V23818-N15-L356 [INFINEON]

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector; 小巧的外形单模1300 nm的多速率高达2.5 Gbit / s的收发器2× ​​/ 2×10与LCA钢钉?? ¢连接器
V23818-N15-L356
型号: V23818-N15-L356
厂家: Infineon    Infineon
描述:

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
小巧的外形单模1300 nm的多速率高达2.5 Gbit / s的收发器2× ​​/ 2×10与LCA钢钉?? ¢连接器

连接器
文件: 总27页 (文件大小:765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fiber Optics  
Small Form Factor  
V23818-N15-Lxx/Lxxx  
Single Mode 1300 nm  
Multirate up to 2.5 Gbit/s Transceiver  
2x5/2x10 Pinning with LC™ Connector  
Features  
• Small Form Factor transceiver  
• RJ-45 style LC™ connector system  
• Half the size of SC Duplex 1x9 transceiver  
• Optimized for SDH STM-16 / SONET OC-48  
• Single power supply (3.3 V)  
• Extremely low power consumption  
• Loss of optical signal indicator  
File: 1119  
• Laser disable input  
• LVPECL differential inputs and outputs  
• Suitable for multirate applications up to 2.5 Gbit/s  
• Distance up to 2 km on single mode fiber (SMF)  
• Class 1 FDA and IEC laser safety compliant  
• Multisource footprint  
• Small footprint for high channel density  
• UL 94 V-0 certified  
File: 1120  
• Compliant with FCC (Class B) and EN 55022  
• Tx and Rx power monitor  
For ordering information see next page.  
LC™ is a trademark of Lucent.  
Data Sheet  
1
2003-08-18  
V23818-N15-Lxx/Lxxx  
Ordering Information  
Ordering Information  
Part Number  
Pinning Signal  
Detect  
Operating  
Temperature if SD is Low  
Data Outputs  
Collar In- Out-  
put put  
V23818-N15-L17  
V23818-N15-L16  
V23818-N15-L353  
V23818-N15-L356  
V23818-N15-L354  
V23818-N15-L355  
V23818-N15-L37  
V23818-N15-L36  
V23818-N15-L47  
V23818-N15-L46  
V23818-N15-L457  
2x10  
LVPECL –5...70°C  
–40...85°C  
Switched to Low yes  
DC DC  
LVTTL  
–5...70°C  
–40...85°C  
–5...70°C  
AC AC  
LVTTL  
no  
2x5  
LVPECL –5...70°C  
–40...85°C  
Switched to Low yes  
DC DC  
AC AC  
LVTTL  
–5...70°C  
–40...85°C  
–5...70°C  
–40...85°C  
2x10  
LVTTL  
LVTTL  
Active  
yes  
AC AC  
AC AC  
V23818-N15-L356-C 2x10  
Switched to Low yes1)  
1)  
Incorporates non-standard collar type (see Figure 20 on Page 26).  
Data Sheet  
2
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
Pin Configuration  
HL  
MS  
MS  
Tx  
Rx  
HL  
HL  
20 19 18 17 16 15 14 13 12 11  
TOP VIEW  
1
2 3 4 5 6 7 8 9 10  
HL  
File: 1335  
Figure 1  
2x10 Pin Connect Diagram  
2x10 Pin Description  
Pin  
No.  
Symbol Level/Logic  
Description  
1
PDBias DC current  
PIN photo detector bias current  
Receiver signal ground  
Receiver signal ground  
Not connected  
2
VEEr  
VEEr  
Ground  
Ground  
3
4
NC  
5
NC  
Not connected  
6
VEEr  
Ground  
Receiver signal ground  
7
VCCr  
SD  
Power supply  
Receiver power supply  
8
LVTTL or LVPECL output1) Receiver optical input level monitor  
9
RD–  
RD+  
VCCt  
LVPECL output  
LVPECL output  
Power supply  
Ground  
Receiver data out bar  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
MS  
Receiver data out  
Transmitter power supply  
Transmitter signal ground  
Transmitter disable  
VEEt  
TDis  
TD+  
TD–  
LVTTL input  
LVPECL input  
LVPECL input  
Ground  
Transmitter data in  
Transmitter data in bar  
Transmitter signal ground  
Laser diode bias current monitor  
Laser diode bias current monitor  
Laser diode optical power monitor  
Laser diode optical power monitor  
Mounting studs  
VEEt  
BMon–  
BMon+  
PMon–  
PMon+  
DC voltage  
DC voltage  
DC voltage  
DC voltage  
HL  
Housing leads  
1)  
LVPECL output active high for V23818-N15-L17/L16/L417/L373.  
LVTTL output active high for V23818-N15-L353/L356/L457/L355/L354.  
Data Sheet  
3
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
HL  
MS  
MS  
Tx  
Rx  
HL  
HL  
10 9 8 7 6  
TOP VIEW  
1 2 3 4 5  
HL  
File: 1331  
Figure 2  
2x5 Pin Connect Diagram  
