V23832-T2531-M101 [INFINEON]

PAROLI 2 Tx AC, 1.25 Gbit/s; 帕罗利2的Tx交流, 1.25 Gbit / s的
V23832-T2531-M101
型号: V23832-T2531-M101
厂家: Infineon    Infineon
描述:

PAROLI 2 Tx AC, 1.25 Gbit/s
帕罗利2的Tx交流, 1.25 Gbit / s的

文件: 总33页 (文件大小:690K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fiber Optics  
Parallel Optical Link Transmitter:  
PAROLI® 2 Tx AC, 1.25 Gbit/s  
V23832-T2531-M101  
V23832-R511-M101  
Parallel Optical Link Receiver:  
PAROLI® 2 Rx AC, 1.25 Gbit/s  
Design Benefits  
• Relieve system bandwidth bottle necks  
• Simplifies system design  
• Enables system upgrades in field  
• Low power consumption at increased board density  
• Flat package for height critical application  
Features  
File: 3104  
• Infineon’s highly reliable 850 nm VCSEL technology  
• Power supply 3.3 V  
• Transmitter with multistandard electrical interface  
• Receiver with Infineon’s adjustable CML output  
• 12 electrical data channels  
• Asynchronous, AC-coupled optical link  
• 12 optical data channels  
• Internal power monitoring for constant power budget  
• Transmission data rate of up to 1250 Mbit/s per channel,  
total link data rate up to 15 Gbit/s  
• PIN diode array technology  
• Optimized for 62.5 µm multimode graded index fiber  
• MT based optical port (MPO connector)  
• Plug-in module with ultra low profile  
• IEC Class 1M laser eye safety compliant  
• OIF1) compliant  
• GBE mask compliant modules available  
• EMI-shielding for front panel access  
• Standard link length compliant  
• Unused transmitter channels can be switched off  
• DC or AC coupling of input data  
• Telcordia compliant  
1)  
OIF-VSR4-01.0 Implementation Agreement (VSR OC-192/STM-64).  
PAROLI® is a registered trademark of Infineon Technologies AG  
Data Sheet  
1
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Applications  
Optical Port  
• Designed for the industry standard 12 fiber MT Connector (MPO)  
• Alignment pins fixed in module port  
• Integrated mechanical keying  
• Module is provided with a dust cover  
Features of MT Connector (MPO)  
(as part of optional PAROLI fiber optic cables)  
• Uses standardized MT ferrule  
• MT compatible fiber spacing (250 µm) and alignment pin spacing (4600 µm)  
• Push-pull mechanism  
• Ferrule bearing spring loaded  
Features of the PAROLI 2 Electrical Connector  
• Pluggable version using BGA socket  
• 100 pin positions (10x10)  
• 4 mm stack height in mated conditions  
• Plug and receptacle are provided with protective cap  
• Standard BGA process for socket assembly  
• Contact area plating made out of gold over nickel  
• Module side: FCI-MEG-Array® -Plug (part no. 84512-202)  
• PCB side: FCI-MEG-Array® -Receptacle (part no. 84513-201)  
Applications  
• Switches, routers, transport equipment  
• Mass storage devices  
• Access network  
• Rack-to-rack/board-to-board interconnect  
• Optical backplane interconnect  
Data Sheet  
2
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Pin Configuration  
Pin Configuration  
Pin A1  
Pin A10  
Bottom view  
File: 3331  
Figure 1  
Pin Information Transmitter  
Numbering Conventions Transmitter (bottom view)  
J
I
H
G
F
E
D
C
B
A
VEE  
DI05N  
DI05P  
DI06N  
DI06P  
DI07N  
DI07P  
DI08N  
DI08P  
VEE  
1
2
3
4
5
6
7
8
9
10  
DI04P  
DI04N  
DI01P  
DI01N  
DI02P  
DI02N  
DI03P  
DI03N  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
DI09N  
DI09P  
DI12N  
DI12P  
DI11N  
DI11P  
DI10N  
DI10P  
VEE  
Reserved Reserved t.b.l.o.  
Reserved Reserved t.b.l.o.  
t.b.l.o.  
t.b.l.o.  
t.b.l.o.  
–LE  
Reserved Reserved VEE  
Reserved Reserved VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
t.b.l.o.  
t.b.l.o.  
LCU  
VIN  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
LE  
–RESET VEE  
VCC  
VCC  
VCC  
VEE  
VEE  
VCC  
This edge towards MPO connector  
Data Sheet  
3
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Pin Configuration  
Pin Description Transmitter  
Symbol  
VCC  
Level/Logic Description  
Power supply voltage of laser driver  
VIN  
CML: VIN = Reference supply (e.g. VCC)  
LVDS, LVPECL: VIN = VEE  
VEE  
Ground  
LCU  
LVCMOS  
Out  
Laser Controller Up.  
High = normal operation.  
Low = laser fault or RESETlow.  
DIxxN  
Signal In  
Signal In  
Data Input #xx, inverted  
DIxxP  
Data Input #xx, non-inverted  
–RESET  
LVCMOS In High = laser diode array is active.  
Low = switches laser diode array off.  
This input has an internal pull-down to ensure laser eye  
safety switch off in case of unconnected RESETinput.  
LVCMOS In Laser ENABLE. High active.  
LE  
High = laser array is on if LE is also active.  
Low = laser array is off. This input has an internal pull-up,  
therefore can be left open.  
–LE  
LVCMOS In Laser ENABLE. Low active.  
Low = laser array is on if LE is also active. This input has  
an internal pull-down, therefore can be left open.  
t.b.l.o.  
to be left open  
Reserved  
Reserved for future use  
Data Sheet  
4
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Pin Configuration  
Pin A1  
Pin A10  
Bottom view  
File: 3332  
Figure 2  
Pin Information Receiver  
Numbering Conventions Receiver (bottom view)  
J
I
H
G
F
E
D
C
B
A
VEE  
DO05P DO05N DO06P DO06N DO07P DO07N DO08P DO08N VEE  
1
2
3
4
5
6
7
8
9
10  
