with VCC1 OFF in case of a watchdog failure.  
Datasheet  
92  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Watchdog Control  
WD_CTRL  
Watchdog Control (Address 000 0011B)  
POR / Soft Reset Value: 0001 0100B;  
Restart Value: x0xx x100B  
7
6
5
4
3
2
1
0
WD_STM_EN  
_0  
WD_EN_WK_  
BUS  
CHECKSUM  
WD_WIN  
MAX_3_RST  
WD_TIMER  
rw  
rwh  
rw  
rw  
rw  
rwh  
Field  
CHECKSUM  
Bits  
Type Description  
7
rw  
Watchdog Setting Checksum Bit  
The sum of bits 7:0 needs to have even parity  
0B Counts as 0 for checksum calculation  
1B Counts as 1 for checksum calculation  
WD_STM_EN_0  
WD_WIN  
6
5
4
3
rwh  
rw  
Watchdog Deactivation during SBC Stop Mode, bit 0 (Chapter 12.2.4)  
0B Watchdog is active in Stop Mode  
1B Watchdog is deactivated in Stop Mode  
Watchdog Type Selection  
0B Watchdog works as a Time-Out watchdog  
1B Watchdog works as a Window watchdog  
WD_EN_WK_  
BUS  
rw  
Watchdog Enable after Bus (CANx) Wake in SBC Stop Mode  
0B Watchdog will not start after a CANx wake  
1B Watchdog starts with a long open window after CANx Wake  
MAX_3_RST  
rw  
Limit number of resets due to a Watchdog failure  
0B Always generate a reset in case of WD fail  
1B After 3 consecutive resets due to WD fail, no further reset is  
generated (only valid in config 1/3)  
WD_TIMER  
2:0  
rwh  
Watchdog Timer Period  
000B 10ms  
001B 20ms  
010B 50ms  
011B 100ms  
100B 200ms  
101B 500ms  
110B 1000ms  
111B reserved  
Notes  
1. See Chapter 12.2.3 for calculating the checksum.  
2. See also Chapter 12.2.4 for more information on disabling the watchdog in SBC Stop Mode.  
3. See Chapter 12.2.4 for more information on the effect of the bit WD_EN_WK_BUS.  
Datasheet  
93  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Control 0  
BUS_CTRL_0  
Bus Control 0 (Address 000 0100B)  
POR / Soft Reset Value: 0000 0000B; Restart Value: 0000 00yyB  
7
6
5
4
3
2
1
0
Reserved  
CAN0  
r
rwh  
Field  
Bits  
7:2  
Type Description  
Reserved  
CAN0  
r
Reserved, always reads as 0  
1:0  
rwh  
HS-CAN_0 Module Modes  
00B CAN OFF  
01B CAN is wake capable  
10B CAN Receive Only Mode  
11B CAN Normal Mode  
Notes  
1. See Figure 18 for detailed state changes of the CAN Transceiver for different SBC modes.  
2. Failure Handling Mechanism: When the SBC enters SBC Fail-Safe Mode due to a failure (e.g. TSD2, WD-  
Failure), then the bus and wake registers are modified by the SBC in order to ensure that the device can be  
woken again. Refer to the respective register descriptions.  
Datasheet  
94  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Internal Wake Input Control 0  
WK_CTRL_0  
Internal Wake Input Control 0 (Address 000 0110B)  
POR / Soft Reset Value: 0000 0001B;  
Restart Value: 0xxx 000xB  
7
6
5
4
3
2
1
0
TIMER1_WK_  
EN  
WD_STM_EN  
_1  
Reserved  
VBSENSE_CFG  
Reserved  
Reserved VBSENSE_EN  
rw  
r
rw  
rw  
r
rwh  
r
Field  
Bits  
7
Type Description  
Reserved  
r
Reserved, always reads as 0  
TIMER1_WK_  
EN  
6
rw  
Wake Source Control (for cyclic wake)  
0B Cyclic wake disabled  
1B Cyclic wake enabled as a wake source  
VBSENSE_CFG 5:4  
rw  
Battery Voltage Monitoring Threshold Selection  
00B VBSENSE0 threshold selected (highest threshold)  
01B VBSENSE1 threshold selected  
10B VBSENSE2 threshold selected  
11B VBSENSE3 threshold selected  
Reserved  
3
2
r
Reserved, always reads as 0  
WD_STM_EN_1  
rwh  
Watchdog Deactivation during Stop Mode, bit 1 (Chapter 12.2.4)  
0B Watchdog is active in Stop Mode  
1B Watchdog is deactivated in Stop Mode  
Reserved  
1
0
r
Reserved, always reads as 0  
VBSENSE_EN  
rw  
Enable the fast battery voltage monitoring  
0B Fast Vbatt Monitoring disabled  
1B Fast Vbatt Monitoring enabled  
Note:  
See also Chapter 12.2.4 for more information on disabling the watchdog in SBC Stop Mode.  
Datasheet  
95  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
External Wake Source Control 1  
WK_CTRL_1  
External Wake Source Control 1 (Address 000 0111B)  
POR / Soft Reset Value: 0000 0001B;  
Restart Value: 0000 000xB  
7
6
5
4
3
2
1
0
Reserved  
WK_EN  
r
rwh  
Field  
Bits  
7:1  
0
Type Description  
Reserved  
WK_EN  
r
Reserved, always reads as 0  
rwh  
WK Wake Source Control  
0B WK wake disabled  
1B WK is enabled as a wake source  
Notes  
1. Failure Handling Mechanism: When the device enters SBC Fail-Safe Mode due to a failure (e.g. TSD2, WD-  
Failure), the WK_CTRL_1 is modified to the value ‘0000 0001’ in order to ensure that the device can be woken  
again.  