2x5 Pin Description  
Pin  
No.  
Symbol Level/Logic  
Description  
1
VEEr  
VCCr  
SD  
Ground  
Receiver signal ground  
Receiver power supply  
2
Power supply  
3
LVTTL or LVPECL output1) Receiver optical input level monitor  
4
RD–  
RD+  
VCCt  
VEEt  
TDis  
TD+  
TD–  
LVPECL output  
LVPECL output  
Power supply  
Ground  
Receiver data out bar  
Receiver data out  
5
6
Transmitter power supply  
Transmitter signal ground  
Transmitter disable  
Transmitter data in  
Transmitter data in bar  
Mounting studs  
7
8
LVTTL input  
LVPECL input  
LVPECL input  
9
10  
MS  
HL2)  
Housing leads  
1)  
LVPECL output active high for V23818-N15-L37/L36.  
LVTTL output active high for V23818-N15-L47/L46.  
2)  
Housing leads removed for V23818-N15-L46WH. Due to possible EMI performance issues, use of this  
transceiver should be restricted to applications where the chassis is completely sealed and the transceiver  
encapsulated within.  
V
EEr / VEEt  
For 2x10 transceivers, connect pins 2, 3, 6, 12 and 16 to signal ground. For 2x5  
transceivers, connect pins 1 and 7 to signal ground.  
Data Sheet  
4
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
V
CCr / VCCt  
For 2x10 transceivers a 3.3 V DC power supply must be applied at pins 7 and 11. For  
2x5 transceivers a 3.3 V DC power supply must be applied at pins 2 and 6. A  
recommended power supply filter network is given in the termination scheme. Locate  
power supply filtering directly at the transceiver power supply pins. Proper power supply  
filtering is essential for good EMI performance.  
TD+ / TD–  
Transmitter data LVPECL level inputs. For V23818-N15-L353/L356/L457/L354/L355/  
L47/L46/L373 terminated and AC coupled internally. For V23818-N15-L17/L16/L417/  
L37/L36 use termination and coupling as shown in the termination scheme.  
RD– / RD+  
Receiver data LVPECL level outputs. For V23818-N15-L353/L356/L457/L354/L355/  
L47/L46/L373 biased and AC coupled internally. For V23818-N15-L17/L16/L417/L37/  
L36 use termination and coupling as shown in the termination scheme.  
TDis  
A logical LVTTL high input will disable the laser. To enable the laser, an LVTTL low input  
must be applied. Leave pin unconnected if feature not required.  
SD  
LVTTL output for V23818-N15-L353/L356/L457/L354/L355/L47/L46.  
LVPECL output for V23818-N15-L17/L16/L417/L37/L36/L373.  
A logical high output indicates normal optical input levels to the receiver. Low optical  
input levels at the receiver result in a low output. Signal Detect can be used to determine  
a definite optical link failure; break in fiber, unplugging of a connector, faulty laser source.  
However it is not a detection of a bad link due to data-related errors.  
MS  
Mounting studs are provided for transceiver mechanical attachment to the circuit board.  
They also provide an optional connection of the transceiver to the equipment chassis  
ground. The holes in the circuit board must be tied to chassis ground.  
HL  
Housing leads are provided for additional signal grounding. The holes in the circuit board  
must be included and tied to signal ground.  
Data Sheet  
5
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
2x10 Transceiver Additional Functionality  
PDBias  
Connect pin 1 to VCC through a bias resistor, of a value not exceeding 2 k, as shown in  
Figure 3 to monitor PIN photo detector bias current. Leave pin floating if not used.  
Typical behaviour is shown in Figure 4 and Figure 5 using a 2 kload.  
V
CC  
2 kΩ  
V
bias  
Pin 1  
File: 1307  
Figure 3  
Photo Detector Bias Interface  
Data Sheet  
6
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
Typical Responsitivity of PIN Photo Detector Bias Current Monitor  
400  
300  
200  
100  
0
0
100  
200  
300  
400  
Received Optical Power (µW)  
File: 1308  
Figure 4  
Linear Response  
400  
300  