DO04N VEE  
DO04P VEE  
DO01N VEE  
DO01P VEE  
DO02N VEE  
DO02P VEE  
DO03N VEE  
DO03P VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
DO09P  
DO09N  
DO12P  
DO12N  
DO11P  
DO11N  
DO10P  
DO10N  
VEE  
Reserved Reserved t.b.l.o.  
Reserved Reserved OEN  
t.b.l.o.  
ENSD  
–SD12  
Reserved Reserved VEE  
Reserved Reserved VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
SD01  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
Reserved REFR  
VCCO  
VCCO  
VCC  
VCCO  
VCCO  
VCC  
VEE  
VEE  
VCC  
VCC  
This edge towards MPO connector  
Data Sheet  
5
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Pin Configuration  
Pin Description Receiver  
Symbol  
VCC  
Level/Logic Description  
Power supply voltage of pre amplifier and analog circuitry  
Power supply voltage of output stages  
VCCO  
REFR  
Adjustment of output current by connecting external  
resistor to VEE  
VEE  
Ground  
OEN  
LVCMOS In Output Enable High = normal operation.  
Low = sets all Data Outputs to low.  
This input has an internal pull-up which pulls to high level  
when this input is left open.  
ENSD  
LVCMOS In High = SD1 and –SD12 function enabled.  
Low = SD1 and –SD12 are set to permanent active.  
This input has an internal pull-up which pulls to high level  
when this input is left open.  
SD1  
LVCMOS  
Out  
Signal Detect on fiber #1.  
High = signal of sufficient AC power is present on fiber #1.  
Low = signal on fiber #1 is insufficient.  
–SD12  
LVCMOS  
Out  
low active  
Signal Detect on fiber #12.  
Low = signal of sufficient AC power is present on fiber #12.  
High = signal on fiber #12 is insufficient.  
DOxxP  
DOxxN  
t.b.l.o.  
CML Out  
CML Out  
Data Output #xx, non-inverted  
Data Output #xx, inverted  
to be left open  
Reserved  
Reserved for future use  
Data Sheet  
6
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Description  
Description  
PAROLI is a parallel optical link for high-speed data transmission. A complete PAROLI  
link consists of a transmitter module, a 12-channel fiber optic cable, and a receiver  
module. The transmitter supports LVDS, CML and LVPECL differential signals. Two  
different receiver modules are available. Module V23832-R521-M101 is for LVDS  
electrical output only. This specification (V23832-R511-M101) describes a receiver for  
Infineon’s adjustable CML output.  
Transmitter  
DC-balanced  
data stream  
Receiver  
12 parallel  
channels  
12  
12  
PAROLI Link  
File: 3509  
Figure 3  
Example of a PAROLI Link  
Data Sheet  
7
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Description  
Transmitter V23832-T2531-M101  
The transmitter module converts parallel electrical input signals via a laser driver and a  
Vertical Cavity Surface Emitting Laser (VCSEL) diode array into parallel optical output  
signals. All input data signals are Multistandard Differential Signals (LVDS compatible;  
LVPECL and CML is also supported because of the wide common input range). The  
electrical interface (LVDS, LVPECL or CML) is selected by the supply inputs VIN. The  
data rate is up to 1250 Mbit/s for each channel. The transmitter module’s min. data rate  
of 500 Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern with  
a lower disparity. The transmitter features active feedback of optical output power and  
extinction ratio, which guarantees a constant power budget.  
Unused channels can be forced to a quiescent state by applying e.g. a constant high  
level to the input stage of these channels. The integrated alerter circuit (see “Laser Eye  
Safety Design Considerations” on Page 12) will switch off the corresponding  
transmitter output, which results also in a reduced power consumption. Unused  
transmitter input channels can also be left open. The integrated swing detection circuit  
will assure a quiescent output state for these channels.  
A logic low level at –RESET switches all laser outputs off. During power-up –RESET  
must be used as a power-on reset which disables the laser driver and laser control until  
the power supply has reached a 3.135 V level.  
The Laser Controller Up (LCU) output is low if a laser fault is detected or –RESET is  
forced to low.  
All non data signals have LVCMOS levels.  
Transmission delay of the PAROLI system is 1 ns for the transmitter, 1 ns for the  
receiver and approximately 5 ns per meter for the fiber optic cable.  
Electrical  
Input  
LE LE Laser Enable  
Optical  
Output  
12  
12  
12  
12  
Laser  
Driver  
Laser  
Diode  
Array  
Data In  
Data  
Input  
Stage  
Laser  
Control  
Laser Controller  
Up (LCU)  
VIN  
RESET  
File: 3317  
Figure 4  
Transmitter Block Diagram  
1)  
Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,  
ITU-T recommendation G.957 sec. II.  
Data Sheet  
8
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Description  
Receiver V23832-R511-M101  
The PAROLI receiver module converts parallel optical input signals into parallel electrical  
output signals. The optical signals received are converted into voltage signals by PIN  
diodes, trans impedance amplifiers, and gain amplifiers. The differential data outputs are  
Infineon’s adjustable CML signals. A separate module (V23832-R521-M101) with LVDS  