Datasheet  
96  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Wake Input Level Control  
WK_PUPD_CTRL  
Wake Input Level Control (Address 000 1000B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 00xxB  
7
6
5
4
3
2
1
0
Reserved  
WK_PUPD  
r
rw  
Field  
Bits  
7:2  
Type Description  
Reserved  
WK_PUPD  
r
Reserved, always reads as 0  
1:0  
rw  
WK Pull-Up / Pull-Down Configuration  
00B No pull-up / pull-down selected  
01B Pull-down resistor selected  
10B Pull-up resistor selected  
11B Automatic switching to pull-up or pull-down  
Datasheet  
97  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Control 2  
BUS_CTRL_2  
Bus Control 2 (Address 000 1010B)  
POR / Soft Reset Value: 0000 0000B; Restart Value: xx0y y0yyB  
7
6
5
4
3
2
1
0
CAN_2_Flash CAN_1_Flash Reserved  
CAN2  
Reserved  
CAN1  
rw  
rw  
r
rwh  
r
rwh  
Field  
Bits  
Type Description  
CAN_2_Flash  
CAN_1_Flash  
7
rw  
CAN2 Flash Mode activation  
0B Flash Mode disabled: CAN communication up to 5MBaud  
1B Flash Mode enabled: CAN communication for higher than 5MBaud  
(higher emission on CAN bus - no slew rate control)  
6
rw  
CAN1 Flash Mode activation  
0B Flash Mode disabled: CAN communication up to 5MBaud  
1B Flash Mode enabled: CAN communication for higher than 5MBaud  
(higher emission on CAN bus - no slew rate control)  
Reserved  
CAN2  
5
r
Reserved, always reads as 0  
4:3  
rwh  
HS-CAN_2 Module Modes  
00B CAN OFF  
01B CAN is wake capable  
10B CAN Receive Only Mode  
11B CAN Normal Mode  
Reserved  
CAN1  
2
r
Reserved, always reads as 0  
1:0  
rwh  
HS-CAN_1 Module Modes  
00B CAN OFF  
01B CAN is wake capable  
10B CAN Receive Only Mode  
11B CAN Normal Mode  
Notes  
1. See Figure 18 for detailed state changes of the CAN Transceiver for different SBC modes.  
2. Failure Handling Mechanism: When the device enters SBC Fail-Safe Mode due to a failure (e.g. TSD2, WD-  
Failure), then the bus and wake registers are modified by the SBC in order to ensure that the device can be  
woken again. Refer to the respective register descriptions.  
Datasheet  
98  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Timer_0 Control and Selection  
TIMER_CTRL_0  
Timer_0 Control and Selection (Address 000 1100B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0000B  
7
6
5
4
3
2
1
0
Reserved  
TIMER_0_PER  
r
rwh  
Field  
Reserved  
Bits  
Type Description  
7:3  
r
Reserved, always reads as 0  
TIMER_0_PER 2:0  
rwh  
Cyclic Wake Period Configuration  
000B 10ms  
001B 20ms  
010B 50ms  
011B 100ms  
100B 200ms  
101B 1s  
110B 2s  
111B reserved  
Datasheet  
99  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Hardware Control 1  
HW_CTRL_1  
Hardware Control 1 (Address 000 1110B)  
POR / Soft Reset Value: 0000 00yyB; Restart Value: 0x0x xxxxB  
7
6
5
4
3
2
1
0
SOFT_RESET BST_VB_UV_  
ADC_SEL  
Reserved  
BOOST_V  
VEXT_VCFG  
_RSTN  
OFF  
rw  
rw  
rw  
r
rw  
rwh  
Field  
Bits  
Type Description  
ADC_SEL  
7
rw  
rw  
rw  
8 bit ADC input channel selector  
0B WK pin is selected  
1B VBSENSE pin is selected  
SOFT_RESET_  
RSTN  
6
5
Soft Reset Configuration  
0B RSTN will be triggered (pulled low) during a Soft Reset (default)  
1B No RSTN triggering during a Soft Reset  
BST_VB_UV_  
OFF  
Boost switch-off control on VBSENSE low voltage condition  
0B Boost automatic switch-off disable  
1B Boost automatic switch-off enable  
Reserved  
BOOST_V  
4
r
Reserved, always reads as 0  
3:2  
rw  
BOOST Output voltage configuration  
00B 6.7V output (default)  
01B 8V output  
10B 10V output  
11B 12V output  
VEXT_VCFG  
1:0  
rwh  
VEXT Output voltage configuration  
00B 5.0V output  
01B 3.3V output (default)  
10B 1.8V output  
11B 1.2V output  
Notes  
1. After triggering a SBC Software Reset the bits VEXT_VCFG remain unchanged, as shown by the ‘y’ in the  
POR/Soft Reset Value.  
2. The VEXT_VCFG can not be accessed if the PCFG pin is connected to GND. Always read ‘01’.  
Datasheet  
100  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Control 3  
BUS_CTRL_3  
Bus Control 3 (Address 000 1011B)  
POR / Soft Reset Value: 0000 0000B; Restart Value: 000x x0yyB  
7
6
5
4
3
2
1
0
Reserved  
CAN_0_Flash CAN_3_Flash Reserved  
rw rw  
CAN3  
r
r
rwh  
Field  
Bits  
7:5  
4
Type Description  
Reserved  
r
Reserved, always reads as 0  
CAN0 Flash Mode activation  
CAN_0_Flash  
rw  
0B Flash Mode disabled: CAN communication up to 5MBaud  
1B Flash Mode enabled: CAN communication for higher than 5MBaud  
(higher emission on CAN bus - no slew rate control)  
CAN_3_Flash  
3
rw  
CAN3 Flash Mode activation  
0B Flash Mode disabled: CAN communication up to 5MBaud  
1B Flash Mode enabled: CAN communication for higher than 5MBaud  
(higher emission on CAN bus - no slew rate control)  
Reserved  
CAN3  
2
r
Reserved, always reads as 0  
1:0  
rwh  
HS-CAN_3 Module Modes  
00B CAN OFF  
01B CAN is wake capable  
10B CAN Receive Only Mode  
11B CAN Normal Mode  
Notes  
1. See Figure 18 for detailed state changes of CAN Transceiver for different SBC modes.  
2. Failure Handling Mechanism: When the device enters Fail-Safe Mode due to a failure (e.g. TSD2, WD-Failure),  
then the bus and wake registers are modified by the SBC in order to ensure that the device can be woken  
again. Refer to the respective register descriptions.  