200  
100  
0
30  
24  
18  
12  
6  
0
Received Optical Power (dBm)  
File: 1309  
Figure 5  
Logarithmic Response  
Data Sheet  
7
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
BMon– / BMon+  
The DC voltage measured across pins 17 and 18 is proportional to the laser bias current.  
Use the equation:  
Ibias = Vbias/10 Ω  
Use this output to monitor laser performance and EOL conditions. A schematic and  
typical behaviour are shown in Figure 6 and Figure 7. Ibias @ ambient 25°C < 60 mA.  
Leave pins floating if function is not required.  
V
CC  
Pin 18  
3 kΩ  
10 Ω  
Pin 17  
3 kΩ  
V
EE  
File: 1310  
Figure 6  
Bias Monitor – Transceiver Internal  
0.36  
0.32  
0.28  
0.24  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0
10  
20  
30  
40  
50  
60  
70  
Temperature (˚C)  
File: 1312  
Figure 7  
Typical Variations of Bias Monitor Voltage over Temperature  
Data Sheet  
8
2003-08-18  
V23818-N15-Lxx/Lxxx  
Pin Configuration  
PMon– / PMon+  
The DC voltage that can be measured across pins 19 and 20 is proportional to the laser  
monitor diode current through a 200 resistor in its path. This output remains constant  
and can be used to monitor correct operation of laser control circuitry, a deviation  
indicates faulty behaviour. A schematic and typical behaviour are shown in Figure 8 and  
Figure 9. The SFF MSA defines that Vmon must be in the range of 0.01 V and 0.2 V. The  
Infineon OC-48 transceiver has a nominal range of 0.04 to 0.08 V. Leave pins  
unconnected if feature is not required.  
V
CC  
Pin 20  
3 kΩ  
200 Ω  
Pin 19  
3 kΩ  
R
V
EE  
File: 1311  
Figure 8  
Power Monitor – Transceiver Internal  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (˚C)  
File: 1313  
Figure 9  
Typical Behaviour of Power Monitor Voltage over Temperature  
Data Sheet  
9
2003-08-18  
V23818-N15-Lxx/Lxxx  
Description  
Description  
The Infineon 2.5 Gigabit single mode transceiver – part of the Infineon Small Form Factor  
transceiver family – is based on the Physical Medium Depend (PMD) sublayer and  
baseband medium, type 2000 Base-LX, compliant with ITU-T G.957 STM-16, S-16.1 and  
SONET OC-48 SR-1.  
This transceiver is also suitable for multirate applications. The performance at lower  
datarates may vary from application to application and is link dependent. Refer to  
Infineon Application Note 97 for more information.  
The appropriate fiber optic cable is 9 µm single mode fiber with LC connector.  
The Infineon OC-48 single mode transceiver is a single unit comprised of a transmitter,  
a receiver, and an LC receptacle. This design frees the customer from many alignment  
and PC board layout concerns.  
This transceiver supports the LC connectorization concept, which competes with UTP/  
CAT 5 solutions. It is compatible with RJ-45 style backpanels for fiber-to-the-desktop  
applications while providing the advantages of fiber optic technology. The transmission  
distance is up to 2 km.  
The module is designed for low cost LAN, WAN, and up to 2.5 Gbit/s applications. It can  
be used as the network end device interface in mainframes, workstations, servers, and  
storage devices, and in a broad range of network devices such as bridges, routers, hubs,  
and local and wide area switches.  
This transceiver operates at up to 2.5 Gbit/s from a single power supply (+3.3 V). The  
full differential data inputs and outputs are LVPECL compatible.  
Data Sheet  
10  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Description  
Functional Description of SFF Transceiver  
This transceiver is designed to transmit serial data via single mode fiber.  
BMon-  
BMon+  
Automatic  
Shut-Down  
Tx  
TDis  
Coupling Unit  
3k  
3k  
3k  
e/o  
Laser  
Laser  
Driver  
TD-  
10  
TD+  
o/e  
Power  
Control  
200  
Monitor  
Single  
Mode  
Fiber  
PMon-  
3k  
Rx  
PMon+  