output is also available. The output differential voltage (swing) is adjusted by an external  
resistor connected to the REFR module input, the output average is adjustable by  
external pull-up resistors.  
The data rate is up to 1250 Mbit/s for each channel. The receiver module’s min. data rate  
of 500 Mbit/s is specified for the CID1) worst case pattern (disparity 72) or any pattern  
with a lower disparity.  
Additional Signal Detect outputs (SD1 active high / –SD12 active low) show whether an  
optical AC input signal is present at data input 1 and/or 12. The signal detect circuit can  
be disabled with a logic low at ENSD. The disabled signal detect circuit will permanently  
generate an active level at Signal Detect outputs, even if there is insufficient signal input.  
This could be used for test purposes.  
A logic low at Output Enable sets all data outputs to logic low. SD outputs will not be  
effected.  
All non data signals have LVCMOS levels. Transmission delay of the PAROLI system is  
1 ns for the transmitter, 1 ns for the receiver and approximately 5 ns per meter for  
the fiber optic cable.  
Optical  
Input  
REFR  
Electrical  
Output  
12  
12  
12  
12  
Gain  
Amplifier  
CML  
Output  
Stage  
Data Out  
Data  
Pin  
Diode  
Array  
Amplifier  
Signal  
Detect  
Circuit  
SD1  
SD12  
ENSD Output Enable (OEN)  
File: 3323  
Figure 5  
Receiver Block Diagram  
1)  
Consecutive Identical Digit (CID) immunity test pattern for STM-N signals,  
ITU-T recommendation G.957 sec. II.  
Data Sheet  
9
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Description  
Regulatory Compliance  
The following table shows industry standard test methods and results obtained from the  
indicated test methods. (The overall system design will affect the electromagnetic  
interference (EMI), electrostatic discharge (ESD) and immunity).  
Feature  
Standard  
Comments  
ESD:  
JEDEC Human Body  
Class 1C  
Electrostatic Discharge Model (HBM) Test  
to the Electrical Pins  
(HBM)  
Method  
EIA/JESD22-A114-B  
(MIL-STD 883D  
method 3015.7)  
Immunity:  
EN 61000-4-2  
IEC 61000-4-2  
Discharges ranging from ±2 kV to  
±15 kV on the front end/face-plate/  
receptacle cause no damage to  
module (under recommended  
mounting conditions).  
Against Electrostatic  
Discharge (ESD) to the  
Module Receptacle  
Immunity:  
Against Radio  
Frequency  
EN 61000-4-3  
IEC 61000-4-3  
With a field strength of 3 V/m, noise  
frequency ranges from 10 MHz to  
2 GHz1). No effect on module  
performance between the  
Electromagnetic Field  
specification limits.  
Emission:  
FCC 47 CFR Part 15, Noise frequency range:  
Electromagnetic  
Interference (EMI)  
Class B  
EN 55022 Class B  
CISPR 22  
30 MHz to 18 GHz;  
Radiated Emission does not exceed  
specified limits when measured  
inside a shielding enclosure with  
recommended cutout dimensions.  
Typically pass with > 11 dB margin  
to the limit (under recommended  
mounting conditions).  
1)  
This test covers high frequency bands of mobile phones.  
EMI Recommendations  
EMI behavior of each PAROLI module revision is evaluated and measured - in order to  
ensure a good and sufficient EMI performance of all PAROLI modules. As the total EMI  
performance will also depend on system design and to avoid electromagnetic radiation  
exceeding the required limits set by the standards, please take note of the following  
recommendations.  
Data Sheet  
10  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Description  
When Gigabit switching components are found on a PCB (e.g. multiplexer, serializer-  
deserializer, clock data recovery, etc.), any opening of the chassis may leak radiation;  
this may also occur at chassis slots other than that of the device itself. Thus every  
mechanical opening or aperture should be as small as feasible and its length carefully  
considered.  
On the board itself, every data connection should be an impedance matched line (e.g.  
micro strip, strip line or coplanar strip line). Data (D) and Data-not (Dn) should be routed  
symmetrically. Vias should be avoided. Where internal termination inside an IC or a  
PAROLI module is not present, a line terminating resistor must be provided.  
The decision of how best to establish a ground depends on many boundary conditions.  
This decision may turn out to be critical for achieving lowest EMI performance. At RF  
frequencies the ground plane will always carry some amount of RF noise. Thus the  
ground and VCC planes are often major radiators inside an enclosure.  
As a general rule, for small systems such as PCI cards placed inside poorly shielded  
enclosures, the common ground scheme has often proven to be most effective in  
reducing RF emissions. In a common ground scheme, the PCI card becomes more  
equipotential with the chassis ground. As a result, the overall radiation will decrease. In  
a common ground scheme, it is strongly recommended to provide a proper contact  
between signal ground and chassis ground at every location where possible. This  
concept is designed to avoid hotspots which are places of highest radiation, caused  
when only a few connections between chassis and signal grounds exist. Compensation  
currents would concentrate at these connections, causing radiation.  