Datasheet  
101  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
System Status Control  
SYS_STATUS_CTRL  
System Status Control (Address 001 1110B)  
POR Value: 0000 0000B;  
Restart Value/Soft Reset Value: xxxx xxxxB  
7
6
5
4
3
2
1
0
SYS_STAT  
rw  
Field  
Bits  
Type Description  
rw System Status Control Byte (bit0=LSB; bit7=MSB)  
SYS_STAT  
7:0  
Dedicated byte for system configuration, access only by  
microcontroller  
Notes  
1. The SYS_STATUS_CTRL register is an exception for the default values, i.e. it will keep its configured value  
even after a Software Reset.  
2. This byte is intended for storing system configurations of the ECU by the microcontroller and is only accessible  
in SBC Normal Mode. The byte is not accessible by the SBC and is also not cleared after SBC Fail-Safe or  
Restart Mode. It allows the microcontroller to quickly store the system configuration without losing the data.  
Datasheet  
102  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.6  
SPI Status Information Registers  
Read/Clear Operation (see Chapter 13.3):  
One 16-bit SPI command consist of two bytes:  
- the 7-bit address and one additional bit for the register access mode and  
- following the data byte will be ignored when accessing a status register  
The numbering of following bit definitions refers to the data byte and correspond to the bits D0...D7 and to  
the SPI bits 8...15.  
There are three different bit types:  
- ‘r’ = READ: read only bits (or reserved bits)  
- ‘rc’ = READ/CLEAR: readable and clearable bits  
- ‘rh’ = READ/HARDWARE: readable and the possibility that the hardware can change the bits  
Reading a register is done byte wise by setting the SPI bit 7 to “0” (= Read Only)  
Clearing a register is done byte wise by setting the SPI bit 7 to “1”  
SPI status registers are in general not cleared or changed automatically (an exception are the WD_FAIL  
bits). This must be done by the microcontroller via SPI command  
The registers are addressed wordwise.  
Datasheet  
103  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.6.1  
General Status Registers  
Supply Voltage Fail Status 1  
SUP_STAT_1  
Supply Voltage Fail Status 1 (Address 100 0000B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xx0x xxxxB  
7
6
5
4
3
2
1
0
VB_UV_BST  
VS_UV  
Reserved  
VEXT_OC  
VREG_UV  
VEXT_OT  
VIO_OV  
VIO_WARN  
rc  
rc  
r
rc  
rc  
rc  
rc  
rc  
Field  
Bits  
Type Description  
VB_UV_BST  
7
rc  
VBSENSE low voltage detection  
0B No VBSENSE low voltage detected  
1B VBSENSE low voltage detected  
VS_UV  
6
rc  
VS Undervoltage Detection (VS,UV  
0B No VS undervoltage detected  
1B VS undervoltage detected  
)
Reserved  
VEXT_OC  
5
4
r
Reserved, always reads as 0  
rc  
VEXT Overcurrent Detection  
0B No OC  
1B OC detected  
VREG_UV  
VEXT_OT  
VIO_OV  
3
2
1
0
rc  
rc  
rc  
rc  
The status is related to VEXT  
0B No VEXT UV detection  
1B VEXT UV Fail detected  
VEXT Overtemperature Detection  
0B No overtemperature  
1B VEXT overtemperature detected  
VIO Overvoltage Detection (VIO,OV,r  
0B No VIO overvoltage warning  
1B VIO overvoltage detected  
)
VIO_WARN  
VIO Undervoltage Prewarning (VPW,f)  
0B No VIO undervoltage prewarning  
1B VIO undervoltage prewarning detected  
Notes  
1. The VIO undervoltage prewarning threshold VPW,f is a fixed threshold and independent of the VIO  
undervoltage reset thresholds.  
2. VIO_WARN bit setting: It is never updated in SBC Restart Mode. In SBC Init Mode it is only updated after RSTN  
was released for the first time. It is always updated in SBC Normal and Stop Mode. It is never updated in SBC  
Sleep Mode and it is always updated in any SBC modes in a VIO_SC condition (after VIO_UV = 1 longer than  
t
VIO,SC).  
Datasheet  
104  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Supply Voltage Fail Status 0  
SUP_STAT_0  
Supply Voltage Fail Status 0 (Address 100 0001B)  
POR / Soft Reset Value: y000 0000B;  
Restart Value: x000 0xxxB  
7
6
5
4
3
2
1
0
POR  
Reserved  
VIO_SC  
VIO_UV_FS  
VIO_UV  
rc  
r
rc  
rc  
rc  
Field  
Bits  
Type Description  
POR  
7
rc  
Power-On Reset Detection  
0B No POR  
1B POR occurred  
Reserved  
VIO_SC  
6:3  
2
r
Reserved, always reads as 0  
rc  
VIO Short to GND Detection  
0B No short  
1B VIO short to GND detected  
VIO_UV_FS  
VIO_UV  
1
0
rc  
rc  
VIO UV-Detection (due to VRTx reset)  
0B No Fail-Safe Mode entry due to 4th consecutive VIO_UV  
1B Fail-Safe Mode entry due to 4th consecutive VIO_UV  
VIO UV-Detection (due to VRTx reset)  
0B No VIO_UV detection  
1B VIO UV-Fail detected  
Notes  
1. The MSB of the POR/Soft Reset value is marked as ‘y’: the default value of the POR bit is set after Power-on  
reset (POR value = 1000 0000). However it will be cleared after a SBC Software Reset command (Soft Reset  
value = 0000 0000).  
2. During SBC Sleep Mode, the bits VIO_SC, VIO_OV and VIO_UV will not be set because the regulator suppling  
VIO is off.  