Coupling Unit  
Receiver  
RD-  
o/e  
RD+  
SD  
PDBias  
File: 1357  
Figure 10  
Functional Diagram 2x10 Pin Rows  
Automatic  
Shut-Down  
Tx  
TDis  
Coupling Unit  
e/o  
Laser  
TD−  
TD+  
Laser  
Driver  
o/e  
Power  
Control  
Monitor  
Single  
Mode  
Fiber  
Rx  
Coupling Unit  
RD−  
RD+  
SD  
o/e  
Limiting  
Amp  
TIA  
File: 1351  
Figure 11  
Functional Diagram 2x5 Pin Rows  
Data Sheet  
11  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Description  
The receiver component converts the optical serial data into an electrical data (RD+ and  
RD–). The Signal Detect output (SD) shows whether an optical signal is present.  
The transmitter part converts electrical LVPECL compatible serial data (TD+ and TD–)  
into optical serial data.  
The module has an integrated shutdown function that switches the laser off in the event  
of an internal failure.  
Reset is only possible if the power is turned off, and then on again. (VCCt switched below  
VTH).  
The transmitter contains a laser driver circuit that drives the modulation and bias current  
of the laser diode. The currents are controlled by a power control circuit to guarantee  
constant output power of the laser over temperature and aging. The power control uses  
the output of the monitor PIN diode (mechanically built into the laser coupling unit) as a  
controlling signal, to prevent the laser power from exceeding the operating limits.  
Data Sheet  
12  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Description  
Regulatory Compliance  
Feature  
Standard  
Comments  
ESD:  
EIA/JESD22-A114-B  
Class 1C  
Electrostatic Discharge (MIL-STD 883D  
to the Electrical Pins  
Method 3015.7)  
Immunity:  
EN 61000-4-2  
IEC 61000-4-2  
Discharges ranging from ±2 kV to  
±15 kV on the receptacle cause no  
damage to transceiver (under  
recommended conditions).  
Against Electrostatic  
Discharge (ESD) to the  
Duplex LC Receptacle  
Immunity:  
Against Radio  
Frequency  
EN 61000-4-3  
IEC 61000-4-3  
With a field strength of 3 V/m, noise  
frequency ranges from 10 MHz to  
2 GHz. No effect on transceiver  
performance between the  
Electromagnetic Field  
specification limits.  
Emission:  
FCC 47 CFR Part 15, Noise frequency range:  
Electromagnetic  
Interference (EMI)  
Class B  
EN 55022 Class B  
CISPR 22  
30 MHz to 18 GHz  
*)  
(13.97)  
.550  
*) min. pitch between SFF transceiver according to MSA.  
Dimensions in (mm) inches  
File: 1501  
Figure 12  
Transceiver Pitch  
Data Sheet  
13  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Technical Data  
Technical Data  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
Package Power Dissipation  
Supply Voltage  
0.9  
W
V
VCCVEE  
VIDpk-pk  
4
Data Input Levels  
VCC+0.5 VEE–0.5  
V
Differential Data Input Voltage Swing  
PIN PDBias Voltage  
5
4
V
V
Storage Ambient Temperature  
–40  
85  
°C  
°C/s  
Hand Lead Soldering  
Temp/Time  
260/10  
Wave Soldering Temp/Time  
Aqueous Wash Pressure  
260/10  
< 110  
°C/s  
psi  
Exceeding any one of these values may destroy the device immediately.  
Data Sheet  
14  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Technical Data  
Recommended Operating Conditions  
Parameter  
Symbol  
Limit Values  
Unit  
°C  
min.  
–40  
–5  
typ.  
max.  
85  
Ambient Temperature1), 3)  
Ambient Temperature2), 3)  
Power Supply Voltage  
Transmitter  
TAMB  
70  
VCCVEE 3.14  
3.3  
3.46  
V
Supply Current Tx  
ICCt  
110  
mA  
mV  
mV  
Data Input High Voltage  
VIH–VCC –1165  
–880  
3200  
Differential Data Input Voltage VIDpk-pk 500  
Swing4)  
Data Input Low Voltage  
VILVCC  
–1810  
–1475  
120  
mV  
ps  
Data Input Rise/Fall Time  
(20% - 80%)  
ti  
Receiver  
Supply Current Rx  
Input Center Wavelength  
ICCr  
120  
mA  
nm  
λRx  
1260  
1580  
1)  
Only for V23818-N15-Lx6/Lxx6.  