However, as signal ground may be the main cause for parasitic radiation, connecting  
chassis ground and signal ground at the wrong place may result in enhanced RF  
emissions. For example, connecting chassis ground and signal ground at a front panel/  
bezel/chassis by means of a fiber optic module may result in a large amount of radiation  
especially where combined with an inadequate number of grounding points between  
signal ground and chassis ground. Thus the fiber optic module becomes a single contact  
point increasing radiation emissions. Even a capacitive coupling between signal ground  
and chassis ground may be harmful if it is too close to an opening or an aperture. For a  
number of systems, enforcing a strict separation of signal ground from chassis ground  
may be advantageous, providing the housing does not present any slots or other  
discontinuities. This separate ground concept seems to be more suitable in huge  
systems.  
The return path of RF current must also be considered. Thus a split ground plane  
between Tx and Rx paths may result in severe EMI problems.  
The bezel opening for a transceiver should be sized so that all contact springs of the  
transceiver cage make good electrical contact with the face plate.  
Please consider that the PCB may behave like a dielectric waveguide. With a dielectric  
constant of 4, the wavelength of the harmonics inside the PCB will be half of that in free  
space. Thus even the smallest PCBs may have unexpected resonances.  
Data Sheet  
11  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Laser Eye Safety  
Laser Eye Safety  
The transmitter of the AC coupled Parallel Optical Link (PAROLI) is an IEC 60825-1  
Amend. 2 Class 1M laser product. It complies with FDA performance standards (21 CFR  
1040.10 and 1040.11) for laser products except for deviations pursuant to Laser Notice  
No. 50, dated July 26, 2001. To avoid possible exposure to hazardous levels of invisible  
laser radiation, do not exceed maximum ratings.  
The PAROLI module must be operated under the specified operating conditions (supply  
voltage can be adjusted between 3.0 V and 3.6 V) under any circumstances to ensure  
laser eye safety.  
Class 1M Laser Product  
Attention: Invisible laser radiation. Do not view directly with optical instruments.  
Note: Any modification of the module will be considered an act of “manufacturing”, and will  
require, under law, recertification of the product under FDA (21 CFR 1040.10 (i)).  
Laser aperture  
and beam  
File: 3506  
Figure 6  
Laser Emission  
Laser Eye Safety Design Considerations  
To ensure laser eye safety for all input data patterns each channel is controlled internally  
and will be switched off if the laser eye safety limits are exceeded. A channel alerter  
switches the respective data channel output off if the input duty cycle permanently  
exceeds 57% (switching range 57 % min. - 65 % max.). The alerter will not disable the  
channel below an input duty cycle of 57% under all circumstances.  
The minimum alerter response time is 1 µs with a constant high input, i.e. in the input  
pattern the time interval of excessive high input (e.g. ’1’s in excess of a 57% duty cycle,  
consecutive or non-consecutive) must not exceed 1 µs, otherwise the respective channel  
will be switched off. The alerter switches the respective channel from off to on without  
the need of resetting the module if the input duty cycle is no longer violated.  
All of the channel alerters operate independently, i.e. an alert within a channel does not  
affect the other channels. To decrease the power consumption of the module unused  
channel inputs can be tied to high input level. In this way a portion of the supply current  
in this channel is triggered to shut down by the corresponding alerter.  
Data Sheet  
12  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Laser Eye Safety  
Laser Eye Safety Measurement Conditions  
Laser Data  
Symbol  
Values  
typ.  
Unit  
Condition  
min.  
max.  
Center wavelength λC  
830  
850  
860  
nm  
Tcase 0...80°C  
Array size  
12  
channels  
°/rad  
Divergence angle/ Θ/NA  
Numerical  
44/0.22  
Θ full /  
NA half angle  
Aperture  
IEC class 1M  
Accessible  
Emission Limit  
AEL  
6.36  
dBm  
7 mm aperture  
@ 100 mm  
distance  
Applying penalties Popt  
4.2  
dB  
(safety margin)  
Test limit  
2.16  
dBm  
Data Sheet  
13  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Technical Data  
Absolute Maximum Ratings  
Stress beyond the values stated below may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods of time may affect  
device reliability. Performance between absolute maximum ratings and recommended  
operating conditions is not guaranteed.  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
4.5  
Supply Voltage  
VCCVEE –0.3  
V
Data/Control Input Levels1)  
Data Input Differential Voltage2)  
Operating Case Temperature3)  
Storage Ambient Temperature  
Relative Humidity (non condensing)  
VIN  
–0.5  
VCC+0.5  
2.0  
V
|VID|  
Tcase  
Tstg  
V
0
90  
°C  
°C  
%
kV  
–40  
5
100  
95  
ESD Resistance  
1
(all pins to VEE, human body model)4)  
(see table “Regulatory Compliance” on  
Page 10)  
1)  
At Data and LVCMOS inputs.  