3. The VIO_UV bit is never updated in SBC Restart Mode. In SBC Init Mode, it is only updated after RSTN was  
released for the first time. It is always updated in SBC Normal and Stop Mode, and it is always updated in any  
SBC modes in a VIO_SC condition (after VIO_UV = 1 longer than tVIO,SC).  
Datasheet  
105  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Thermal Protection Status  
THERM_STAT  
Thermal Protection Status (Address 100 0010B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0xx0 0xxxB  
7
6
5
4
3
2
1
0
Reserved  
VCC1_OT  
BOOST_OT  
Reserved  
TSD2  
TSD1  
TPW  
r
rc  
rc  
r
rc  
rc  
rc  
Field  
Bits  
7
Type Description  
Reserved  
VCC1_OT  
r
Reserved, always reads as 0  
6
rc  
VCC1 Overtemperature detection  
0B No VCC1 overtemperature  
1B VCC1 overtemperature detected  
BOOST_OT  
5
rc  
Boost Overtemperature detection  
0B No Boost overtemperature  
1B Boost overtemperature detected  
Reserved  
TSD2  
4:3  
2
r
Reserved, always reads as 0  
rc  
TSD2 Thermal Shut-Down Detection  
0B No TSD2 event  
1B TSD2 OT detected - leading to SBC Fail-Safe Mode  
TSD1  
TPW  
1
0
rc  
rc  
TSD1 Thermal Shut-Down Detection  
0B No TSD1 fail  
1B TSD1 OT detected  
Thermal Pre Warning  
0B No Thermal Pre warning  
1B Thermal Pre warning detected  
Note:  
TPW, TSD1 and TSD2 are not reset automatically, even if the overtemperature pre warning or TSD1/2  
conditions are not longer present.  
Datasheet  
106  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Device Information Status  
DEV_STAT  
Device Information Status (Address 100 0011B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xx00 xxxxB  
7
6
5
4
3
2
1
0
FO_ON_STAT  
E
DEV_STAT  
Reserved  
WD_FAIL  
SPI_FAIL  
rc  
r
rh  
rc  
rc  
Field  
Bits  
Type Description  
DEV_STAT  
7:6  
rc  
Device Status before Restart Mode  
00B Cleared (Register must be actively cleared)  
01B Restart due to failure described in Table 8 and Table 9.  
10B Sleep Mode  
11B Reserved  
Reserved  
WD_FAIL  
5:4  
3:2  
r
Reserved, always reads as 0  
rh  
Number of WD-Failure Events (1/2 WD failures depending on INTN)  
00B No WD Fail  
01B 1x WD Fail, FOx activation- Config 1/2  
10B 2x WD Fail, FOx activation- Config 3/4  
11B Reserved (never reached)  
SPI_FAIL  
1
0
rc  
rc  
SPI Fail Information  
0B No SPI fail  
1B Invalid SPI command detected  
FO_ON_STATE  
Activation of Fail Output FO  
0B No Failure  
1B Failure occurred, FO is activated  
Notes  
1. The WD_FAIL bits are configured as a counter and are the only status bits, which are cleared automatically  
by the SBC. They are cleared after a successful watchdog trigger and when the watchdog is stopped (also in  
SBC Sleep and Fail-Safe Mode unless it was reached due to a watchdog failure). See also Chapter 11.1.  
2. The SPI_FAIL bit is cleared only by SPI command.  
3. With Config 2/4, the WD_Fail counter is frozen in case of WD trigger failure until a successful WD trigger occurs.  
Datasheet  
107  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Communication Status 0  
BUS_STAT_0  
Bus Communication Status 0 (Address 100 0100B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 0xxxB  
7
6
5
4
3
2
1
0
Reserved  
CAN_0_FAIL  
VCAN_UV  
r
rc  
rc  
Field  
Bits  
7:3  
Type Description  
Reserved  
r
Reserved, always reads as 0  
CAN_0_FAIL  
2:1  
rc  
CAN_0 Failure Status  
00B No error  
01B CAN TSD shutdown  
10B CAN_TXD_DOM: TXD dominant time out for more than 2ms  
11B CAN_BUS_DOM: BUS dominant time out for more than 2ms  
VCAN_UV  
Notes  
0
rc  
Undervoltage CAN Bus Supply  
0B Normal operation  
1B CAN Supply undervoltage detected. Transmitter disabled  
1. CAN0 Recovery Conditions:  
1.) TXD Time Out: TXDCAN0 goes HIGH or transmitter is switched off or the transceiver is wake capable.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply undervoltage: as soon as the threshold is crossed again, i.e. VCAN > VCAN_UV.  
4.) In all cases (also for TSD shutdown): to enable the Bus transmission again, TXDCAN0 needs to be HIGH for  
a certain time (transmitter enable time).  
2. The VCAN_UV comparator is enabled if the mode bit CANx_1 = ‘1’, i.e. in CAN Normal or CAN Receive Only  
Mode.  
Datasheet  
108  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Wake-up Source and Information Status 0  
WK_STAT_0  
Wake-up Source and Information Status 0 (Address 100 0110B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: x0xx 000xB  
7
6
5
4
3
2
1
0
PFM_PWM  
Reserved  
CAN_0_WU TIMER_0_WU  
rc rc  
Reserved  
WK_WU  
rc  
r
r
rc  
Field  
Bits  
Type Description  
PFM_PWM  
7
rc  
PFM_PWM automatic transition detected  
0B No automatic PFM_PWM transition detected  
1B Automatic PFM_PWM transition detected  
Reserved  
6
5
r
Reserved, always reads as 0  
CAN_0_WU  
rc  
Wake up via CAN_0 Bus  
0B No Wake up  
1B Wake up  
TIMER_0_WU  
4
rc  
Wake up via cyclic wake  
0B No Wake up  
1B Wake up  
Reserved  
WK_WU  
3:1  
0
r
Reserved, always reads as 0  
rc  
Wake up via WK  
0B No Wake up  
1B Wake up  
Note:  
The respective wake source bit will also be set when the device is woken from SBC Fail-Safe Mode.  
