TLE94004EP [INFINEON]

TLE94004EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。;
TLE94004EP
型号: TLE94004EP
厂家: Infineon    Infineon
描述:

TLE94004EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过直接接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。

空调 PC 电机 驱动 驱动器
文件: 总35页 (文件大小:1210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE94004EP  
Features  
Four half bridge power outputs  
Very low power consumption in sleep mode  
3.3V / 5V compatible inputs with hysteresis  
All outputs with overload and short circuit protection  
Direct interface for control and diagnosis  
Overtemperature protection  
Over- and Undervoltage lockout  
Cross-current protection  
Potential applications  
HVAC Flap DC motors  
Monostable and bistable relays  
Side mirror x-y adjustment  
Voltage controlled bipolar stepper motors  
Product validation  
Qualified for Automotive Applications. Product Validation according to AEC-Q100  
Description  
The TLE94004EP is a protected quad half-bridge driver designed especially for automotive motion control  
applications such as Heating, Ventilation and Air Conditioning (HVAC) flap DC motor control. It is part of a  
larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI  
interface.  
The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation  
modes forward (cw), reverse (ccw), brake and high impedance are controlled from a direct interface. It offers  
diagnosis features such as short circuit, power supply failure and overtemperature detection. In combination  
with its low quiescent current, this device is attractive among others for automotive applications. The small  
fine pitch exposed pad package, PG-TSDSO-14, provides good thermal performance and reduces PCB-board  
space and costs.  
Type  
Package  
Marking  
TLE94004EP  
PG-TSDSO-14  
TLE94004  
Datasheet  
www.infineon.com  
1
1.0  
2017-12-07  
TLE94004EP  
Table 1  
Product Summary  
Operating Voltage  
Logic Supply Voltage  
VS  
5.5 ... 20 V  
3.0 ... 5.5 V  
40 V  
VDD  
VS(LD)  
Maximum Supply Voltage for Load Dump  
Protection  
Minimum Overcurrent Threshold  
ISD  
0.9 A  
Maximum On-State Path Resistance at Tj = 150°C RDSON(total)_HSx+LSy  
1.8 + 1.8  
0.1 µA  
Typical Quiescent Current at Tj = 85°C  
ISQ  
Datasheet  
2
1.0  
2017-12-07  
TLE94004EP  
Table of Contents  
1
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
Voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
3.4  
4
Characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
5.2  
5.2.1  
5.2.2  
5.3  
5.4  
6
6.1  
6.2  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
Half-Bridge Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Diagnosis Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Short Circuit of Output to Supply or Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Temperature monitoring and shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
VS Undervoltage Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
VS Overvoltage Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
V
DD Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
7.1  
7.2  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Datasheet  
3
1.0  
2017-12-07  
TLE94004EP  
Pin Configuration  
1
Pin Configuration  
1.1  
Pin Assignment  
IN 1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
IN 2  
IN 3  
EF  
EN2  
EN1  
OUT 4  
OUT 2  
GND  
IN 4  
VS  
OUT 3  
OUT 1  
8
Figure 1  
Pin Configuration TLE94004EP with direct interface  
1.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
IN 1  
IN 2  
IN 3  
IN 4  
VS  
Direct input control for power half-bridge 1  
Direct input control for power half-bridge 2  
Direct input control for power half-bridge 3  
Direct input control for power half-bridge 4  
Main supply voltage for power half bridges.  
Power half-bridge 3  
2
3
4
5
6
OUT 3  
OUT 1  
GND  
OUT 2  
OUT 4  
EN1  
EN2  
EF  
7
Power half-bridge 1  
8
Ground  
9
Power half-bridge 2  
10  
11  
12  
13  
14  
EDP  
Power half-bridge 4  
Enable input for Half-bridges 1/2 with internal pull-down  
Enable input for Half-bridges 3/4 with internal pull-down  
Error Flag  
VDD  
-
Logic supply voltage  
Exposed Die Pad; For cooling and EMC purposes only - not usable as electrical  
ground. Electrical ground must be provided by pins 8. 1)  
1) The exposed die pad at the bottom of the package allows better heat dissipation from the device via the PCB. The  
exposed pad (EP) must be either left open or connected to GND. It is recommended to connect EP to GND for best  
EMC and thermal performance.  
Datasheet  
4
1.0  
2017-12-07  
TLE94004EP  
Block Diagram  
2
Block Diagram  
VDD  
VS  
Quad Half Bridge Driver  
Direct Interface  
UNDERVOLTAGE  
&
OVERVOLTAGE  
MONITOR  
CHARGE  
PUMP  
Power stage  
BIAS  
&
MONITOR  
EN1  
EN2  
Power driver  
OUT 1  
OUT 2  
OUT 3  
OUT 4  
short to ground  
IN1  
IN2  
IN3  
IN4  
high-side  
driver  
detection  
LOGIC CONTROL& LATCH  
DIRECT INTERFACE  
overtemperature  
detection  
temp  
sensor  
EF  
low-side  
driver  
short to battery  
tection  
de
ERROR  
DETECTION  
overtemperature  
detection  
GND  
Figure 2  
Block Diagram TLE94004EP (Direct Interface)  
Datasheet  
5
1.0  
2017-12-07  
TLE94004EP  
Block Diagram  
2.1  
Voltage and current definition  
Figure 3 shows terms used in this datasheet, with associated convention for positive values.  
VS  
IS  
VS  
IDD  
IEF  
IIN1, IN2, IN3, IN4  
VDD  
VDD  
VEF  
VINx  
EF  
IN1, IN2, IN3, IN4  
Direct  
Interface  
Driver  
IOUTx VDSHSx  
VDSLSx  
OUT x  
IEN1 ,IEN2  
EN1, EN2  
VENx  
GND  
IGND  