2)  
|VID| = |(input voltage of non-inverted input minus input voltage of inverted input)|.  
Measured at case temperature reference point (see Figure 18 on Page 31).  
To avoid electrostatic damage, handling cautions similar to those used for MOS devices must be observed.  
3)  
4)  
Data Sheet  
14  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Recommended Operating Conditions1)  
Parameter  
Symbol  
Values  
Unit  
min.  
typ.  
max.  
Transmitter  
Operating Case Temperature  
Power Supply Voltage  
Noise on Power Supply2)  
Tcase  
VCC  
0
45  
80  
°C  
V
3.135  
3.3  
3.6  
200  
VCC  
NPS  
mV  
mV  
Data Input Voltage Range  
(DC-coupled)3), 4)  
VDATAI  
500  
80  
Data Input Differential Voltage  
(DC- or AC-coupled)4), 5)  
|VID|  
1000  
mV  
Data Input Skew6)  
tSPN  
0.5 x tR-DI, ps  
tF-DI  
Data Input Rise/Fall Time7)  
LVCMOS Input High Voltage  
LVCMOS Input Low Voltage  
t
R-DI, tF-DI 50  
360  
VCC  
0.8  
20  
ps  
V
VLVCMOSIH 2.0  
VLVCMOSIL VEE  
V
LVCMOS Input Rise/Fall Time8) tR-LVCMOSI  
,
ns  
tF-LVCMOSI  
Receiver  
Power Supply Voltages  
Noise on Power Supply2)  
Output Current9)  
VCC, VCCO 3.0  
3.3  
3.6  
200  
9
V
NPS  
mV  
mA  
Iout  
3
Output Voltage (DC-coupled)10) Vout  
V
CCO–1.8  
V
CCO+0.5 V  
Output Differential Voltage  
(DC- or AC-coupled)10), 11)  
|VOD|  
80  
800  
mV  
Output Load RC Time Constant tRC  
150  
VCC  
0.8  
20  
ps  
V
LVCMOS Input High Voltage  
VLVCMOSIH 2.0  
LVCMOS Input Low Voltage  
VLVCMOSIL VEE  
V
LVCMOS Input Rise/Fall Time8) tR-LVCMOSI  
,
ns  
tF-LVCMOSI  
Optical Input Rise/Fall Time12)  
Input Extinction Ratio  
t
R-OI, tF-OI  
400  
860  
ps  
ER  
6.0  
dB  
nm  
Input Center Wavelength  
λC  
830  
Voltages refer to VEE = 0 V.  
Data Sheet  
15  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
1)  
2)  
Recommended range of input parameters for specified module functional performance.  
Noise frequency is 1 kHz to fmax, where fmax is equal to the maximum data rate in units of MHz. E.g. for a  
maximum data rate of 2700 Mbit/s, fmax = 2700 MHz. Power supply noise is defined with the recommended  
filter in place at the supply side of the filtering circuit (see Figure 9 on Page 17).  
The input stage can also be AC-coupled.  
3)  
4)  
Input level diagram: see Figure 7 on Page 16.  
5)  
|VID| = |(input voltage of non-inverted input minus input voltage of inverted input)|.  
Skew between positive and negative inputs measured at 50% level.  
20% - 80% level.  
6)  
7)  
8)  
Measured between 0.8 V and 2.0 V.  
9)  
I
out 10*1.15 V/Rexternal. Resistor Rexternal to be connected externally between REFR and VEE.  
10)  
11)  
Output level diagram: see Figure 8 on Page 16.  
|VOD| = Iout*(300 Ω || RLOAD). The output current range of 3 mA to 9 mA corresponds to |VOD| = 130 mV to 385 mV  
for RLOAD = 50 .  
|VOD| = |(output voltage of non-inverted output minus output voltage of inverted output)|.  
20% - 80% level. Non filtered values.  
12)  
mV  
V
CC  
|V  
|
ID  
500  
Time  
File: 3318  
Figure 7  
Input Level Diagram, DC-coupling  
mV  
V
+0.5  
CCO  
|V  
|
OD  
V
1.8  
CCO  
Time  
File: 3319  
Figure 8  
Output Level Diagram, DC-coupling  
Data Sheet  
16  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Recommended Power Supply Filtering  
A power supply filtering is recommended for the transmitter and the receiver module. A  
possible filtering scheme is shown in Figure 9. The module signal and chassis ground  
refer to a common ground plane, which can be contacted to the PCB ground by the  
mounting screws (see Figure 17 “PCB Layout” on Page 28).  
VCC  
L1  
VCC to PAROLI Tx or Rx Module  
1 µH  
C1  
22 µF  
C3  
100 nF  
C2  
100 nF  
File: 3330  
Board Ground Plane  
Figure 9  
Filtering Scheme  
Transmitter Module  
VCC  
Data In P  
internal P  
internal N  
Rin/2  
Rin/2  
Data In N  
VIN  
> 6 kΩ  
1.95 V  
File: 3320  
Figure 10  
Transmitter - Input Stage  
Data Sheet  
17  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Receiver Module  
Out P  
Out N  
600 Ω  
internal logic signal  
Iout: 3 mA...9 mA  
Iout  
(adjust-  
able)  
max. high level = VCCO+0.5 V  
min. low level = VCCO1.8 V  
VCCO: Paroli module supply  
BGR  
1.15 V  
for output stage  
Iout /10  
~
REFR module pin  
Rexternal (one setting applies to all outputs)  
File: 3324  
Figure 11  
Receiver - CML Output Stage  
Data Sheet  
18  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
The electro-optical characteristics described in the following tables are valid only for use  
under the recommended operating conditions.  
Transmitter Electrical Characteristics  
Parameter  
Symbol  
Values  
typ.  
Unit  
min.  
max.  
450  
1.6  
Supply Current1)  
Power Consumption1)  
ICC  
P
400  
1.3  
mA  
W
Data Rate per Channel  
DR  
5002)  
1250  
0.4  
Mbit/s  
V
LVCMOS Output Voltage Low VLVCMOSOL  
LVCMOS Output Voltage High VLVCMOSOH 2.5  
V
LVCMOS Input Current  
High/Low  
ILVCMOSI  
–100  
100  
µA  
LVCMOS Output Current High3) ILVCMOSOH  
LVCMOS Output Current Low4) ILVCMOSOL  
0.5  
4.0  
120  
mA  
mA  
Data Differential  
RIN  
80  
100  
Input Impedance5)  
1)  
Measured at the recommended case temperature of Tcase = 45°C. For Tcase = 0°C a decrease of approximately  