Datasheet  
109  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
WK Input Level  
WK_LVL_STAT  
WK Input Level (Address 100 1000B)  
POR / Soft Reset Value: xx0x 000xB;  
Restart Value: xxxx x00xB  
7
6
5
4
3
2
1
0
VBAT_UV_ST  
ATE  
TEST  
CFG1_STATE CFG2_STATE PCFG_STATE  
Reserved  
WK  
r
r
r
r
r
r
r
Field  
Bits  
Type Description  
TEST  
7
r
r
r
Status of SBC Development Mode  
0B LOW Level (=0), Normal User Operation, SBC Development Mode is  
disabled  
1B HIGH Level (=1), SBC Development Mode is enabled, no reset  
triggered due to wrong Watchdog trigger  
CFG1_STATE  
CFG2_STATE  
6
5
Status of INTN Pin  
This bit shows the level of the INTN pin regarding the device configuration  
0B LOW Level; Fail-Safe Mode entered due to WD failure (1 or 2 failure)  
depending on CFG2 bit) Config 2/4  
1B HIGH Level; Fail-Safe Mode not entered, due to WD failure, Config 1/3  
Status of CFG2 bit on HW_CTRL_0 register  
This bit shows the setting in bit CFG2  
0B LOW Level (=0), Fail Outputs (FOx) are active after 2nd watchdog  
trigger fail Config 3/4  
1B HIGH Level (=1); Fail Outputs (FOx) are active after 1st watchdog  
trigger fail Config 1/2  
PCFG_STATE  
4
3
r
r
Status of PCFG Pin  
0B LOW Level; (connected to GND)  
1B HIGH Level; (left OPEN)  
VBAT_UV_  
STATE  
VBSENSE Undervoltage Detection Status  
0B No VBSENSE undervoltage detected  
1B VBSENSE undervoltage detected  
Reserved  
WK  
2:1  
0
r
r
Reserved, always reads as 0  
Status of WK  
0B LOW Level (=0)  
1B HIGH Level (=1)  
Datasheet  
110  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Wake-up Source and Information Status 2  
WK_STAT_2  
Wake-up Source and Information Status 2 (Address 100 1001B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: x000 0xxxB  
7
6
5
4
3
2
1
0
VBAT_UV_LA  
TCH  
Reserved  
CAN_3_WU CAN_2_WU CAN_1_WU  
rc rc rc  
rc  
r
Field  
Bits  
Type Description  
VBAT_UV_  
LATCH  
7
rc  
VBSENSE Undervoltage Detection  
0B No VBSENSE undervoltage detected  
1B VBSENSE undervoltage detected (latched status)  
Reserved  
6:3  
2
r
Reserved, always reads as 0  
CAN_3_WU  
rc  
Wake up via CAN_3 Bus  
0B No wake up  
1B Wake up  
CAN_2_WU  
CAN_1_WU  
1
0
rc  
rc  
Wake up via CAN_2 Bus  
0B No wake up  
1B Wake up  
Wake up via CAN_1 Bus  
0B No wake up  
1B Wake up  
Note:  
The respective wake source bit will also be set when the device is woken from SBC Fail-Safe Mode.  
Datasheet  
111  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Communication Status 2  
BUS_STAT_2  
Bus Communication Status 2 (Address 100 1010B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 00xx 00xxB  
7
6
5
4
3
2
1
0
Reserved  
CAN_2_FAIL  
Reserved  
CAN_1_FAIL  
r
rc  
r
rc  
Field  
Bits  
7:6  
Type Description  
Reserved  
r
Reserved, always reads as 0  
CAN_2_FAIL  
5:4  
rc  
CAN_2 Failure Status  
00B No error  
01B CAN TSD shutdown  
10B CAN_TXD_DOM: TXD dominant time out for more than 2ms  
11B CAN_BUS_DOM: BUS dominant time out for more than 2ms  
Reserved  
3:2  
1:0  
r
Reserved, always reads as 0  
CAN_1_FAIL  
rc  
CAN_1 Failure Status  
00B No error  
01B CAN TSD shutdown  
10B CAN_TXD_DOM: TXD dominant time out for more than 2ms  
11B CAN_BUS_DOM: BUS dominant time out for more than 2ms  
Notes  
1. CAN Recovery Conditions:  
1.) TXD Time Out: TXDCANx goes HIGH or transmitter is switched off or the transceiver is wake capable.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply undervoltage: as soon as the threshold is crossed again, i.e. VCAN > VCAN_UV.  
4.) In all cases (also for TSD shutdown): to enable the Bus transmission again, TXDCANx needs to be HIGH for  
a certain time (transmitter enable time).  
Datasheet  
112  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Bus Communication Status 3  
BUS_STAT_3  
Bus Communication Status 3 (Address 100 1011B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: 0000 00xxB  
7
6
5
4
3
2
1
0
Reserved  
CAN_3_FAIL  
r
rc  
Field  
Bits  
7:2  
Type Description  
Reserved  
r
Reserved, always reads as 0  
CAN_3_FAIL  
1:0  
rc  
CAN_3 Failure Status  
00B No error  
01B CAN TSD shutdown  
10B CAN_TXD_DOM: TXD dominant time out for more than 2ms  
11B CAN_BUS_DOM: BUS dominant time out for more than 2ms  
Notes  
1. CAN Recovery Conditions:  
1.) TXD Time Out: TXDCAN3 goes HIGH or transmitter is switched off or the transceiver is wake capable.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply undervoltage: as soon as the threshold is crossed again, i.e. VCAN > VCAN_UV.  
4.) In all cases (also for TSD shutdown): to enable the Bus transmission again, TXDCAN3 needs to be HIGH for  
a certain time (transmitter enable time).  