Not for V23818-N15-Lx6/Lxx6.  
Ambient operating temperature requires a 2 ms–1 airflow over the device.  
2)  
3)  
4)  
V23818-N15-L353/L356/L457/L354/L355/L47/L46/L373 are internally AC coupled. External coupling  
capacitors required only for V23818-N15-L17/L16/L417/L37/L36.  
The electro-optical characteristics described in the following tables are valid only for use  
under the recommended operating conditions.  
Data Sheet  
15  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Technical Data  
Transmitter Electro-Optical Characteristics  
Transmitter  
Symbol  
Limit Values  
typ.  
Unit  
min.  
–10  
–8  
max.  
–3  
Output Power (Average)1)  
Output Power (Average)2)  
Center Wavelength  
PO  
dBm  
–3  
λC  
1266  
1360  
4
nm  
nm  
dB  
dB  
Spectral Width (RMS)  
Side Mode Suppression Ratio  
Extinction Ratio (Dynamic)  
Optical Eye Mask  
σ
SMSR  
ER  
30  
8.2  
ED  
Compliant with ITU-T G.957  
3)  
Reset Threshold for VCCt  
VTH  
2.2  
2.99  
V
Power on Delay3)  
Jitter Generation4)  
Jitter Generation4)  
Rise Time5)  
tDEL  
JGEp-p  
JGERMS  
tR  
30  
ms  
UI  
UI  
ps  
ps  
V
0.04  
0.004  
70  
Fall Time5)  
tF  
225  
TDis Assert Voltage TTL  
TDis Deassert Voltage TTL  
TDis Assert Time6)  
TDis Deassert Time7)  
VTDH  
VTDL  
tASS  
tDAS  
2
0.8  
1
V
0.4  
ms  
µs  
0.06  
10  
1)  
Not for V23818-N15-L354/L355.  
Only for V23818-N15-L354/L355.  
2)  
3)  
Laser power is shut down if power supply is below VTH and switched on if power supply is above VTH after tDEL  
Jitter Generation under worst case conditions reaches a maximum value of 0.06 UI pk-pk/0.006 UI RMS.  
Measured using 20% - 80% levels without bandwidth filtering.  
.
4)  
5)  
6)  
7)  
T
T
Dis assertion to laser shutdown.  
Dis reassertion to laser startup.  
Data Sheet  
16  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Technical Data  
Jitter  
The transceiver is specified to meet the SONET Jitter performance as outlined in ITU-T  
G.958 and Telcordia GR-253.  
Jitter Generation is defined as the amount of jitter that is generated by the transceiver.  
The Jitter Generation specifications are referenced to the optical OC-48 signals. If no or  
minimum jitter is applied to the electrical inputs of the transmitter, then Jitter Generation  
can simply be defined as the amount of jitter on the Tx optical output. The SONET  
specifications for Jitter Generation are 0.01 UI RMS, maximum and 0.1 UI pk-pk,  
maximum. Both are measured with a 12 kHz - 20 MHz filter in line. A UI is a Unit Interval,  
which is equivalent to one bit slot. At OC-48, the bit slot is 400 ps, so the Jitter Generation  
specification translates to 4 ps RMS, max. and 40 ps pk-pk, max.  
Data Sheet  
17  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Technical Data  
Receiver Electro-Optical Characteristics  
Receiver  
Symbol  
Limit Values  
Unit  
min.  
–3  
typ.  
max.  
Sensitivity (Average Power)1)  
Saturation (Average Power)  
Signal Detect Assert Level2)  
PIN  
–19  
dBm  
dBm  
dBm  
dBm  
dB  
PSAT  
PSDA  
–19  
Signal Detect Deassert Level3) PSDD  
–30  
Signal Detect Hysteresis  
PSDA  
3
PSDD  
Signal Detect Assert Time2)  
Signal Detect Deassert Time3) tDAS  
Data Output High Voltage4)  
tASS  
0.1  
ms  
ms  
mV  
mV  
0.35  
–650  
1000  
VOHVCC –1110  
VODpk-pk 500  
Differential Data Output  
Voltage Swing  
Data Output Low Voltage4)  
VOLVCC  
–1800  
–1300  
mV  
mV  
Signal Detect Output High  
Voltage PECL5), 6)  
VSDH VEE VCC  
VCC  
–820  
–1200  
SDLVEE VCC  
–1900  
2.4  
Signal Detect Output Low  
Voltage PECL5), 6)  
V
VCC  
–1580  
mV  
V
Signal Detect Output High  
Voltage TTL5), 7)  
VSDH  
VSDL  
Signal Detect Output Low  
Voltage TTL5), 7)  
0.5  
1
V
Photo Detector Bias  
Responsivity8)  
PDBiasRES 0.5  
A/W  
Photo Detector Bias Offset  
PDBiasOFF  
5
15  
µA  
dB  
Reflectance  
PREF  
–33  
–27  
1)  
Minimum average optical power at which the BER is less than 1x10–10. Measured with a 223–1 NRZ PRBS as  
recommended by ANSI T1E1.2, SONET OC-48, and ITU-T G.957 S-16.1.  
An increase in optical power above the specified level will cause the Signal Detect to switch from a low state  
to a high state (high active output).  
A decrease in optical power below the specified level will cause the Signal Detect to switch from a high state  
to a low state.  
2)  
3)  
4)  
5)  
Load is 100 differential.  
Internal load is 510 to GND, no external load necessary. Signal Detect is a high active output. High level  
means signal is present, low level means loss of signal.  
For V23818-N15-L17/L16/L417/L37/L36/L373.  
6)  
7)  
8)  
For V23818-N15-L353/L356/L457/L354/L355/L47/L46.  
Monitor current needs to be sunk to VCC  
.
Data Sheet  
18  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Eye Safety  
Eye Safety  
This laser based single mode transceiver is a Class 1 product.  
It complies with IEC 60825-1 and FDA 21 CFR 1040.10 and 1040.11.  
The transceiver has been certified with FDA under accession number 9520890.  
To meet laser safety requirements the transceiver shall be operated within the Absolute  
Maximum Ratings.  
Attention: All adjustments have been made at the factory prior to shipment of the  
devices. No maintenance or alteration to the device is required.  
Tampering with or modifying the performance of the device will result  
in voided product warranty.  
Note: Failure to adhere to the above restrictions could result in a modification that is  
considered an act of “manufacturing”, and will require, under law, recertification of  
the modified product with the U.S. Food and Drug Administration (ref. 21 CFR  
1040.10 (i)).  
Laser Data  
Wavelength  
1300 nm  
< 2 mW  
Total Output Power  
(as defined by IEC: 7 mm aperture at 14 mm distance)  
Total Output Power  
(as defined by FDA: 7 mm aperture at 20 cm distance)  
< 180 µW  
6°  
Beam Divergence  
FDA  
IEC  
Complies with 21 CFR  
1040.10 and 1040.11  
Class 1 Laser Product  
File: 1401  
Figure 13  
Required Labels  
Indication of  
laser aperture  
and beam  
20 19 18 17 16 15 14 13 12 11  
Tx  
Rx  
Top view  
1
2 3 4 5 6 7 8 9 10  
File: 1334  
Figure 14  
Laser Emission  
Data Sheet  
19  
2003-08-18  
V23818-N15-Lxx/Lxxx  
EMI-Recommendations  
EMI-Recommendations  
To avoid electromagnetic radiation exceeding the required limits please take note of the  
following recommendations.  
When Gigabit switching components are found on a PCB (multiplexers, clock recoveries  
etc.) any opening of the chassis may produce radiation also at chassis slots other than  
that of the device itself. Thus every mechanical opening or aperture should be as small  
as possible.  
On the board itself every data connection should be an impedance matched line (e.g.  
strip line, coplanar strip line). Data, Datanot should be routed symmetrically, vias should  
be avoided. A terminating resistor of 100 should be placed at the end of each matched  
line. An alternative termination can be provided with a 50 resistor at each (D, Dn). In  
DC coupled systems a thevenin equivalent 50 resistance can be achieved as follows:  
for 3.3 V: 125 to VCC and 82 to VEE, for 5 V: 82 to VCC and 125 to VEE at Data  
and Datanot. Please consider whether there is an internal termination inside an IC or a  
transceiver.  
In certain cases signal GND is the most harmful source of radiation. Connecting chassis  
GND and signal GND at the plate/bezel/chassis rear e.g. by means of a fiber optic  
transceiver may result in a large amount of radiation. Even a capacitive coupling  
between signal GND and chassis may be harmful if it is too close to an opening or an  
aperture.  
If a separation of signal GND and chassis GND is not planned, it is strongly  
recommended to provide a proper contact between signal GND and chassis GND at  
every location where possible. This concept is designed to avoid hotspots. Hotspots are  
places of highest radiation which could be generated if only a few connections between  
signal and chassis GND exist. Compensation currents would concentrate at these  
connections, causing radiation.  
By use of Gigabit switching components in a design, the return path of the RF current  
must also be considered. Thus a split GND plane of Tx and Rx portion may result in  
severe EMI problems.  
A recommendation is to connect the housing leads to signal GND. However, in certain  
applications it may improve EMI performance by connecting them to chassis GND.  
The cutout should be sized so that all contact springs make good contact with the face  
plate.  
Please consider that the PCB may behave like a waveguide. With an εr of 4, the  
wavelength of the harmonics inside the PCB will be half of that in free space. In this  
scenario even the smallest PCBs may have unexpected resonances.  
Data Sheet  
20  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Recommended Termination Schemes  
Recommended Termination Schemes  
2x10 DC/DC Transceiver  
18  
20  
19 17  
VCC SerDes  
12,16  
14  
VEEt  
VCC  
TD+  
C6  
+
SerDat Out  
ECL/  
Laser  
Driver  
PECL  
Driver  
100 Ω  
C8  
TD15  
C7  
SerDat Out −  
TDis 13  
TDis  
C1  
11  
L1  
L2  
VCCt  
VCC  
3.3 V  
SFF Transceiver  
Serializer/  
Deserializer  
VCCr  
7
C3 C10  
C2  
Signal  
Detect  
SD  
8
1
SD  
PDBias  
Limiting  
Amplifier  
RD−  
9
C4  
RD−  
Pre-  
Amp  
SerDat In −  
Receiver  
PLL etc.  
C9  
RD+ 10  
2,3,6  
C5  
RD+  
SerDat In +  
VEEr  
C1/2/3  
= 4.7 ... 10 µF  
C4/5/6/7 = 100 nF  
C8/9/10 = Design criterion is the resonance frequency only. The self resonant frequency of the  
capacitor must be in the vicinity of the nominal data rate. Short traces are mandatory.  
L1/2*)  
R1  
= 1 ... 4.7 µH  
= 100 (depending on SerDes chip used, ensure proper 50 termination to VEE or  
100 differential is provided. Check for termination inside of SerDes chip).  
= 150 Ω  
R2/3  
R4/5  
= Biasing (depends on SerDes chip).  
Place R1/4/5 close to SerDes chip.  
Place R2/3 close to Infineon transceiver.  
*)  
The inductors may be replaced by appropriate Ferrite beads.  
File: 1390  
Figure 15  
Data Sheet  
21  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Recommended Termination Schemes  
2x10 AC/AC Transceiver  
VCC SerDes  
20  
19 17  
18  
VEEt 12,16  
14  
VCC  
TD+  
SerDat Out +  
ECL/  
Laser  
Driver  
PECL  
Driver  
100 Ω  
C4  
TD15  
SerDat Out −  
TDis  
13  
11  
TDis  
L1  
VCCt  
VCC  
3.3 V  
C1  
SFF Transceiver  
Serializer/  
Deserializer  
L2  
VCCr  
7
C3 C6  
C2  
Signal  
Detect  
SD  
8
1
SD  
PDBias  
Limiting  
Amplifier  
RD−  
9
Pre-  
Amp  
SerDat In −  
Receiver  
PLL etc.  
C5  
RD+ 10  
2,3,6  
SerDat In +  
VEEt  
C1/2/3  
C4/5/6  
= 4.7 ... 10 µF  
= Design criterion is the resonance frequency only. The self resonant frequency of the  
capacitor must be in the vicinity of the nominal data rate. Short traces are mandatory.  
= 1 ... 4.7 µH  
L1/2*)  
R1/2/3/4 = Depends on SerDes chip used, ensure proper 50 termination to VEE or 100 Ω  
differential is provided. Check for termination inside of SerDes chip.  
R5/6  
= Biasing (depends on SerDes chip).  
Place R1/2/3/4/5/6 close to SerDes chip.  
*)  
The inductors may be replaced by appropriate Ferrite beads.  
File: 1391  
Figure 16  
Data Sheet  
22  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Recommended Termination Schemes  
2x5 DC/DC Transceiver  
VCC SerDes  
7
9
VEEt  
VCC  
TD+  
C6  
+
SerDat Out  
ECL/  
Laser  
100 Ω  
Driver  
PECL  
Driver  
C8  
TD10  
C7  
SerDat Out −  
TDis  
8
6
TDis  
C1  
L1  
L2  
VCCt  
VCC  
3.3 V  
SFF Transceiver  
Serializer/  
Deserializer  
VCCr  
2
C3 C10  
C2  
Signal  
Detect  
SD  
3
4
SD  
Limiting  
Amplifier  
RD−  
C4  
RD−  
Pre-  
Amp  
SerDat In −  
Receiver  
PLL etc.  
C9  
RD+  
5
1
C5  
RD+  
SerDat In +  
VEEr  
C1/2/3  
= 4.7 ... 10 µF  
C4/5/6/7 = 100 nF  
C8/9/10 = Design criterion is the resonance frequency only. The self resonant frequency of the  
capacitor must be in the vicinity of the nominal data rate. Short traces are mandatory.  
L1/2*)  
R1  
= 1 ... 4.7 µH  
= 100 (depending on SerDes chip used, ensure proper 50 termination to VEE or  
100 differential is provided. Check for termination inside of SerDes chip).  
= 150 Ω  
R2/3  
R4/5  
= Biasing for outputs depending on Serializer.  
Place R1/4/5 close to SerDes chip.  
Place R2/3 close to Infineon transceiver.  
*)  
The inductors may be replaced by appropriate Ferrite beads.  
File: 1392  
Figure 17  
Data Sheet  
23  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Recommended Termination Schemes  
2x5 AC/AC Transceiver  
VCC SerDes  
7
9
VEEt  
VCC  
TD+  
+
SerDat Out  
ECL/  
PECL  
Driver  
Laser  
100 Ω  
Driver  
C4  
TD10  
SerDat Out −  
TDis  
8
6
TDis  
C1  
L1  
L2  
VCCt  
VCC  
3.3 V  
SFF Transceiver  
Serializer/  
Deserializer  
VCCr  
2
C3 C6  
C2  
Signal  
Detect  
SD  
3
4
SD  
Limiting  
Amplifier  
RD−  
RD−  
Pre-  
Amp  
SerDat In −  
Receiver  
PLL etc.  
C5  
RD+  
5
1
RD+  
SerDat In +  
VEEr  
C1/2/3  
C4/5/6  
= 4.7 ... 10 µF  
= Design criterion is the resonance frequency only. The self resonant frequency of the  
capacitor must be in the vicinity of the nominal data rate. Short traces are mandatory.  
= 1 ... 4.7 µH  
L1/2*)  
R1/2/3/4 = Depends on SerDes chip used, ensure proper 50 termination to VEE or 100 Ω  
differential is provided. Check for termination inside of SerDes chip.  
R5/6  
= Biasing (depends on SerDes chip).  
Place R1/2/3/4/5/6 close to SerDes chip.  
*)  
The inductors may be replaced by appropriate Ferrite beads.  
File: 1393  
Figure 18  
Data Sheet  
24  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Package Outlines  
Package Outlines  
a) recommended bezel position  
Drawing shown is 2x10 pinning with collar  
Dimensions in mm [inches]  
File: 1213  
Figure 19  
Data Sheet  
25  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Package Outlines  
Advanced Collar  
Dimensions in mm [inches]  
File: 1505  
Figure 20  
Non-standard Collar  
Data Sheet  
26  
2003-08-18  
V23818-N15-Lxx/Lxxx  
Revision History:  
2003-08-18  
DS1  
Previous Version:  
2003-03-10  
Page  
Subjects (major changes since last revision)  
“Preliminary Data Sheet” deleted  
V23818-N15-L373, V23818-N15-L417, V23818-N15-L46WH deleted  
For questions on technology, delivery and prices please contact the Infineon  
Technologies Offices in Germany or the Infineon Technologies Companies and  
Representatives worldwide: see our webpage at http://www.infineon.com.  
Edition 2003-08-18  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

V23818-N15-L356-C

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L356C

暂无描述
INFINEON

V23818-N15-L36

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L37

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L373

Transceiver, Through Hole Mount
INFINEON

V23818-N15-L457

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L46

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L46WH

Transceiver, Through Hole Mount
INFINEON

V23818-N15-L47

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x5/2x10 Pinning with LC™ Connector
INFINEON

V23818-N15-L616

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON

V23818-N15-L653

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON

V23818-N15-L656

Small Form Factor Single Mode 1300 nm Multirate up to 2.5 Gbit/s Transceiver 2x10 Pinning with LC⑩ Connector, with Collar
INFINEON