10% and for Tcase = 80°C an increase of approximately 15% can be expected.  
Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum data  
2)  
rate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can  
be transmitted down to a data rate as low as 1 Mbit/s.  
Source current.  
Sink current.  
3)  
4)  
5)  
Data input stage.  
Data Sheet  
19  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Transmitter Electro-Optical Characteristics  
Parameter  
Symbol  
Values  
Unit  
min.  
typ.  
max.  
200  
Optical Rise Time1)  
tR  
ps  
Optical Fall Time1)  
tF  
200  
ps  
Total Jitter2), 3)  
TJ  
0.284  
0.1  
UI  
Deterministic Jitter3), 4)  
Channel-to-channel skew5)  
Launched Average Power6)  
Launched Power Shutdown  
Center Wavelength7)  
Spectral Width (rms)8)  
Relative Intensity Noise9)  
Extinction Ratio (dynamic)  
DJ  
UI  
tCSK  
PAVG  
PSD  
λC  
100  
ps  
–8.0  
830  
–5.0  
–3.0  
–30.0  
860  
dBm  
dBm  
nm  
nm  
dB/Hz  
dB  
850  
∆λ  
0.35  
0.65  
–117  
RIN  
ER  
OMA  
6.0  
0.1912)  
Optical Modulation  
Amplitude10), 11)  
0.4613)  
mW  
Eye mask compliance  
GBE  
Electro-optical parameters valid for each channel and measured at the highest specified data rate.  
All optical parameters are measured with a 62.5 µm multimode fiber.  
1)  
20% - 80% level, non filtered values.  
2)  
The Total Jitter (TJ) is composed of Random Jitter (RJ) and Deterministic Jitter (DJ) according to:  
TJ = RJ (14 Sigma value) + DJ.  
The TJ is specified at a BER of 10–12 from TP1 to TP2 according to IEEE 802.3, sec. 38.5.  
The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge  
measurement value.  
UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.  
The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3  
using a K28.5 pattern.  
With input channel-to-channel skew 0 ps and a maximum data channel-to-channel average deviation and  
swing deviation of 5%.  
The specified output power is compliant with IEC 60825-1, Amendment 2, Class 1M Accessible Emission  
Limits (AEL).  
3)  
4)  
5)  
6)  
7)  
Wavelength is measured according to IEEE 802.3, sec. 38.6.1.  
Spectral width is measured according to IEEE 802.3, sec. 38.6.1.  
RIN is measured according to IEEE 802.3, sec. 38.6.4.  
8)  
9)  
10)  
11)  
Peak to peak values.  
OMA is defined as the difference of the optical high state (’1’) and the optical low state (’0’):  
OMA = Popt(’1’) – Popt(’0’).  
Corresponds to a minimum extinction ratio of 6 dB.  
12)  
13)  
Corresponds to a typical extinction ratio of 8 dB.  
Data Sheet  
20  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
3.6 V  
3.135 V  
V
CC  
2.0 V  
0.8 V  
RESET  
t
3
data valid  
data invalid  
Data  
t
t
2
1
File: 3321  
Figure 12  
Timing Diagram  
Parameter  
Symbol  
Values  
typ.  
Unit  
min.  
max.  
50  
–RESET on delay time  
–RESET off delay time  
–RESET low duration1)  
t1  
t2  
t3  
15  
ms  
ns  
µs  
100  
500  
10  
1)  
Only when not used as power on reset. At any failure recovery, –RESET must be brought to low level for at  
least t3.  
Data Sheet  
21  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Receiver Electrical Characteristics  
Parameter  
Symbol  
Values  
Unit  
min.  
typ.  
max.  
Supply Current1)  
ICC  
P
170  
+15 Iout  
200  
+15 Iout  
mA  
Power Consumption1), 2)  
0.7  
0.9  
W
Data Output Rise/Fall Time3)  
tR-DO  
,
250  
ps  
tF-DO  
LVCMOS Output Voltage Low VLVCMOSOL  
LVCMOS Output Voltage High VLVCMOSOH 2500  
400  
100  
mV  
mV  
µA  
LVCMOS Input Current  
High/Low  
ILVCMOSI  
–100  
LVCMOS OutputCurrent High4) ILVCMOSOH  
LVCMOS OutputCurrent Low5) ILVCMOSOL  
0.5  
mA  
mA  
UI  
4.0  
Total Jitter6), 7), 8), 9), 10)  
TJ  
0.33  
0.08  
100  
Deterministic Jitter6), 9), 11)  
Channel-to-channel skew12)  
DJ  
tCSK  
UI  
ps  
1)  
Typical value is measured at Tcase = 45°C and 3.3 V, maximum value is measured at Tcase = 80°C and 3.6 V.  
Calculated for Iout = 3 mA.  
Measured between 20% and 80% level. Maximum value is related to a maximum RC load time constant of  
2)  
3)  
t
RC = 150 ps.  
4)  
5)  
6)  
7)  
8)  
9)  
10)  
Source current.  
Sink current.  
With no optical input jitter.  
Measured with an optical input power of 3 dB above minimum receiver sensitivity.  
Unused channels shall be terminated by 50 .  
UI (Unit Interval) is equal to the length of one bit. For example, 2.72 Gbit/s corresponds to 368 ps.  
The Total Jitter (TJ) is the sum from Random Jitter (RJ) and Deterministic Jitter (DJ) according to:  
TJ = RJ (14 Sigma value) + DJ.  
The TJ is specified at a BER of 10–12 from TP3 to TP4 according to IEEE 802.3, sec. 38.5.  
The RJ is measured at the 50% level of the optical signal as the mean of the rising and falling edge RJ  
measurement value.  
11)  
12)  
The DJ consists of Duty Cycle Distortion and Data Dependent Jitter and is measured according to IEEE 802.3  
using a K28.5 pattern.  
With input channel-to-channel skew 0 ps.  
Data Sheet  
22  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Receiver Electro-Optical Characteristics  
Parameter  
Symbol  
Values  
max.  
Unit  
min.  
Data Rate Per Channel  
DR  
5001)  
1250  
Mbit/s  
dBm  
mW  
Sensitivity (Average Power)2)  
Optical Modulation Amplitude3)  
Saturation (Average Power)5)  