Datasheet  
113  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
SMPS state  
SMPS_STAT  
SMPS state (Address 100 1100B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xxx0 0xx0B  
7
6
5
4
3
2
1
0
BST_ACT  
BST_SH  
BST_OP  
Reserved  
BCK_SH  
BCK_OP  
Reserved  
rc  
rc  
rc  
r
rc  
rc  
r
Field  
Bits  
Type Description  
BST_ACT  
BST_SH  
BST_OP  
7
rc  
rc  
rc  
Boost Regulator Active  
0B Boost not active  
1B Boost active  
6
5
BSTD short detection  
0B No short detected on BSTD pin  
1B BSTD short to supply  
BSTD open detection  
0B No open detected on BSTD pin  
1B BSTD loss of diode detected or loss of Boost GND  
Reserved  
BCK_SH  
4:3  
2
r
Reserved, always reads as 0  
rc  
BCKSW pin short detection  
0B No BCKSW short detected  
1B Short to GND or short to VS detected on BCKSW pin  
BCK_OP  
1
0
rc  
r
BCKSW pin open detection  
0B No BCKSW open detected  
1B BCKSW loss of freewheeling or BCKSW loss of GND  
Reserved  
Reserved, always reads as 0  
Datasheet  
114  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
ADC state  
ADC_STAT  
ADC state (Address 101 1000B)  
POR / Soft Reset Value: 0000 0000B;  
Restart Value: xxxx xxxxB  
7
6
5
4
3
2
1
0
ADC  
rc  
Field  
ADC  
Bits  
Type Description  
rc ADC output  
7:0  
Datasheet  
115  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.6.2  
Family and Product Information Register  
Family and Product Identification Register  
FAM_PROD_STAT  
Family and Product Identification Register (Address 111 1110B)  
POR / Soft Reset Value: 0100 yyyy B; Restart Value: 0100 yyyyB  
7
6
5
4
3
2
1
0
FAM  
PROD  
r
r
Field  
FAM  
Bits  
Type Description  
7:4  
r
SBC Family Identifier (bit4=LSB; bit7=MSB)  
0 0 01BDriver SBC Family  
0 0 10BDC/DC-SBC Family  
0 0 11BMid-Range SBC Family  
0 1 00BMulti-CAN Power+ SBC Family  
0 1 01BLITE SBC Family  
0 1 00BMid-Range+ SBC Family  
PROD  
Notes  
3:0  
r
SBC Product Identifier (bit0=LSB; bit3=MSB)  
0 0 0 0BTLE9278-3BQX  
0 0 0 1BTLE9278-3BQX V33  
0 0 1 0BTLE9278BQX  
0 0 1 1BTLE9278BQX V33  
1. The actual default register value after POR, Soft Reset or Restart of PROD depends on the respective product.  
Therefore the value ‘y’ is specified.  
Datasheet  
116  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
13.7  
Electrical Characteristics  
Table 25 Electrical Characteristics: Power Stage  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI frequency  
1)  
Maximum SPI frequency  
fSPI,max  
4.0  
MHz  
P_13.7.1  
SPI Interface; Logic Inputs SDI, CLK and CSN  
H-input Voltage Threshold VIH  
L-input Voltage Threshold VIL  
Hysteresis of input Voltage VIHY  
0.7 ×  
VIO  
V
P_13.7.2  
P_13.7.3  
P_13.7.4  
P_13.7.5  
P_13.7.6  
P_13.7.7  
0.3 ×  
VIO  
V
1)  
0.2 ×  
VIO  
V
Pull-up Resistance at pin  
CSN  
RICSN  
20  
20  
40  
40  
10  
80  
80  
kΩ  
kΩ  
pF  
VCSN = 0.7 × VIO  
Pull-down Resistance at pin RICLK/SDI  
SDI and CLK  
VSDI/CLK = 0.2 × VIO  
1)  
Input Capacitance at pin  
CSN, SDI or CLK  
CI  
Logic Output SDO  
H-output Voltage Level  
L-output Voltage Level  
Tri-state Leakage Current  
VSDOH  
VSDOL  
ISDOLK  
VIO - 0.4 VIO - 0.2 –  
V
IDOH = -1.6 mA  
IDOL = 1.6 mA  
P_13.7.8  
P_13.7.9  
P_13.7.10  
0.2  
0.4  
10  
V
-10  
µA  
VCSN = VIO;  
0 V < VDO < VIO  
1)  
‘Tri-state Input Capacitance CSDO  
10  
15  
pF  
P_13.7.11  
Data Input Timing1)  
Clock Period  
tpCLK  
tCLKH  
tCLKL  
250  
125  
125  
125  
250  
250  
125  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P_13.7.12  
P_13.7.13  
P_13.7.14  
P_13.7.15  
P_13.7.16  
P_13.7.17  
P_13.7.18  
P_13.7.19  
P_13.7.20  
P_13.7.21  
Clock HIGH Time  
Clock LOW Time  
Clock LOW before CSN LOW tbef  
CSN Setup Time  
CLK Setup Time  
tlead  
tlag  
Clock LOW after CSN HIGH tbeh  
SDI Setup Time  
SDI Hold Time  
tDISU  
tDIHO  
Input Signal Rise Time at pin trIN  
50  
SDI, CLK and CSN  
Input Signal Fall Time at pin tfIN  
50  
ns  
P_13.7.22  
SDI, CLK and CSN  
Datasheet  
117  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Serial Peripheral Interface  
Table 25 Electrical Characteristics: Power Stage  
VS = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Delay Time for Mode  
Changes2)  
tDel,Mode  
tCSN(high)  
5
µs  
P_13.7.23  
P_13.7.24  
CSN HIGH Time  
Data Output Timing1)  
SDO Rise Time  
3
µs  
trSDO  
30  
30  
80  
80  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF  
P_13.7.25  
P_13.7.26  
P_13.7.27  
P_13.7.28  
P_13.7.29  
SDO Fall Time  
tfSDO  
CL = 100 pF  
SDO Enable Time  
SDO Disable Time  
SDO Valid Time  
tENSDO  
tDISSDO  
tVASDO  
LOW impedance  
HIGH impedance  
CL = 100 pF  
1) Not subject to production test; specified by design.  