Figure 3  
Voltage and Current Definition  
Datasheet  
6
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
3
General Product Characteristics  
3.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)Tj = -40°C to +150°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Voltages  
Supply voltage  
VS  
-0.3  
40  
10  
V
P_4.1.1  
Supply Voltage Slew Rate  
| dVS/dt |  
V/µs VS increasing and P_4.2.2  
decreasing 1)  
Power half-bridge output voltage  
Logic supply voltage  
VOUT  
VDD  
-0.3  
-0.3  
40  
V
V
V
0 V < VOUT < VS  
0 V < VS < 40 V  
P_4.1.2  
P_4.1.3  
P_4.1.16  
5.5  
VDD  
Logic input voltages  
(EN1, EN2, IN1, IN2, IN3, IN4)  
V
ENn, VINn -0.3  
0 V < VS < 40 V  
0 V < VDD < 5.5V  
Logic output voltage  
(EF)  
VEF  
-0.3  
VDD  
V
0 V < VS < 40 V  
0 V < VDD < 5.5V  
P_4.1.17  
Currents  
Continuous Supply Current for VS  
Current per GND pin  
Output Currents  
IS  
0
2.0  
2.0  
2.0  
A
A
A
P_4.1.20  
P_4.1.14  
P_4.1.15  
IGND  
IOUT  
0
-2.0  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
Tj  
-40  
-50  
150  
150  
°C  
°C  
P_4.1.8  
P_4.1.9  
Tstg  
ESD susceptibility OUTn and VS pins VESD  
versus GND. All other pins  
grounded.  
-4  
4
kV  
JEDEC HBM1)2)  
P_4.1.10  
ESD susceptibility all pins  
ESD susceptibility all pins  
ESD susceptibility corner pins  
VESD  
VESD  
VESD  
-2  
2
kV  
V
JEDEC HBM1)2)  
CDM1)3)  
CDM1)3)  
P_4.1.11  
P_4.1.12  
P_4.1.13  
-500  
500  
750  
-750  
V
1) Not subject to production test, specified by design  
2) ESD susceptibility, “JEDEC HBM” according to ANSI/ ESDA/ JEDEC JS001 (1.5 k, 100pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Datasheet  
7
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
3.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Supply voltage range for  
normal operation  
VS(nor)  
VDD  
5.5  
20  
V
P_4.2.1  
P_4.2.3  
P_4.2.6  
P_4.2.5  
Logic supply voltage range for  
normal operation  
3.0  
5.5  
5.5  
150  
V
Logic input voltages  
(EN1, EN2, IN1, IN2, IN3, IN4)  
VINn, VENn -0.3  
Tj -40  
V
Junction temperature  
°C  
Note:  
Within the normal functional range the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the related electrical  
characteristics table.  
Datasheet  
8
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
3.3  
Thermal Resistance  
Table 4  
Thermal Resistance TLE94004EP  
Symbol  
Parameter  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
1)  
Junction to Case, TA = -40°C  
Junction to Case, TA = 85°C  
RthjC_cold  
RthjC_hot  
14  
K/W  
K/W  
K/W  
1)  
17  
1) 2)  
Junction to ambient, TA = -40°C RthjA_cold_  
126  
(1s0p, minimal footprint)  
min  
1) 2)  
1) 3)  
1) 3)  
1) 4)  
1) 4)  
1) 5)  
1) 5)  
Junction to ambient, TA = 85°C RthjA_hot_m  
(1s0p, minimal footprint)  
134  
69  
81  
67  
79  
53  
67  
K/W  
K/W  
K/W  
K/W  
K/W  
K/W  
K/W  
in  
Junction to ambient, TA = -40°C RthjA_cold_3  
(1s0p, 300mm2 Cu)  
00  
Junction to ambient, TA = 85°C RthjA_hot_30  
(1s0p, 300mm2 Cu)  
0
Junction to ambient, TA = -40°C RthjA_cold_6  
(1s0p, 600mm2 Cu)  
00  
Junction to ambient, TA = 85°C RthjA_hot_60  
(1s0p, 600mm2 Cu)  
0
Junction to ambient, TA = -40°C RthjA_cold_2  
(2s2p)  
s2p  
Junction to ambient, TA = 85°C RthjA_hot_2s  
(2s2p)  
2p  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with minimal footprint copper area and 35µm thickness.  
Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
3) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with additional cooling of 300mm2 copper area and 35µm  
thickness. Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
4) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 1s0p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with additional cooling of 600mm2 copper area and 35µm  
thickness. Ta = -40°C, each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
5) Specified RthJA value is according to JEDEC JESD51-2, -3 at natural convection on FR4 2s2p board; The product (chip  
+ package) was simulated on a 76.2 x 114.3 x 1.5mm board with two inner copper layers ( 4 x 35µm Cu). Ta = -40°C,  
each channel dissipates 0.2W. Ta = 85°C, each channel dissipates 0.135W.  
Datasheet  
9
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
3.4  
Electrical Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN1= HIGH  
and EN2= HIGH, IOUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless  
otherwise specified; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current Consumption, EN1 = EN2 = GND  
Supply Quiescent current ISQ  
Logic supply quiescent current IDD_Q  
0.1  
0.1  
0.6  
2
1
3
µA  
µA  
µA  
-40°C Tj 85°C  
-40°C Tj 85°C  
-40°C Tj 85°C  
P_4.4.1  
P_4.4.2  
P_4.4.3  
Total quiescent current  
ISQ + IDD_Q  
Current Consumption, EN=HIGH  
Supply current  
IS_HSON  
IDD  
1.5  
0.6  
3
mA  
mA  
All high-sides ON1)2) P_4.4.101  
P_4.4.5  
Logic supply current  
2.5  
Over- and Undervoltage Lockout  
Undervoltage Switch ON  
voltage threshold  
VUV ON  
VUV OFF  
VUV HY  
4.4  
4
4.90 5.3  
4.50 4.9  
V
V
V
V
V
V
VS increasing  
VS decreasing  
VUV ON - VUV OFF  
VS increasing  
VS decreasing  
VOV OFF - VOV ON  
P_4.4.8  
Undervoltage Switch OFF  
voltage threshold  
P_4.4.9  
2)  
Undervoltage Switch ON/OFF  
hysteresis  
0.40  
23  
22  
1
P_4.4.10  
P_4.4.11  
P_4.4.12  
P_4.4.13  
Overvoltage Switch OFF voltage VOV OFF  
threshold  
21  
20  
25  
24  
Overvoltage Switch ON voltage VOV ON  
threshold  
2)  
Overvoltage Switch ON/OFF  
hysteresis  
VOV HY  
VDD Power-On-Reset  
VDD POR  
2.40  
2.35  
2.63 2.90  
2.57 2.85  
V
V
V
VDD increasing  
VDD decreasing  
VDD POR - VDD POffR  
P_4.4.14  
P_4.4.15  
P_4.4.98  
VDD Power-Off-Reset  
VDD POffR  
VDD POR HY  
2)  
VDD Power ON/OFF hysteresis  
0.06  
Static Drain-source ON-Resistance (High-Side or Low-Side)  
High-Side or Low-Side RDSON  
(all outputs)  
RDSON_HB_25C  
825 1200 mΩ  
IOUT = ±0.5 A;  
Tj = 25 °C  
P_4.4.16  
P_4.4.17  
High-Side or Low-Side RDSON  
(all outputs)  
RDSON_HB_150  
1350 1800 mΩ  
IOUT = ±0.5 A;  
Tj = 150 °C  
C
Output Protection and Diagnosis of high-side (HS) channels of half-bridge output  
HS Overcurrent Shutdown  
Threshold  
ISD_HS  
-1.5  
-1.2 -0.9  
A
See Figure 6  
P_4.4.20  
P_4.4.21  
Difference between shutdown ILIM_HS  
and limit current  
-
-1.2  
-0.6  
0
A
2) |ILIM_HS| |ISD_HS|  
See Figure 6  
ISD_HS  
Datasheet  
10  
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN1= HIGH  
and EN2= HIGH, IOUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless  
otherwise specified; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
2)  
Overcurrent Shutdown filter  
time  
tdSD_HS  
15  
19  
23  
µs  
P_4.4.22  
Output Protection and Diagnosis of low-side (LS) channels of half-bridge output  
LS Overcurrent Shutdown  
Threshold  
ISD_LS  
0.9  
1.2  
0.6  
19  
1.5  
1.2  
23  
A
See Figure 7  
P_4.4.27  
P_4.4.28  
P_4.4.29  
2)  
Difference between shutdown ILIM_LS  
and limit current  
-
0
A
I
ISD_LS  
LIM_LS  
ISD_LS  
Figure 7  
2)  
Overcurrent Shutdown filter  
time  
tdSD_LS  
15  
µs  
Outputs OUT(1...n) leakage current  
HS leakage current in off state IQLHn_NOR  
-2  
-0.5  
µA  
VOUTn = 0V ; OUT1/2: P_4.4.32  
EN1=GND,  
EN2=High; OUT3/4:  
EN1=High,EN2=GN  
D
HS leakage current in off state IQLHn_SLE  
LS Leakage current in off state IQLLn_NOR  
-2  
-0.5  
0.5  
2
µA  
µA  
VOUTn = 0V; EN1 =  
EN2 =GND  
P_4.4.33  
VOUTn = VS ; OUT1/2: P_4.4.34  
EN1=GND,  
EN2=High; OUT3/4:  
EN1=High,EN2=GN  
D
LS Leakage current in off state IQLLn_SLE  
0.5  
2
µA  
VOUTn = VS ; EN1 =  
P_4.4.35  
EN2 =GND  
Output Switching Times. See Figure 8 and Figure 9.  
Slew rate of high-side and low- dVOUT/ dt  
side outputs  
0.1  
0.45 0.75  
V/µs Resistive load =  
P_4.4.36  
P_4.4.37  
P_4.4.38  
P_4.4.39  
P_4.4.40  
P_4.4.41  
P_4.4.42  
3)  
100; VS=13.5V  
Output delay time high side  
driver on  
tdONH  
tdOFFH  
tdONL  
tdOFFL  
5
20  
45  
20  
45  
35  
75  
35  
75  
µs  
µs  
µs  
µs  
µs  
µs  
Resistive load =  
100to GND  
Output delay time high side  
driver off  
15  
5
Resistive load =  
100to GND  
Output delay time low side  
driver on  
Resistive load =  
100to VS  
Output delay time low side  
driver off  
15  
100  
100  
Resistive load =  
100to VS  
Cross current protection time, tDHL  
high to low  
130 160  
130 160  
Resistive load =  
1002)  
Cross current protection time, tDLH  
low to high  
Resistive load =  
1002)  
Datasheet  
11  
1.0  
2017-12-07  
TLE94004EP  
General Product Characteristics  
Table 5  
Electrical Characteristics, VS =5.5 V to 20 V, VDD = 3.0V to 5.5V, Tj = -40°C to +150°C, EN1= HIGH  
and EN2= HIGH, IOUTn= 0 A; Typical values refer to VDD = 5.0 V, VS = 13.5 V and TJ = 25 °C unless  
otherwise specified; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified) (cont’d)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Input Interface: Logic Inputs EN1, EN2  
Set up time after sleep mode  
High-input voltage  
tSET_DI  
VENH  
150  
µs  
V
2) See Figure 5  
P_4.4.49  
P_4.4.43  
0.7 *  
VDD  
VDD  
Low-input voltage  
VENL  
0
0.3 *  
V
P_4.4.44  
VDD  
2)  
Hysteresis of input voltage  
Pull down resistor  
EF reset time  
VENHY  
500  
40  
mV  
kΩ  
ns  
P_4.4.45  
P_4.4.46  
RPD_EN  
tEF_RESET  
20  
250  
70  
VEN1/2 = 0.2 x VDD  
2) Set ENx to Low for P_4.4.121  
t
EF_RESET to reset EF  
Input Interface: Logic Inputs IN1, IN2, IN3, IN4  
High input voltage threshold  
VINnH  
0.7 *  
VDD  
VDD  
V
V
P_4.4.90  
P_4.4.91  
Low input voltage threshold  
VINnL  
0
0.3 *  
VDD  
2)  
Hysteresis of input voltage  
Pull-down resistor  
VINnHY  
RPD  
500  
40  
mV  
P_4.4.92  
P_4.4.94  
20  
70  
kΩ  
Output Interface: Logic Output EF  
High output voltage level  
VEFH  
VDD  
-
VDD - VDD  
V
IEFH = -1.6 mA  
P_4.4.88  
0.4  
0.2  
Low output voltage level  
Leakage current  
VEFL  
IEFLK  
0
0.2  
0.4  
1
V
IEFL = 1.6 mA  
P_4.4.95  
P_4.4.96  
-1  
µA  
0V < VEF < 5.5V  
Thermal Shutdown  
Thermal shutdown junction  
temperature  
TjSD  
160  
175 190  
°C  
°C  
See Figure 102)  
P_4.4.81  
P_4.4.82  
2)  
Thermal comparator hysteresis TjHYS  
1) IS_HSON does not include the load current  
4
2) Not subject to production test, specified by design  
3) Measured for 20% - 80% of VS.  
Datasheet  
12  
1.0  
2017-12-07  
TLE94004EP  
Characterization results  
4
Characterization results  
Performed on 5 devices, over operating temperature and nominal/extended supply range.  
Typical performance characteristics  
Supply quiescent current  
Supply current  
P_4.4.1  
P_4.4.4  
2.9  
0.3  
0.25  
0.2  
2.4  
1.9  
1.4  
0.9  
0.4  
0.15  
0.1  
0.05  
0
-0.1  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20  
VS=22V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Logic supply quiescent current  
Logic supply current  
P_4.4.2  
P_4.4.5  
0.7  
0.7  
0.65  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.55  
0.5  
-0.1  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50  
0
50  
100  
150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V VS=18V VS=20V  
VS=22V  
Datasheet  
13  
1.0  
2017-12-07  
TLE94004EP  
Characterization results  
HS static Drain-source ON-resistance  
LS static Drain-source ON-resistance  
P_4.4.16/P_4.4.17  
P_4.4.16/P_4.4.17  
1500  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1400  
1300  
1200  
1100  
1000  
900  
800  
800  
700  
700  
600  
600  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
HS static drain-source ON-resistance  
VS = 13.5V and VDD = 5V  
LS static drain-source ON-resistance  
VS = 13.5V and VDD = 5V  
P_4.4.16/P_4.4.17  
LS Static Drain-source ON-Resistance  
P_4.4.16/P_4.4.17  
1500  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1400  
1300  
1200  
1100  
1000  
900  
800  
800  
700  
700  
600  
600  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
OUT1  
OUT2  
OUT3  
OUT1  
OUT2  
OUT3  
Datasheet  
14  
1.0  
2017-12-07  
TLE94004EP  
Characterization results  
Slew rate ON of high-side outputs  
Slew rate ON of low-side outputs  
P_4.4.36  
P_4.4.36  
0.60  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.20  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Slew rate OFF of high-side outputs  
Slew rate OFF of low-side outputs  
P_4.4.36  
P_4.4.36  
0.55  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13V5  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
Datasheet  
15  
1.0  
2017-12-07  
TLE94004EP  
Characterization results  
HS overcurrent shutdown threshold  
LS overcurrent shutdown threshold  
P_4.4.20  
P_4.4.27  
-1120  
1240  
1220  
1200  
1180  
1160  
1140  
1120  
-1140  
-1160  
-1180  
-1200  
-1220  
-1240  
1100  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VS=5.5V  
VS=13.5V  
VS=18V  
VS=20V  
VS=22V  
VS=5.5V  
VS=13.5  
VS=18V  
VS=20V  
VS=22V  
Undervoltage switch ON voltage threshold  
Undervoltage switch OFF voltage threshold  
P_4.4.8  
P_4.4.9  
5.05  
4.64  
4.62  
4.6  
5
4.95  
4.9  
4.58  
4.56  
4.54  
4.52  
4.85  
4.5  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD=3V  
VDD=5V  
VDD=5.5V  
Datasheet  
16  
1.0  
2017-12-07  
TLE94004EP  
Characterization results  
Overvoltage switch ON voltage threshold  
Overvoltage switch OFF voltage threshold  
P_4.4.12  
P_4.4.11  
22.8  
23.6  
22.7  
22.6  
22.5  
22.4  
22.3  
22.2  
22.1  
22.0  
23.5  
23.4  
23.3  
23.2  
23.1  
23  
22.9  
22.8  
21.9  
22.7  
-50 -30 -10 10 30 50 70 90 110 130 150  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
Junction Temperature [°C]  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD=3V  
VDD=5V  
VDD=5.5V  
VDD Power-on-reset and VDD Power-off-reset  
P_4.4.14/P_4.4.15  
2.68  
2.66  
2.64  
2.62  
2.60  
2.58  
2.56  
2.54  
-50 -30 -10 10 30 50 70 90 110 130 150  
Junction Temperature [°C]  
VDD POR  
VDD POffR  
Datasheet  
17  
1.0  
2017-12-07  
TLE94004EP  
General Description  
5
General Description  
5.1  
Power Supply  
The TLE94004EP has two power supply inputs, VS and VDD. The half bridge outputs are supplied by VS, which is  
connected to the 12V automotive supply rail. VDD is used to supply the I/O buffers and internal voltage  
regulator of the device.  
VS and VDD supplies are separated so that information stored in the logic block remains intact in the event of  
voltage drop outs or disturbances on VS. The system can therefore continue to operate once VS has recovered,  
without having to resend commands to the device.  
A rising edge on VDD crossing VDD POR triggers an internal Power-On Reset (POR) to initialize the IC at power-on.  
All data stored internally is deleted, and the outputs are switched off (high impedance).  
An electrolytic and 100nF ceramic capacitors are recommended to be placed as close as possible to the VS  
supply pin of the device for improved EMC performance in the high and low frequency band. The electrolytic  
capacitor must be dimensioned to prevent the VS voltage from exceeding the absolute maximum rating. In  
addition, decoupling capacitors are recommended on the VDD supply pin.  
5.2  
Operation modes  
5.2.1  
Normal mode  
The TLE94004EP enters normal mode by setting EN1 or EN2 to High. In normal mode, the charge pump is  
active and all output transistors can be activated or deactivated according to Chapter 6.1.  
5.2.2  
Sleep mode  
The TLE94004EP enters sleep mode by setting the EN1 and EN2 pins to Low. The EN1 and EN2 inputs have an  
internal pull-down resistor.  
In sleep mode, all output transistors are turned off and the logic content is reset. The current consumption is  
reduced to ISQ + IDD_Q  
.
5.3  
Reset Behaviour  
The following reset triggers have been implemented in the TLE94004EP:  
DD Undervoltage Reset:  
V
The digital block will be deactivated, the logic contents cleared and the output stages are switched off if VDD is  
below the undervoltage threshold, VDD POffR. The digital block is initialized once VDD voltage levels is above the  
undervoltage threshold, VDD POR  
.
Reset on EN1/2 pins:  
If the EN1/2 pins are pulled Low, the logic content is reset and the device enters sleep mode.  
5.4  
Reverse Polarity Protection  
The TLE94004EP requires an external reverse polarity protection. During reverse polarity, the free-wheeling  
diodes across the half bridge output will begin to conduct, causing an undesired current flow (IRB) from ground  
potential to battery and excessive power dissipation across the diodes. As such, a reverse polarity protection  
diode is recommended (see Figure 4).  
Datasheet  
18  
1.0  
2017-12-07  
TLE94004EP  
General Description  
b)  
VBAT  
a)  
GND  
D
RP  
CS2  
C
S
HSx  
HSx  
OUTx  
OUTx  
LSx  
LSx  
I
RB  
VBAT  
GND  
Figure 4  
Reverse Polarity Protection  
Datasheet  
19  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
6
Half-Bridge Outputs  
The half-bridge outputs of the TLE94004EP are intended to drive motor loads. They consist of a total of four  
DMOS half-bridges, which can be driven either continuously or in PWM via INx pins. The output stages  
integrated circuits protect the outputs against overcurrent and overtemperature.  
6.1  
Output Stages  
EN1 and EN2 inputs control the state of the device according to Table 6.  
When EN1 = 0 and EN2 = 0, the device enters sleep mode with low power consumption and all outputs are  
OFF (high impedance).  
When EN1=1, HB1 and HB2 are enabled  
When EN2=1, HB3 and HB4 are enabled  
Table 6  
Device states  
EN1  
EN2  
HB1/2  
OFF  
HB 3/4  
OFF  
Device state  
0
0
1
1
0
1
0
1
Sleep mode, all outputs are OFF  
Device is in normal mode  
Device is in normal mode  
Device is in normal mode  
OFF  
Enabled  
OFF  
Enabled  
Enabled  
Enabled  
Note:  
After the transition from sleep mode to normal mode, the outputs are OFF for a duration tSET_DI .See  
Figure 5  
EN1 and/or EN2 = High  
VENx  
Normal mode  
H
EN1 =EN2 = Low  
Sleep mode  
L
Time  
OUTx  
tSE T _DI  
Active  
High-Z  
Time  
OUTx is active if the  
corresponding ENx = High  
Figure 5  
Output setup time after a transition from standby to normal mode  
The control inputs consist of CMOS-compatible schmitt-triggers with hysteresis. There are altogether four  
control inputs, i.e. IN1, IN2 , IN3 and IN4 with internal pull-down resistors.  
If EN1 = 0, HB1 and HB2 are OFF. If EN1 = 1, HB1 and HB2 are controlled according toTable 7  
Table 7  
Functional Truth Table for HB1 and HB2  
EN1  
0
IN1  
X
IN2  
X
HB1  
OFF  
L
HB2  
OFF  
L
Mode  
HB1 and HB2 are OFF  
Brake Low  
1
0
0
Datasheet  
20  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
Table 7  
Functional Truth Table for HB1 and HB2  
EN1  
IN1  
0
IN2  
1
HB1  
L
HB2  
H
Mode  
1
1
1
Motor counter-clockwise  
Motor clockwise  
Brake High  
1
0
H
L
1
1
H
H
If EN2 = 0, HB3 and HB4 are OFF. If EN2 =1, HB3 and HB4 are controlled according to Table 8  
Table 8  
Functional Truth table for HB3 and HB4  
EN2  
IN3  
X
IN4  
X
HB3  
OFF  
L
HB4  
OFF  
L
Mode  
0
1
1
1
1
HB3 and HB4 are OFF  
Brake Low  
0
0
0
1
L
H
Motor counter-clockwise  
Motor clockwise  
Brake High  
1
0
H
L
1
1
H
H
Datasheet  
21  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
6.2  
Diagnosis Monitoring  
The EF pin (push-pull output) reports the following error conditions:  
Overcurrent (OC)  
Overtemperature (OT)  
VS overvoltage and VS undervoltage  
EF reports an overcurrent event on HB1/2 only if EN1 = 1. Likewise, EF reports an overcurrent on HB3/4 only if  
EN2 = 1.  
After an overcurrent event is detected on HB1/2, EF is latched to 1, until EN1 = 0.Likewise, after an overcurrent  
event detected on HB3/4, EF is latched to 1 until EN2 = 0.  
EF reports overtemperature or VS overvoltage/undervoltage events if the device is in normal mode (EN1 = 1 or  
EN2 = 1). The error flag is latched to 1 for these fault conditions until EN1 = 0 and EN2 = 0  
Table 9  
Error reporting by EF pin  
EN1  
EN2  
Error reported by EF pin  
0
1
0
1
0
0
1
1
Not applicable, the device is in sleep mode  
OC on HB1/2, OT, VS under/overvoltage  
OC on HB3/4, OT, VS under/overvoltage  
OC on HB1/2, OC on HB3/4, OT, VS under/overvoltage  
The table below depicts the EF behaviour:  
Table 10  
Error flag behaviour and reset conditions  
Fault condition  
No fault  
EF  
Reset conditions  
0
Overcurrent on HB1 or HB2 1 (latched)  
Overcurrent on HB3 or HB4 1 (latched)  
Set EN1 pin to 0 for tEF_RESET  
Set EN2 pin to 0 for tEF_RESET  
VS < VOV ON, EN1 = 0 and EN2 = 0 for tEF_RESET  
VS > VUV ON, EN1 = 0 and EN2 = 0 for tEF_RESET  
EN1 = 0 and EN2 = 0 for tEF_RESET  
VS overvoltage  
VS undervoltage  
Overtemperature  
1 (latched)  
1 (latched)  
1 (latched)  
6.3  
Protection  
This device has embedded protective functions which are designed to prevent the destruction of the device  
under fault conditions described in this section. Fault conditions are treated as “outside” normal operating  
range. Protection functions are not designed for continuous repetitive operation.  
6.3.1  
Short Circuit of Output to Supply or Ground  
The high-side switches are protected against short circuits to ground whereas the low-side switches are  
protected against short circuits to supply.  
The high-side and low-side switches will enter into an over-current condition if the current within the switch  
exceeds the overcurrent shutdown detection threshold, ISD. Upon detection of the ISD threshold, an  
Datasheet  
22  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
overcurrent shutdown filter, tdSD is begun. As the current rises beyond the threshold ISD, it will be limited by the  
current limit threshold, ILIM. Upon expiry of the overcurrent shutdown filter time, the affected power switch is  
latched off (see Figure 6 and Figure 7) and the EF is set to 1 and latched.  
The faulty power switch remains deactivated and EF is latched as long as the corresponding ENx =1.  
To resume normal functionality of the power switch (in the event the overcurrent condition disappears or to  
verify if the failure still exists) the microcontroller shall:  
1. clear the error flag by setting the corresponding ENx to 0 (see Table 10)  
2. set the corresponding ENx to 1 in order to re-enable the corresponding half-bridges  
VS  
| IHS |  
I ILIM_HS I  
ON  
I ILIM_HS - ISD_HS  
I
I ISD_HS  
I
OUTn  
Short to GND  
t
tdSD_ HS  
Short condition on High-Side Switch  
Figure 6  
High-Side Switch - Short Circuit and Overcurrent Protection  
VS  
ILS  
VS  
ILIM_ LS  
ILIM_ LS - ISD_LS  
Short to Supply  
ISD_LS  
OUTn  
ON  
t
tdSD_LS  
Short condition on Low-Side Switch  
Figure 7  
Low-Side Switch - Short Circuit and Overcurrent Protection  
6.3.2  
Cross-current protection  
In bridge configurations the high-side and low-side power transistors are ensured never to be simultaneously  
“ON” to avoid cross currents. This is achieved by integrating delays in the driver stage of the power outputs to  
create a dead-time between switching off of one power transistor and switching on of the adjacent power  
transistor within the half-bridge. The dead times, tDHL and tDLH, as shown in Figure 8 case 3 and Figure 9 case  
3, have been specified to ensure that the switching slopes do not overlap with each other. This prevents a cross  
conduction event.  
Datasheet  
23  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
If x = 1 or 2, then y = 1 and z =2  
Otherwisey = 2 and z =1  
Case 1: Delay TimeHigh SideDriver OFF  
INx  
t
Previous State Æ New State  
ENy  
HS ON  
Æ
HS OFF  
t
ENz  
LS OFF  
Æ
LS OFF  
t
VOUT_HSx [V]  
VS  
80%  
1)  
tdOFFH  
20%  
GND  
t
1)  
Delay time HS OFF  
Case 2: Delay Time Low Side Driver ON  
INx  
t
ENy  
Previous StateÆ New State  
HS OFF  
Æ
HS OFF  
t
ENz  
LS OFF  
Æ
LS ON  
t
VOUT_LSx [V]  
VS  
80%  
2)  
tdONL  
20%  
2) Delay time LS ON without dead time ; HS previously OFF  
GND  
t
Case 3: Delay Time Low Side Driver ON with tDHL dead time  
INx  
Previous State Æ New State  
t
t
HS ON  
Æ
HS OFF  
ENy  
LS OFF  
Æ
LS ON  
VOUT_LSx [V]  
VS  
80%  
Low-Side  
ON  
3)  
tdONL +tDHL  
delay time  
20%  
3) Delay time LS ON with dead time ; HS previously ON  
GND  
t
Figure 8  
Half bridge outputs switching times - high-side to low-side transition  
Datasheet  
24  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
If x = 1 or 2, then y = 1 and z =2  
Otherwisey = 2 and z =1  
Case 1: Delay Time High Side Driver OFF  
INx  
t
t
Previous State Æ New State  
ENy  
HS OFF  
Æ
HS OFF  
ENz  
LS ON  
Æ
LS OFF  
t
VOUT_LSx [V]  
VS  
80%  
1)  
tdOFFL  
20%  
GND  
t
1)  
Delay time LS OFF  
Case 2: Delay Time High Side Driver ON  
INx  
t
Previous State Æ New State  
ENy  
ENz  
HS OFF  
Æ
HS ON  
t
LS OFF  
Æ
LS OFF  
t
VOUT_HSx [V]  
VS  
80%  
2)  
tdONH  
20%  
2) Delay time HS ON without dead time ; LS previously OFF  
GND  
t
Case 3: Delay Time High Side Driver ON with tDLH dead time  
INx  
Previous State ÆNew State  
HS OFF  
Æ
HS ON  
t
ENy  
LS ON  
Æ
LS OFF  
t
VOUT_HSx [V]  
VS  
80%  
High-Side  
ON  
3)  
tdONH + tDLH  
delay time  
20%  
3) HS ON delay time with dead time ; LS previously ON  
GND  
t
Figure 9  
Half bridge outputs switching times- low-side to high-side transition  
6.3.3  
Temperature monitoring and shutdown  
Temperature sensors are integrated in the power stages. The temperature monitoring circuit compares the  
measured temperature to the shutdown threshold.  
Datasheet  
25  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
If one or more temperature sensors reach the shut-down temperature threshold, all outputs are latched off.  
All outputs remain deactivated as long as EN1 = 1 or EN2 = 1.  
To resume normal functionality of the power switch (in the event the overtemperature condition disappears  
or to verify if the failure still exists) the microcontroller shall:  
1. clear the error flag by setting EN1 and EN2 to 0 (see Table 10)  
2. set EN1 or EN2 to 1 in order to send the device from sleep mode back to normal mode  
Tj  
TjSD  
t
VOUTx  
ON  
High Z  
t
Overtemperature error  
no error  
VEF  
H
Error Flag  
L
t
Figure 10 Overtemperature Behaviour  
Datasheet  
26  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
6.3.4  
VS Undervoltage Behaviour  
If the supply voltage decreases to the undervoltage switch-off threshold, VUV OFF, then all output switches are  
switched off, and the error flag EF is set to High (error detection). If VS rises again and reaches the undervoltage  
switch-on threshold, VUV ON, the power-stages are automatically reactivated according to ENx and INx. Refer to  
Figure 11  
VS  
VUV HY  
VUV ON  
VUV OFF  
Time  
Time  
EN1 =EN2= 0  
EN1=1  
Sleep mode and/or EN2=1  
VOUTx  
ON  
OFF (High-Z)  
VS undervoltage  
Error Flag  
t
SE T _DI  
VEF  
H
Hi-Z  
L
Time  
EF actively set of Low  
Figure 11 Undervoltage behaviour  
Datasheet  
27  
1.0  
2017-12-07  
TLE94004EP  
Half-Bridge Outputs  
6.3.5  
VS Overvoltage Behaviour  
If the supply voltage increases beyond the overvoltage switch threshold, VOV OFF, then all output switches are  
switched off and EF is set High, indicating an overvoltage condition. If VS decreases again and reaches the  
overvoltage switch-on threshold, VOV ON, then the power-stages are automatically reactivated according to  
ENx and INx. Refer to Figure 12.  
VS  
VOV HY  
VOV OFF  
VOV ON  
Time  
EN1= EN2 = 0  
Sleep mode  
EN1=1  
and/or EN2=1  
VOUTx  
ON  
OFF (High-Z)  
VS overvoltage  
Time  
Error Flag  
tSE T_ DI  
VEF  
H
Hi-Z  
L
Time  
EF actively set of Low  
Figure 12 Overvoltage behaviour  
6.3.6  
VDD Undervoltage  
In the event the VDD logic supply decreases below the undervoltage threshold, VDD_POFFR, the TLE94004EP will  
enter reset. EF is set to high impedance during a VDD undervoltage event.  
The digital block will be initialized and the output stages are switched off to High impedance. The  
undervoltage reset is released once VDD voltage levels are above the undervoltage threshold, VDD POR  
.
Datasheet  
28  
1.0  
2017-12-07  
TLE94004EP  
Application Information  
7
Application Information  
Note:  
The following simplified application examples are given as a hint for the implementation of the  
device only and shall not be regarded as a description or warranty of a certain functionality,  
condition or quality of the device. The function of the described circuits must be verified in the real  
application.  
7.1  
Application Diagram  
CD  
RWA  
100nF  
VBAT  
100 kΩ  
Reset  
Adjust  
D
GND  
3-5, 10-12  
Watchdog In  
8
1
6
7
13  
Watchdog Out  
Watchdog Adjust  
Input  
DRP  
Reset Out  
Q
VReg  
TLE4678G  
14  
9
2
CI  
100 nF  
CQ  
22μF  
WDO WDI  
R
µC  
GND  
VCC  
100 nF  
VS  
VDD  
OUT1  
EN1  
EN2  
M1  
M1  
M2  
M3  
EF  
OUT2  
Series resistors are  
recommended if the VS of  
the TLE94004 EP is protected  
by an active reverse polarity  
protection  
M1  
IN1  
IN2  
IN3  
IN4  
OUT3  
OUT4  
Landing pads for ceramic  
capacitors at OUTx  
M2  
GND  
2 motors  
in non-  
cascaded  
configuration  
3 motors in  
cascaded  
configuration  
Single motor,  
higher current  
a
b
c
Figure 13 Application Example for DC-motor loads  
Datasheet  
29  
1.0  
2017-12-07  
TLE94004EP  
Application Information  
C
D
R
WA  
100nF  
VBAT  
100 kΩ  
Reset  
Adjust  
D
GND  
3-5, 10-12  
Watchdog In  
8
1
6
7
13  
Watchdog Out  
Watchdog Adjust  
Input  
D
RP  
Reset Out  
Q
VReg  
TLE4678G  
14  
9
2
C
I
100 nF  
C
Q
22μF  
WDO  
WDI  
R
VCC  
100 nF  
VS  
VDD  
OUT  
1
2
EN1  
EN2  
M1  
M1  
M2  
M3  
EF  
OUT  
OUT  
Series resistors are  
recommended if the VS of  
µC  
M1  
IN  
IN  
IN  
IN  
1
the TLE94004 EP is protected  
by an active reverse polarity  
protection  
2
3
3
4
Landing pads for ceramic  
capacitors at OUTx  
M2  
OUT  
4
GND  
2 motors  
in non-  
cascaded  
3 motors in  
cascaded  
configuration  
Single motor,  
higher current  
GND  
configuration  
a
b
c
VDD  
VDD  
V
S
VS  
OUT  
OUT  
1
2
EN1  
EN2  
M1  
M1  
M2  
M3  
EF  
M1  
IN  
IN  
IN  
IN  
1
2
3
OUT  
OUT  
3
4
4
M2  
GND  
2 motors  
in non-  
cascaded  
configuration  
3 motors in  
cascaded  
configuration  
Single motor,  
higher current  
a
b
c
Figure 14 Application Example with two TLE94004EP  
Datasheet  
30  
1.0  
2017-12-07  
TLE94004EP  
Application Information  
V
BAT  
DRP  
VReg  
Q
VCC  
VS  
VDD  
OUT  
1
EN1  
EN2  
OUT  
OUT  
2
3
EF  
µC  
IN1  
IN2  
IN3  
IN4  
Series resistors are  
recommended if the VS of  
the TLE94004EP is protected  
by an active reverse polarity  
protection  
M
Landing pads for ceramic  
capacitors at OUTx  
OUT  
4
GND  
GND  
Figure 15 Application Example with TLE94004EP driving a bipolar transistor in voltage mode control  
Notes on the application example  
1. Series resistors between the microcontroller and the signal pins of the TLE94004EP are recommended if an  
active reverse polarity protection (MOSFET) is used to protect the VS pin. These resistors limit the current  
between the microcontroller and the device during negative transients on VBAT (e.g. ISO/TR 7637 pulse 1)  
2. Landing pads for ceramic capacitors at the outputs of the TLE94004EP as close as possible to the connectors  
are recommended (the ceramic capacitors are not populated if unused). These ceramic capacitors can be  
mounted if a higher performance in term of ESD capability is required.  
3. The electrolytic capacitor at the VS pin should be dimensioned in order to prevent the VS voltage from  
exceeding the absolute maximum rating. PWM operation with a too low capacitance can lead to a VS voltage  
overshoot, which results in a VS overvoltage detection.  
4. Unused outputs are recommended to be left unconnected (open) in the application. If unused output pins are  
routed to an external connector which leaves the PCB, then these outputs should have provision for a zero  
ohm jumper (depopulated if unused) or ESD protection. In other words, unused pins should be treated like  
used pins.  
5. Place bypass ceramic capacitors as close as possible to the VS pins, with shortest connections the GND pins  
and GND layer, for best EMC performance  
Datasheet  
31  
1.0  
2017-12-07  
TLE94004EP  
Application Information  
7.2  
Thermal application information  
Ta = -40°C, Ch1 to Ch4 are dissipating a total of 0.8W (0.2W each).  
Ta = 85°C, Ch1 to Ch4 are dissipating a total of 0.54W (0.135W each).  
Zth-ja for TLE 94004EP  
150  
1s0p / 600mm² / -40°C  
1s0p / 600mm² / +85°C  
120  
1s0p / 300mm² / -40°C  
1s0p / 300mm² / +85°C  
1s0p / footprint / -40°C  
90  
1s0p / footprint / +85°C  
2s2p / -40°C  
2s2p / +85°C  
60  
30  
0
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
10000  
time [sec]  
Figure 16 ZthJA Curve for different PCB setups  
Zth-jc for TLE 94004EP  
18  
16  
14  
12  
10  
8
Tamb = -40°C  
Tamb = +85°C  
6
4
2
0
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
time [sec]  
Figure 17 ZthJC Curve  
Datasheet  
32  
1.0  
2017-12-07  
TLE94004EP  
Package Outlines  
8
Package Outlines  
Figure 18 PG-TSDSO-14 (Plastic Green - Dual Small Outline Package)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e lead-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Datasheet  
33  
1.0  
2017-12-07  
TLE94004EP  
Revision History  
9
Revision History  
Revision Date  
Changes  
1.0  
2017-12-07 Initial release  
Datasheet  
34  
1.0  
2017-12-07  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2017-12-07  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2017 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
Doc_Number  

相关型号:

TLE94104EP

TLE9410EP 是受保护的四倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-14,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94106ES

TLE94106ES 是受保护的六倍半桥驱动器,专为汽车运动控制应用而设计,如加热以及通风和空调 (HVAC) 活门直流电机控制。该产品是系列产品中的一款,该系列产品提供半桥驱动器,有 3 个输出到 12 个输出,具有直接接口或 SPI 接口。 半桥驱动器设计用于以串联或并联方式驱动直流电机负载。通过 16 位 SPI 接口控制正向 (cw)、反向 (ccw)、制动和高阻抗工作模式。它可以提供短路、开路负载、电源故障和过温检测等诊断功能。结合极低的静态电流,该器件在汽车应用领域极具吸引力。精密小巧的散热焊盘封装 PG-TSDSO-24,提供良好的热性能,节省 PCB 板空间和成本。
INFINEON

TLE94108EL

TLE94108EL 是受保护的八倍半桥驱动器,专为汽车运动控制应用而设计,如加热,通风和空调(HVAC)的活门直流电机控制。它属于一个较大的半桥驱动器系列,可提供三路至十二路输出,设有直接接口或SPI接口。该半桥驱动器旨在以顺序或并行方式驱动直流电机负载。正向 (cw)、反向 (ccw)、制动和高阻抗等工作模式通过16位SPI接口进行控制。该器件提供各种诊断功能,如短路、开路负载、电源故障和过热检测。结合其低静态电流,该器件在汽车应用中具有吸引力。采用小型小脚距散热焊盘封装PG-SSOP-24,具有良好的散热性能,可减少PCB板的占用空间和成本。
INFINEON

TLE94108ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94108ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94110ELXUMA1

Brush DC Motor Controller, 2A, PDSO24, SSOP-24
INFINEON

TLE94110ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE94112ES

It is part of a larger family offering half-bridge drivers from three outputs to twelve outputs with direct interface or SPI interface. The half bridge drivers are designed to drive DC motor loads in sequential or parallel operation. Operation modes forward (cw), reverse (ccw), brake and high impedance are controlled from a 16-bit SPI interface. It offers diagnosis features such as short circuit, open load, power supply failure and overtemperature detection. In combination with its low quiescent current, this device is attractive among others for automotive applications. The small fine pitch exposed pad package, PG-TSDSO-24, provides good thermal performance and reduces PCB-board space and costs.
INFINEON

TLE9461

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE9461-3ES

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE9461-3ESV33

Lite LDO System Basis Chip supports CAN Flexible Data-Rate(FD) and Partial Networking (PN)
INFINEON

TLE94613ESV33XUMA1

Power Supply Management Circuit,
INFINEON