Signal Detect Assert Level6)  
Signal Detect Deassert Level6)  
Signal Detect Hysteresis6)  
PIN  
–16.0  
OMA  
PSAT  
PSDA  
PSDD  
0.0304)  
–2.0  
dBm  
dBm  
dBm  
dB  
–17.0  
4.0  
–27.0  
1.0  
PSDA  
PSDD  
Return Loss of Receiver 7)  
ORL  
12  
dB  
Electro-optical parameters valid for each channel and measured at the highest specified data rate.  
All optical parameters are measured with a 62.5 µm multimode fiber.  
1)  
Specified for CID worst case pattern (disparity 72) or any pattern with a smaller disparity. The minimum data  
rate depends on the disparity of the used data pattern. For example, a regular clock signal (1-0 sequence) can  
be received down to a data rate as low as 6 Mbit/s.  
Sensitivity is measured for BER = 10–12 with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and a  
test pattern source with RIN of –117 dB/Hz or better. Sensitivity is specified for the worst case extinction ratio  
and maximum cross talk possibility. The maximum crosstalk possibility is defined as the “victim” receiver  
channel operating at its sensitivity limit and the neighboring channels operating at 6 dB higher incident optical  
power.  
2)  
3)  
4)  
5)  
6)  
Peak to peak value.  
Corresponds to a maximum sensitivity (average power) of –16 dBm at an extinction ratio of 6 dB.  
Saturation is specified with a Pseudo Random Bit sequence of length 223–1 (PRBS23) and ER 6 dB.  
P
P
SDA: Average optical power when SD switches from inactive to active.  
SDD: Average optical power when SD switches from active to inactive.  
7)  
Return loss is specified as the ration of the received optical power to the reflected optical power back into the  
link fiber.  
Data Sheet  
23  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Data Out 1, 12  
Signal Detect 1  
t2  
t1  
Signal Detect 12  
File: 3325  
2.0 V  
Output Enable OEN  
0.8 V  
data valid  
data valid  
data Low  
Data Out  
t3  
t4  
File: 3326  
Figure 13  
Timing Diagrams  
Parameter  
Symbol  
Values  
Unit  
min.  
typ.  
3
max.  
10  
Signal Detect Deassert Time  
Signal Detect Assert Time  
Output Enable off Delay Time  
Output Enable on Delay Time  
t1  
t2  
t3  
t4  
µs  
µs  
µs  
µs  
2
10  
14  
18  
20  
20  
Data Sheet  
24  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
VCC  
2 x 50 Ω  
Receiver Module  
Out P  
Out N  
In P  
In N  
600 Ω  
internal logic signal  
Iout  
(adjust-  
able)  
BGR  
Iout /10  
REFR module pin  
Rexternal (one setting applies to all outputs)  
File: 3327  
Figure 14  
Interfacing to CML  
Data Sheet  
25  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
VCC  
2 x 300 Ω  
In P  
Receiver Module  
Out P  
Out N  
100 Ω  
In N  
600 Ω  
internal logic signal  
Iout  
(adjust-  
able)  
BGR  
Iout /10  
REFR module pin  
Rexternal (one setting applies to all outputs)  
File: 3328  
VCC  
2 x 75 Ω  
Receiver Module  
Out P  
In P  
In N  
600 Ω  
Out N  
2 x 150 Ω  
internal logic signal  
Iout  
(adjust-  
able)  
BGR  
Iout /10  
REFR module pin  
Rexternal (one setting applies to all outputs)  
File: 3329  
Figure 15  
Interfacing to LVPECL  
Data Sheet  
26  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Host Face-Plate Layout for Panel Accessed Modules  
F1  
F2  
F6  
F3  
F4  
F9  
F10  
F11  
F7  
F12  
F8  
F5  
File: 3507  
Figure 16  
Key  
Values  
typ.  
Unit  
Comments  
min.  
max.  
F1  
F2  
F3  
F4  
18.42 20  
mm  
mm  
mm  
mm  
Cutout center spacing  
Cutout width  
16.7  
9.1  
16.8  
16.9  
9.3  
9.2  
Cutout height  
4.42  
4.52  
4.62  
Center of cutout and center of receptacle to  
top of PCB  
F5  
44.5  
46  
1
mm  
mm  
mm  
mm  
mm  
mm  
Face-plate placement  
F6  
Radius  
F7  
4.25  
16.8  
Opt. reference plane to top of PCB  
Limitation for PCB length  
Length of receptacle  
F8  
38  
F9  
F10  
F11  
F12  
15.3  
7.6  
Including shield, without spring contacts  
Including shield, without spring contacts  
1.7  
mm  
See Package Outlines Figure 18 on  
Page 31  
Data Sheet  
27  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Dimensions in mm  
File: 3508  
Figure 17  
PCB Layout  
1. Figure 17 describes the recommended customer board layout for the PAROLI 2  
modules.  
2. The holes for the screwing leads and ground plates must be tied to signal ground.  
3. Modules must be screwed on the 4 indicated positions (tightening torque should be  
typically 10 cNm).  
4. Screw size for PCB or heat sink mounting = M1.6.  
5. Screw length (PCB mounting) = PCB thickness + 5.2–0.5 mm.  
6. Screw length (heat sink mounting) = heat sink thickness + 3.1–0.5 mm.  
7. Modules can be mounted directly side by side.  
8. The dashed lines in Figure 17 indicate the typical keep out area for straight MPO  
connectors as well as for the module MPO receptacle in case of central board  
placement of the module.  
Data Sheet  
28  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Thermal Characteristics  
The thermal behaviour of PAROLI modules (transmitter and receiver) depends on the  
operating conditions for different applications.  
The following table gives a guideline for system designers.  
Tcase Tambient  
The thermal resistance Rth (Rth = ------------------------------------------ ; Pel = electrical power consumption)  
Pel  
can be used for calculating the module case temperature under different operating  
conditions and is displayed for two different module options:  
a) Baseplate module without heat sink.  
b) Baseplate module with customer designed heat sink  
(e.g. height = 9 mm, length = 41 mm, width = 18 mm, no. of cooling fins = 9).  
Air Velocity1)  
0 m/s  
23.3  
1.5 m/s  
10.3  
3 m/s  
8.6  
4 m/s  
7.5  
Unit  
K/W  
K/W  
Rth - Option a)  
Rth - Option b)  
20.0  
5.2  
4.2  
4.0  
1)  
The air velocity is applied along the shortest side of the module in parallel to the direction of the heat sinks.  
Link Length  
The link length calculations are based on the most conservative assumption of PAROLI  
modules working on their worst case specification limits. Multimode fibers of different  
types (modal bandwidth at 850 nm) are shown. The stated link length is valid under all  
specified operating conditions and includes 2 dB of additional connector loss.  
Fiber Type Diameter Modal Bandwidth Link Distance  
Link Distance  
at 1.25 Gbit/s  
[m]  
Core/Cladding  
at 0.5 Gbit/s  
[µm]  
[MHz*km]  
200  
[m]  
62.5 / 125  
62.5 / 125  
850  
360  
640  
400  
1300  
Data Sheet  
29  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Technical Data  
Channel Description  
Transmitter Module  
(front view as looking into the MPO connector receptacle of the module)  
Ch 12 Ch 11 Ch 10 Ch 9 Ch 8 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1  
Host PCB below  
Receiver Module  
(front view as looking into the MPO connector receptacle of the module)  
Ch 12 Ch 11 Ch 10 Ch 9 Ch 8 Ch 7 Ch 6 Ch 5 Ch 4 Ch 3 Ch 2 Ch 1  
Host PCB below  
The MPO connector provides a keying functionality, which requires a 180 degree twist  
of fiber cable, if used as a direct connection between transmitter and receiver module.  
(For example the transmitter channel 1 is directly connected to the receiver cannel 1).  
Handling Instructions  
Washing Process  
The PAROLI mating BGA connector can be handled according to standard industry  
wave solder, hand solder and washing processes.  
The PAROLI modules shall not be washed, due to possible influence on module  
performance.  
Dust Cover  
The optical connector is provided with a dust cover, which protects the optical interface  
from potential damage and contamination from dust during handling. The dust cover  
should always remain in the module, when no connector is used.  
Data Sheet  
30  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Package Outlines  
Package Outlines  
PAROLI 2 Tx  
Temperature Reference Point  
on top of the module  
PAROLI 2 Rx  
Temperature Reference Point  
on top of the module  
Typical module mass approximately 10.4 grams  
The front collar EMI shield is electrically separated from module signal ground  
Dimensions in mm  
File: 3203  
Figure 18  
Data Sheet  
31  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Ordering Information  
Ordering Information  
Part Number  
Description  
V23832-T2531-M101  
PAROLI Transmitter, 12 x 1.25 Gbit/s,  
multistandard electrical interface  
V23832-T2131-M101  
V23832-T2431-M101  
V23832-T2331-M101  
V23832-R521-M101  
V23832-R121-M101  
V23832-R421-M101  
V23832-R321-M101  
V23832-R511-M101  
V23832-R111-M101  
V23832-R411-M101  
V23832-R311-M101  
PAROLI Transmitter, 12 x 1.6 Gbit/s,  
multistandard electrical interface  
PAROLI Transmitter, 12 x 2.7 Gbit/s,  
multistandard electrical interface  
PAROLI Transmitter, 12 x 3.125 Gbit/s,  
multistandard electrical interface  
PAROLI Receiver, 12 x 1.25 Gbit/s,  
LVDS electrical interface  
PAROLI Receiver, 12 x 1.6 Gbit/s,  
LVDS electrical interface  
PAROLI Receiver, 12 x 2.7 Gbit/s,  
LVDS electrical interface  
PAROLI Receiver, 12 x 3.125 Gbit/s,  
LVDS electrical interface  
PAROLI Receiver, 12 x 1.25 Gbit/s,  
CML electrical interface  
PAROLI Receiver, 12 x 1.6 Gbit/s,  
CML electrical interface  
PAROLI Receiver, 12 x 2.7 Gbit/s,  
CML electrical interface  
PAROLI Receiver, 12 x 3.125 Gbit/s,  
CML electrical interface  
Data Sheet  
32  
2003-11-19  
V23832-T2531-M101  
V23832-R511-M101  
Revision History:  
2003-11-19  
DS2  
Previous Version:  
2003-05-21  
Page  
Subjects (major changes since last revision)  
Document completely revised  
Edition 2003-11-19  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

INFINEON
INFINEON

V23833-F0005-B101

XFP850 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-F0005-B102

XFP850 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-F0105-B001

10 Gigabit XFP SerialHot-Pluggable Transceiver
INFINEON

V23833-F0105-B002

XFP1310 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-F9105-B001

XFP1310 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-F9105-B002

XFP1310 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-F9909-Z001

10 Gigabit XFP SerialHot-Pluggable Transceiver
INFINEON

V23833-FX105-B001

XFP1310 nm Small Form Factor Module 10 Gigabit Pluggable Transceiver Compatible with XFP MSA Rev. 3.1
INFINEON

V23833-G2005-A101

XPAK 850 nm Module 10 Gigabit Pluggable Transceiver Compatible with XPAK MSA Rev. 2.3
INFINEON

V23833-G2104-A001

XPAK 1310 nm Module 10 Gigabit Pluggable Transceiver Compatible with XPAK MSA Rev. 2.3
INFINEON