2) Applies to all mode changes triggered via SPI commands.  
24  
CSN  
15  
16  
17  
18  
13  
14  
CLK  
SDI  
19  
20  
LSB  
MSB  
not defined  
27  
28  
29  
SDO  
Flag  
LSB  
MSB  
Figure 46 SPI Timing Diagram  
Note:  
Numbers in drawing correlate with the last 2 digits of the Number field in the Electrical  
Characteristics table.  
Datasheet  
118  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Application Information  
14  
Application Information  
14.1  
Application Diagram  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Vext  
T2  
RSHUNT  
C6  
IC1  
TDR  
TXD  
TDR  
TXD  
VCC  
VSUP/VS  
C8  
PHY  
C7  
RXD  
RXD  
R2  
GND  
VCC1  
VCC1  
VS  
Vsup  
D1  
C1  
L1  
D2  
L2  
VS  
VS  
VBAT  
BCKSW  
VCC1  
C4  
C5  
C2  
C3  
C1fil  
BSTD  
BSTD  
R1  
VDD  
CLK  
CSN  
SDI  
CLK  
CSN  
SDI  
GND  
GND  
SDO  
SDO  
NRO  
RSTN  
INTN  
PCFG  
NINT µC  
VS  
T1  
TLE9278x  
TXDCAN0  
RXDCAN0  
TXDCAN1  
RXDCAN1  
TXDCAN2  
RXDCAN2  
TXDCAN3  
RXDCAN3  
TXDCAN0  
RXDCAN0  
TXDCAN1  
RXDCAN1  
TXDCAN2  
RXDCAN2  
TXDCAN3  
RXDCAN3  
FO  
C9  
VS  
FO  
WK  
S3  
R4  
VSS  
R3  
VCC1  
CVCAN  
VCAN  
CANH2  
CANH0  
CANH0  
CANH2  
RCANH  
RCANH  
CCAN  
CCAN  
RCANL  
RCANL  
CANL0  
CANH1  
CANL2  
CANH3  
CANL0  
CANH1  
CANL2  
CANH3  
RCANH  
RCANH  
CCAN  
CCAN  
RCANL  
RCANL  
CANL3  
CANL1  
CANL3  
CANL1  
GND  
Figure 47 TLE9278BQX V33 Application Diagram  
Datasheet  
119  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Application Information  
Table 26 Bill of Material  
Ref.  
Typical Value  
Purpose / Comment  
Capacitances  
C1  
47 µF ± 20%  
Electrolytic  
Buffering capacitor to cut off battery spikes, depending on the  
application. The voltage rating depends on the application.  
C1fil  
C2  
100 nF ± 20%, 50 V  
ceramic  
Input filter battery capacitor for optimum EMC behavior.  
Output Boost capacitor. ESR 1Ω over the temperature range.  
Input Buck capacitor. Low ESR.  
100 µF ± 20%, 50 V,  
Electrolytic  
C3  
1..10 µF ± 20%, 50 V  
Ceramic  
C4, C5  
C6  
22 µF ± 20%, 16V  
Ceramic  
Output Buck capacitor, for optimum current capability and  
dynamic behavior. Low ESR.  
1)  
10 µF ± 20%, 16 V  
ceramic  
V
Output capacitor. Low ESR.  
EXT  
C7  
470 pF ± 20%, 16 V  
ceramic  
VEXT Filter capacitor (only needed if used for off-board supply).  
VBSENSE blocking capacitor. Low ESR.  
C8  
22 nF ± 20%, 16 V  
ceramic  
C9  
22 nF ± 20%, 16 V  
ceramic  
Spikes filtering, as required by application. Mandatory  
protection for off-board connection.  
CVCAN  
1 µF ± 20%, 16 V  
ceramic  
Input filter CAN supply. The capacitor must be placed close to  
the VCAN pin. For optimum EMC and CAN FD performances, the  
capacitor has to be 4.7 µF  
CCANx  
47 nF / OEM dependent  
Split termination stability.  
Resistances  
RSHUNT  
1 ± 1%  
Sense shunt for VEXT current limitation (configured to typ.  
235 mA with 1 shunt).  
R1  
10 k..22 k± 5%  
Selection of hardware configuration 1/3, i.e. in case of WD failure  
SBC Restart Mode is entered.  
If not connected, then the hardware configuration 2/4 is  
selected.  
R2  
10 k± 5% 2)  
Limit the VBSENSE pin input current.  
Wetting current of the switch, as required by application.  
Limit the WK pin input current, e.g. for ISO pulses.  
CAN bus termination.  
R3  
10 k± 5%  
R4  
10 k± 5%  
RCANHx  
RCANL  
Inductors  
L1  
60 / OEM dependent  
60 / OEM dependent  
CAN bus termination.  
22 µH..47 µH ± 20%  
47 µH ± 20%  
3) Boost regulator coil. The saturation current depends on the  
application.  
3) Buck regulator coil. The saturation current depends on the  
application.  
L2  
Active Components  
Datasheet  
120  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Application Information  
Table 26 Bill of Material (cont’d)  
Ref.  
Typical Value  
Purpose / Comment  
D1  
e.g.SS34HE3/9AT (Vishay) Reverse polarity protection.  
or similar  
D2  
T2  
e.g. SL04-GS08 (Vishay) or Boost regulator power diode. Forward current depends on the  
SS34HE3/9AT  
application.  
BCP 52-16, Infineon  
Power element of VEXT, current limit to be configured via shunt  
RSHUNT  
.
MJD253, ON Semi  
e.g. XC2xxx  
Alternative power element of VEXT.  
µC  
Microcontroller.  
1) For optimized EMC performance, one additional filter capacitor 10 nF ± 20% 16 V ceramic is required.  
2) For ISO7637-2 pulse robustness, a higher value might be needed.  
3) The saturation current must be define according to the maximum current capability by the application.  
5V_int  
Ttest  
SBC Init  
Mode  
RTEST  
Connector/  
FO/TEST Jumper  
REXT  
TFO  
Failure Logic  
Figure 48 Hint for Increasing the Robustness of pin FO/TEST during Debugging or Programming  
Datasheet  
121  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Application Information  
14.2  
ESD Tests  
Tests for ESD robustness according to IEC61000-4-2 “GUN test” (150 pF, 330 ) have been performed.  
The results and test condition are available in a test report. The values for the tests are listed below.  
Table 27 ESD “GUN Test”1)2)  
Performed Test  
Result  
Unit  
Remarks  
ESD at pin VS, VBSENSE,  
VEXTIN, VEXTREF, WK,  
CANHx, CANLx versus GND  
> 6  
kV  
positive pulse  
ESD at pin VS, VBSENSE,  
VEXTIN, VEXTREF, WK,  
CANHx, CANLx versus GND  
< -6  
kV  
negative pulse  
1) ESD susceptibility “ESD GUN” according to EMC 1.3 Test Specification, Section 4.3 (IEC 61000-4-2). Tested by external  
test house (IBEE Zwickau, EMC Test report No. 09-12-18).  
2) ESD Test “GUN Test” is specified with external components for pins VS, VBSENSE, VEXTIN, VEXTREF and WK. See the  
application diagrams in Chapter 14.1 for more information.  
EMC and ESD susceptibility tests according to SAE J2962-2 (V. 2014-01-23) have been performed. Tested by  
external test house (Jakob Mooser GmbH, Test report No. 434/2016).  
Datasheet  
122  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Application Information  
14.3  
Thermal Behavior of Package  
The figure below shows the thermal resistance (Rth_JA) of the device vs. the cooling area on the bottom of the  
PCB for Ta = 85°C. Every line reflects a different PCB and thermal via design.  
70  
Tamb=85°C  
60  
50  
40  
30  
20  
10  
0
100  
200  
300  
400  
500  
600  
Bottom Cooling area (mm2)  
2s2p - 16 vias(standard)  
2s0p - 25vias (standard)  
2s2p - 25vias (standard)  
2s2p - 16vias (35µm)  
2s0p - 16vias (standard)  
2s2p - 25vias (35µm)  
Figure 49 Thermal Resistance (Rth_JA) vs. Cooling Area  
Cross Section (JEDEC 2s2p) with Cooling Area  
Cross Section (JEDEC 2s0p) with Cooling Area  
70µm modelled (traces)  
35µm, 90% metalization*  
35µm, 90% metalization*  
70µm / 5% metalization + cooling area  
*: means percentual Cu metalization on each layer  
PCB (top view)  
PCB (bottom view)  
standard solder pads  
Figure 50 Board Setup  
The Board setup is defined according to JESD 51-2,-5,-7.  
Board: 76.2 × 114.3 × 1.5 mm3 with 2 inner copper layers (35 µm thick), with thermal via array under the  
exposed pad contacting the first inner copper layer and the cooling area on the bottom layer (70 µm).  
Datasheet  
123  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Package Outlines  
15  
Package Outlines  
0.9 MAX.  
(0.65)  
11 x 0.5 = 5.5  
0.5  
±0.1  
7
A
±0.03  
0.1  
6.8  
+0.03 1)  
2)  
37  
B
36  
25  
24  
48x  
0.08  
48  
13  
1
12  
Index Marking  
48x  
0.1  
0.4 x 45°  
±0.05  
Index Marking  
0.23  
M
A B C  
(0.2)  
0.05 MAX.  
(5.2)  
(6)  
C
1) Vertical burr 0.03 max., all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 51 PG-VQFN-481)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
124  
Rev. 1.5  
2019-09-27  
TLE9278BQX V33  
Multi-CAN Power+ System Basis Chip  
Revision History  
16  
Revision History  
Revision Date  
Changes  
1.5 2019-09-27 Datasheet updated:  
General  
corrected typo “ISO 11989-1” to “11898-1”  
changed “SBC Software Development Mode” to “SBC Development Mode”  
Updated description of the leave procedure in SBC Development Mode (FO/TEST  
pin condition)  
Figure 7 and Figure 10: added dot between VS and Boost Converter  
Updated Table 16  
added P_8.3.47 and P_8.3.48 (no product change)  
tightened P_8.3.18  
tightened P_8.3.8 and P_8.3.9 by additional footnote  
Corrected Bit 6 Address (Status Information Field) in Table 24  
Added footnote for R2 in Table 26 (Bill of Material)  
Added Figure 48  
1.4  
2019-01-23 Initial Release.  
Datasheet  
125  
Rev. 1.5  
2019-09-27  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-09-27  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2020 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  
Document reference  
Z8F68544718  

相关型号:

INFINEON
INFINEON
INFINEON
INFINEON
INFINEON
INFINEON

TLE94003EP

TLE94003EP 是受保护的三倍半桥驱动器,专为驱动汽车应用中小型直流电机而设计,如后视镜调节或加热、通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94004EP

TLE94004EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94104EP

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94106ES

TLE94106ES 是受保护的六倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。 半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-24,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94108EL

TLE94108EL 是受保护的八倍半桥驱动器,专为汽车运动控制应用而设计,如加热,通风和空调(HVAC)的活门直流电机控制。它属于一个较大的半桥驱动器系列,可提供三路至十二路输出,设有直接接口或SPI接口。该半桥驱动器旨在以顺序或并行方式驱动直流电机负载。正向 (cw)、反向 (ccw)、制动和高阻抗等工作模式通过16位SPI接口进行控制。该器件提供各种诊断功能,如短路、开路负载、电源故障和过热检测。结合其低静态电流,该器件在汽车应用中具有吸引力。采用小型小脚距散热焊盘封装PG-SSOP-24,具有良好的散热性能,可减少PCB板的占用空间和成本。
INFINEON

TLE94108ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON