EL4543IUZ [INTERSIL]

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding; 三重差分双绞线驱动器,共模同步编码
EL4543IUZ
型号: EL4543IUZ
厂家: Intersil    Intersil
描述:

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding
三重差分双绞线驱动器,共模同步编码

驱动器 接口集成电路 光电二极管
文件: 总16页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL4543  
®
Data Sheet  
October 26, 2005  
FN7325.5  
Triple Differential Twisted-Pair Driver with  
Common-Mode Sync Encoding  
Features  
• Fully differential inputs, outputs, and feedback  
The EL4543 is a high bandwidth triple differential amplifier  
with integrated encoding of video sync signals. The inputs  
are suitable for handling high speed video or other  
communications signals in either single-ended or differential  
form, and the common-mode input range extends all the way  
to the negative rail enabling ground-referenced signalling in  
single supply applications. The high bandwidth enables  
differential signalling onto standard twisted-pair or coax with  
very low harmonic distortion, while internal feedback  
ensures balanced gain and phase at the outputs reducing  
radiated EMI and harmonics.  
• 350MHz -3dB bandwidth  
• 1200V/µs slew rate  
• -75dB distortion at 5MHz  
• Single 5V to 12V operation  
• 50mA minimum output current  
• Low power - 36mA total typical supply current  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• Twisted-pair drivers  
Embedded logic encodes standard video horizontal and  
vertical sync signals onto the common mode of the twisted  
pair(s), transmitting this additional information without the  
requirement for additional buffers or transmission lines. The  
EL4543 enables significant system cost savings when  
compared with discrete line driver alternatives.  
• Differential line drivers  
• VGA over twisted-pair  
• Transmission of analog signals in a noisy environment  
The EL4543 is available in a 24 Ld QSOP package and is  
specified for operation over the -40°C to +85°C temperature  
range.  
Ordering Information  
PART  
PART  
TAPE &  
PKG.  
NUMBER  
MARKING REEL  
PACKAGE  
24 Ld QSOP  
24 Ld QSOP  
24 Ld QSOP  
DWG. #  
TABLE 1. SYNC SIGNAL ENCODING  
EL4543IU  
EL4543IU-T7  
EL4543IU  
EL4543IU  
-
7”  
13”  
-
MDP0040  
MDP0040  
MDP0040  
MDP0040  
COMMON  
MODE A  
(RED)  
COMMON  
MODE B  
(GREEN)  
COMMON  
MODE C  
(BLUE)  
EL4543IU-T13 EL4543IU  
H
V
EL4543IUZ  
(See Note)  
EL4543IUZ  
24 Ld QSOP  
(Pb-Free)  
Low  
Low  
High  
High  
High  
Low  
Low  
High  
3.0  
2.5  
2.0  
2.5  
2.0  
3.0  
3.0  
2.0  
2.5  
2.0  
2.5  
3.0  
EL4543IUZ-T7 EL4543IUZ  
(See Note)  
7”  
24 Ld QSOP  
(Pb-Free)  
MDP0040  
MDP0040  
EL4543IUZ-T13 EL4543IUZ  
(See Note)  
13”  
24 Ld QSOP  
(Pb-Free)  
EL4543IL  
4543IL  
4543IL  
4543IL  
4543ILZ  
-
7”  
13”  
-
20 Ld 4x4 QFN* MDP0046  
20 Ld 4x4 QFN* MDP0046  
20 Ld 4x4 QFN* MDP0046  
EL4543IL-T7  
EL4543IL-T13  
TABLE 2. INPUT LOGIC THRESHOLD (+5V SUPPLY)  
V
, max  
0.8V  
2V  
LO  
EL4543ILZ  
(See Note)  
20 Ld 4x4 QFN* MDP0046  
(Pb-Free)  
V
, min  
HI  
EL4543ILZ-T7 4543ILZ  
(See Note)  
7”  
20 Ld 4x4 QFN* MDP0046  
(Pb-Free)  
EL4543ILZ-T13 4543ILZ  
(See Note)  
13”  
20 Ld 4x4 QFN* MDP0046  
(Pb-Free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
*20 Ld 4x4 QFN, exposed pad 2.7 x 2.7mm  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004, 2005. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL4543  
Pinouts  
EL4543  
(24 LD QSOP)  
TOP VIEW  
EL4543  
(20 LD QFN)  
TOP VIEW  
EN  
VINA+  
VINA-  
NC  
1
2
3
4
5
6
7
8
9
24 VOUTA+  
23 VOUTA-  
22 NC  
+
-
VSYNC  
HSYNC  
NC  
1
2
3
4
5
15 VS+  
21 VS+  
14 VS-  
VSYNC  
HSYNC  
NC  
20 VS-  
THERMAL  
PAD  
13 NC  
19 NC  
12 VOUTB+  
11 VOUTB-  
VINB+  
VINB-  
18 VOUTB+  
17 VOUTB-  
16 NC  
+
-
VINB+  
VINB-  
NC 10  
VINC+ 11  
VINC- 12  
15 VOUTC+  
14 VOUTC-  
13 NC  
+
-
FN7325.5  
October 26, 2005  
2
EL4543  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage (V + & V -). . . . . . . . . . . . . . . . . . . . . . . . . . . .+12V  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
S
Maximum Output Continuous Current . . . . . . . . . . . . . . . . . . ±70mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . .+135°C  
V
V
+, V . . . . . . . . . . . . . . . V - + 0.8V (min) to V + - 0.8V (max)  
IN  
IN  
INB S S  
INB  
- - V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±5V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = 0V, T = 25°C, V = 0V, R = 150, unless otherwise specified.  
S
S
A
IN  
L
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW (-3dB)  
SR  
-3dB Bandwidth  
Differential Slew Rate  
V
= 2V  
350  
1000  
13.6  
700  
-70  
MHz  
V/µs  
ns  
OUT  
= 200Ω  
P-P  
R
600  
L
T
Settling Time to 0.1%  
STL  
GBW  
HD2  
HD3  
dP  
Gain Bandwidth Product  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Differential Phase @ 3.58MHz  
Differential Gain @ 3.58MHz  
MHz  
dBc  
dBc  
°
f = 20MHz, R = 200Ω  
L
f = 20MHz, R = 200Ω  
-70  
L
0.01  
0.01  
dG  
%
INPUT CHARACTERISTICS  
V
Input Referred Offset Voltage  
-10  
-30  
2
10  
mV  
µA  
OS  
I
Input Bias Current (V +, V +)  
-15  
-10  
IN  
IN IN  
Z
Differential Input Impedance  
Differential Input Range  
180  
±0.75  
kΩ  
IN  
V
V
V
V
DIFF  
CM  
N
Input Common Mode Voltage Range  
Input Referred Voltage Noise  
Input Common Mode Rejection Ratio  
Threshold  
0
2.3  
V
27  
80  
nV/Hz  
dB  
CMRR  
EN  
V
V
= 0 to 2V  
60  
CM  
1.4  
V
OUTPUT CHARACTERISTICS  
Output Peak Current  
DC PERFORMANCE  
Voltage Gain  
SUPPLY CHARACTERISTICS  
I
40  
60  
mA  
V/V  
OUT  
A
= 0.8V  
P-P  
1.82  
1.96  
2.05  
V
IN  
V
Supply Operating Range  
V + to V -  
5
12  
V
SUPPLY  
S
S
I
Power Supply Current (per Channel)  
Power Supply Rejection Ratio  
12.3  
70  
14.5  
80  
16.2  
mA  
dB  
S
PSRR  
FN7325.5  
3
October 26, 2005  
EL4543  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
EQUIVALENT CIRCUIT  
EN  
1
EN  
Disables video inputs and outputs  
V
SM  
CIRCUIT 1  
2
VINA+  
VINA-  
NC  
Non-inventing input  
Inverting input  
3
4, 7, 10, 13, 16, 19, 22  
5
Not connected  
VSYNC  
Vertical sync logic input  
SYNC  
V
SM  
CIRCUIT 2  
6
HSYNC  
VINB+  
Horizontal sync logic input  
Non-inverting input  
Inverting input  
Reference Circuit 2  
8
9
VINB-  
11  
12  
14  
15  
17  
18  
20  
21  
23  
24  
VINC+  
VINC-  
Non-inverting input  
Inverting input  
VOUTC-  
VOUTC+  
VOUTB-  
VOUTB+  
VS-  
Inverting output  
Non-inverting output  
Inverting output  
Non-inverting output  
Negative supply  
VS+  
Positive supply  
VOUTA-  
VOUTA+  
Non-inverting output  
Inverting output  
FN7325.5  
4
October 26, 2005  
EL4543  
Typical Performance Curves  
-42  
-46  
-50  
-54  
-58  
-62  
BALANCE ERROR=  
BLUE CM  
20 LOG(,CM/,DIFF)  
VO VO  
OUT (CH A  
GREEN CM  
OUT (CH B  
RED CM  
OUT (CH C  
V
SYNC  
H
SYNC  
TIME (0.5ms/DIV)  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 1. COMMON MODE OUTPUT  
4
FIGURE 2. BALANCE ERROR  
4
2
C =0pF  
R =200Ω  
L
L
R =500Ω  
L
22pF  
R =200Ω  
12pF  
8.2pF  
L
2
0
0
2.2pF  
R =100Ω  
L
-2  
-4  
-6  
-2  
-4  
R =50Ω  
L
-6  
100K  
1M  
10M  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY RESPONSE (Hz)  
FREQUENCY RESPONSE (Hz)  
FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE FOR  
VARIOUS R - DIFF  
FIGURE 4. DIFFFERENTIAL FREQUENCY RESPONSE FOR  
VARIOUS C - DIFF  
L
L
4
2
0
20  
R =100Ω  
12pF  
R =200Ω  
L
L
C =2.2pF  
L
8.2pF  
4.7pF  
0
40  
2.2pF  
-2  
-4  
-6  
60  
80  
100  
100K  
1M  
10M  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY RESPONSE (Hz)  
FREQUENCY RESPONSE (Hz)  
FIGURE 6. CMRR  
FIGURE 5. DIFFERENTIAL FREQUENCY RESPONSE FOR  
VARIOUS C - DIFF  
L
FN7325.5  
October 26, 2005  
5
EL4543  
Typical Performance Curves (Continued)  
12  
10  
8
4
3.5  
3
2.5  
2
V
SWITCH  
6
1.5  
1
4
2
0.5  
0
0
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
SUPPLY VOLAGE (V)  
SUPPLY VOLAGE (V)  
FIGURE 7. COMMON MODE INPUT RANGE vs SUPPLY  
VOLTAGE  
FIGURE 8. H  
& V  
THRESHOLD vs SUPPLY VOLTAGE  
SYNC  
SYNC  
0
-20  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
-40  
-60  
-80  
R =200Ω  
L
-100  
0
10K  
100K  
1M  
10M  
100M  
5
6
7
8
9
10  
11  
12  
FREQUENCY  
SUPPLY VOLAGE (V)  
FIGURE 9. PSRR vs FREQUENCY  
FIGURE 10. I  
vs V  
SUPPLY  
SUPPLY  
212ns  
3.5  
3
2.5V  
2.5  
2
ENABLE  
OUTPUT  
SIGNAL  
1.5  
1
0.5  
0
5
6
7
8
9
10  
11  
12  
TIME (200ns/DIV)  
SUPPLY VOLAGE (V)  
FIGURE 11. ENABLE DISABLE vs SUPPLY VOLTAGE  
FIGURE 12. ENABLE RESPONSE  
FN7325.5  
6
October 26, 2005  
EL4543  
Typical Performance Curves (Continued)  
R =200DIFF  
L
C =0pF  
L
ENABLE  
2.5V  
900ns  
RISE  
t=25ns  
FALL  
t=1.94ns  
OUTPUT  
SIGNAL  
TIME (200ns/DIV)  
TIME (20ns/DIV)  
FIGURE 13. DISABLE RESPONSE  
FIGURE 14. DIFFERENTIAL SMALL SIGNAL TRANSIENT  
RESPONSE  
9
LOGIC H  
=0V  
SYNC  
R =200DIFF  
L
8
7
6
5
4
3
2
1
0
V
=0V  
SYNC  
C =0pF  
L
RISE  
FALL  
t=2.81ns  
t=2.31ns  
5
6
7
8
9
10  
11  
12  
TIME (20ns/DIV)  
SUPPLY VOLAGE (V)  
FIGURE 15. DIFFERENTIAL LARGE SIGNAL TRANSIENT  
RESPONSE  
FIGURE 16. COMMON MODE DC LEVEL vs SUPPLY  
VOLTAGE  
9
9
LOGIC H  
=0V  
LOGIC H  
=3V  
SYNC  
SYNC  
=3V  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
V
V
=0V  
SYNC  
SYNC  
5
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
SUPPLY VOLAGE (V)  
SUPPLY VOLAGE (V)  
FIGURE 17. COMMON MODE DC LEVEL vs SUPPLY VOLTAGE  
FIGURE 18. COMMON MODE DC LEVEL vs SUPPLY VOLTAGE  
FN7325.5  
7
October 26, 2005  
EL4543  
Typical Performance Curves (Continued)  
9
50  
40  
30  
20  
10  
0
LOGIC H  
=3V  
A =+2  
V
SYNC  
=3V  
8
7
6
5
4
3
2
1
0
V
SYNC  
5
6
7
8
9
10  
11  
12  
10K  
100K  
1M  
10M  
100M  
SUPPLY VOLAGE (V)  
FREQUENCY (Hz)  
FIGURE 19. COMMON MODE DC LEVEL vs SUPPLY VOLTAGE  
10K  
FIGURE 20. OUTPUT IMPEDANCE  
0
-20  
R =200DIFF  
L
1K  
100  
10  
-40  
-60  
-80  
1
-100  
5
6
7
8
9
10  
12  
100K  
1M  
10M  
100M  
400M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. INPUT VOLTAGE AND CURRENT NOISE  
FIGURE 22. CHANNEL ISOLATION vs FREQUENCY  
5
3
1
-1  
-3  
V
=200mV  
OP-P  
V
=2V  
OP-P  
-5  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 23. FREQUENCY RESPONSE vs OUTPUT  
AMPLITUDE  
FIGURE 24. GAIN vs FREQUENCY - 2 CHANNELS  
FN7325.5  
October 26, 2005  
8
EL4543  
Typical Performance Curves (Continued)  
FIGURE 25. GAIN vs FREQUENCY - 2 CHANNELS  
FIGURE 27. PHASE vs FREQUENCY - 2 CHANNELS  
FIGURE 26. GAIN vs FREQUENCY - 2 CHANNELS  
FIGURE 28. PHASE vs FREQUENCY - 2 CHANNELS  
FIGURE 30. HARMONIC DISTORTION  
FIGURE 29. PHASE vs FREQUENCY - 2 CHANNELS  
FN7325.5  
October 26, 2005  
9
EL4543  
Typical Performance Curves (Continued)  
FIGURE 31. HARMONIC DISTORTION  
JEDEC JESD51-7 HIGH EFFECTIVE  
FIGURE 32. HARMONIC DISTORTION  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
THERMAL CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1.136W  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
870mW  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 33. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 34. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - QFN EXPOSED  
JEDEC JESD51-3 AND SEMI G42-88 (SINGLE  
DIEPAD SOLDERED TO PCB PER JESD51-5  
3
LAYER) TEST BOARD  
0.8  
667mW  
0.7  
2.500W  
2.5  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7325.5  
October 26, 2005  
10  
EL4543  
Sync Transmission  
The EL4543 encodes H  
Operational Description and Application  
Information  
Introduction  
The EL4543 is designed to differentially drive composite  
RGB video signals onto twisted pair lines, while  
simultaneously encoding horizontal and vertical sync signals  
as common mode output. The entire video signal plus sync  
can therefore be transmitted on 3 twisted pairs of wire. When  
utilizing CAT-5 cable, the 4th available twisted pair can be  
used for transmission of audio, data or control information.  
The distribution of composite video over standard CAT-5  
cable enables enormous cost and labor savings compared  
with traditional coaxial cable, when considering both the  
relative low price and ease of pulling CAT-5 cable.  
and V  
SYNC  
signals on the  
SYNC  
common mode output of the differential video signals; Red,  
Green and Blue respectively. Data Sheet Figure 16, 17 and 18  
clearly illustrate that the sum of the common mode voltages  
results in a fixed average DC level with no AC content and  
illustrates the logic levels. This eliminates EMI radiation into  
any common mode signal along the twisted pairs of CAT 5  
cable.  
Extract Common Mode Sync and Decode H  
&
SYNC  
V
SYNC  
SYNC  
H
and V  
SYNC  
can be regenerated from the Common  
Mode sync output voltages. The relationships between  
H
, V and the 3 common mode levels are given by  
SYNC SYNC  
Table 1. The common mode levels are easily separated from  
the differential outputs of the EL4543 using this simple  
resistor network at the cable receiver input of each  
differential channel; see Figure 38.  
Functional Description  
The EL4543 provides three fully differential high-speed  
amplifiers, suitable for driving high-resolution composite  
video signals onto twisted pair or standard coaxial cable.  
The input common-mode range extends to the negative rail,  
allowing simple ground-referenced input termination to be  
used with a single supply. The amplifiers provide a fixed gain  
of +2 to compensate for standard video cable termination  
Twisted Pair Termination  
The schematic in Figure 38 illustrates a termination scheme  
for 50series termination and a 100twisted pair cable.  
Note RCM is the common mode termination to allow  
measurement of V  
and should not be too small since it  
schemes. Horizontal and Vertical sync signals (H  
and  
) are passed to an internal Logic Encoding Block to  
encode the sync information as three discrete signals of  
different voltage levels. Generally, in differential amplifiers an  
CM  
SYNC  
loads the EL4543; a little over a 100is recommended for  
V
SYNC  
RCM.  
TYPICAL EL4543 TERMINATION DRIVER  
+
external V  
pin is used to control the common mode level  
REF  
of the differential output; in the case of the EL4543 the V  
TWISTED  
PAIR  
50Ω  
50Ω  
REF  
+
-
V
CM  
of each of the three internal amplifier channels receives a  
signal from the Logic Encoding Block with encoded H  
50Ω  
Z
=100Ω  
O
120Ω  
50Ω  
-
SYNC  
(RCM: SHOULD BE >100)  
(FOR LOADING  
CONSIDERATIONS)  
V
REF  
and V  
information. The final output consists of three  
SYNC  
fully differential video signals, with sync encoded on the  
common mode of each of the three RGB differential signals.  
FIGURE 38. TWISTED PAIR TERMINATION EL4543  
H
and V can easily be separated from the  
SYNC  
SYNC  
differential output signals, decoded and transmitted along  
with the RGB video signals to the video monitor.  
Video Transmission  
The EL4543 is a twisted pair differential line driver directed  
at the transmission of Video Signals through cables up to  
100 feet; however, as signal losses increase with  
transmission line length the EL4543 will need additional  
support to equalize video signals along longer twisted pair  
transmission lines. A full solution to accomplish this is the  
SXGA Video Transmission System presented in the EL4543  
Data Sheet. Note the inclusion of the EL9110 for signal  
equalization of up to 1000ft of CAT-5 cable and common  
mode extraction; see Data Sheet for additional information  
on the EL9110.  
EN  
+
+
+
INA  
-
OUTA  
-
-
V
REF  
EN  
+
+
+
INB  
-
OUTB  
-
V
H
SYNC  
SYNC  
EN  
-
RCM  
GCM  
BCM  
V
REF  
LOGIC  
DECODING  
Long Distance Video Transmission  
The SXGA Video Transmission System makes it possible to  
transmit Red, Green and Blue (RGB) video plus sync up to  
1000 feet through CAT-5 cable. The input to the SXGA Video  
Transmission System is the output of a video source  
EN  
+
+
+
INC  
-
OUTC  
-
-
V
REF  
transmitting RGB video signals plus sync. The signals are  
received initially by the EL4543; which converts the single  
FIGURE 37. BLOCK DIAGRAM EL4543  
FN7325.5  
11  
October 26, 2005  
EL4543  
ended input RGB signals to three fully differential waveforms  
with sync encoded on the discrete common modes of each  
color channel and then drives the signals through a length of  
CAT-5 cable. The signal is received by the EL9110, which  
can provide 6-pole equalization for both high and low  
frequency signal transmission line losses. Then the EL9110  
converts the differential RGB video signals back into single  
ended format while extracting the common mode component  
for decoding. The single ended RGB signal is taken directly  
from the output of the El9110 and is ready for the output  
device. The Common Mode Decoder Circuit receives the  
common mode signals directly from each of the three  
EL9110's common mode output pin, decodes and transmits  
Proper Layout Technique  
A critical concern with any PCB layout is the establishment  
of a “healthy” ground plane. It is imperative to provide  
ground planes terminated close to inputs to minimize input  
capacitance. Additionally, the ground plane can be  
selectively removed from inputs to prevent load and supply  
currents from flowing near the input nodes.  
In general the following guidelines apply to all PCB layout:  
• Keep all traces as short as possible.  
• Keep power supply bypass components as close to the  
chip as possible - extremely close.  
H
and V  
to the output device.  
• Create a healthy ground with low impedance and  
continuous ground pathways available to all grounded  
components board-wide.  
SYNC  
SYNC  
Sync Transmission  
The EL4543 encodes H  
and V signals onto the  
SYNC  
SYNC  
• In high frequency applications on multi-level boards try to  
keep one level of board with continuous ground plane and  
minimum via cutouts - providing it is affordable.  
common mode output of the differential video signals; Red,  
Green and Blue respectively. Data Sheet Figure 8 clearly  
illustrates that the sum of the common mode voltages results  
in a fixed DC level with no AC content; thus eliminating EMI  
interference.  
• Provide extremely short loops from power pin to ground.  
• If it is affordable, a ferrite bead is always of benefit to  
isolate device from Power Supply noise and the rest of the  
circuit from the noise of the device.  
Output Drive Protection  
The EL4543 has internal short circuit protection set typically  
at 60mA. if the output is shorted for extended periods of time  
the increased power dissipation will eventually destroy the  
part. To realize maximum reliability the output current should  
never exceed 60mA. The 50series back load matching  
resistor provides additional protection.  
Power Dissipation Calculation  
When switching at high speeds, or driving heavy loads, the  
EL4543 drive capability is ultimately limited by the rise in die  
temperature brought about by internal power dissipation. For  
reliable operation die temperature must be kept below T  
JMAX  
(125°C). It is necessary to calculate the power dissipation for  
a given application prior to selecting package type. Power  
dissipation may be calculated:  
Supply Voltage  
While the EL4543 can be operated on ±5V split rails, single  
supply 0V to 5V is the most common usage. It is very  
important to note that the input logic thresholds are relative  
to the negative supply pin, and therefore single supply,  
ground referenced logic will not work when driving the  
EL4543 on split rails. The amplifiers have an input common  
mode range from 0V to 3.5V with a 0V to 5V supply. The  
common mode output DC level range is a linear function of  
the power supply, see Data Sheet Figures 15, 16, 17 &18.  
The common mode input switching threshold as well as the  
Enable/Disable input is a linear function of the supply  
voltage, see Data Sheet Figure 1.  
4
2
2
PD = (V × I ) × (C  
× V × f) + (C × V  
× f)  
Σ
S
S
INT  
S
L
OUT  
1
where:  
• V is the total power supply to the EL4543 (from V + to V -)  
S
S
S
• V  
is the swing on the output (V - V )  
H L  
OUT  
• C is the load capacitance  
L
• C  
INT  
is the internal load capacitance (80pF max)  
• I is the quiescent supply current (40mA max)  
S
Disable and Power Down  
• f is frequency  
The EL4543 provides an enable disable function which  
powers down, logic input high, in 900ns and powers up, logic  
input low, in 212ns. Disabled the amplifiers supply current is  
reduced to 1.8mA (Positive Supply) and 0mA (Negative  
Supply). Note that Enable/Disable threshold is a linear  
function of the supply voltage levels. The Enable/Disable  
threshold voltage level is compatible with standard  
Having obtained the application's power dissipation, the  
maximum junction temperature can be calculated:  
T
= T  
+ Θ × PD  
MAX JA  
JMAX  
TTL/CMOS and referenced to the lowest supply potential.  
FN7325.5  
12  
October 26, 2005  
EL4543  
where:  
converted to differential mode signals with H  
SYNC  
and  
encoded on the common-mode of the three  
SYNC  
V
• T  
• T  
is the maximum junction temperature (125°C)  
JMAX  
is the maximum ambient operating temperature  
differential signals, respectively. The 50output-terminated  
EL4543 drives the differential RGB with sync encoded  
common-mode to CAT-5 twisted pair cables. Note this  
system, without signal frequency equalization, will  
satisfactorily transmit along up to 200 feet of CAT-5 twisted-  
pair. For longer cable lengths, frequency and gain  
equalization to compensate for signal degradation is  
recommended (EL9110) and a delay line technology  
(EL9115) to adjust for phase mismatch between signals at  
the receiving end.  
MAX  
• PD is the power dissipation calculated above  
θ is the thermal resistance, junction to ambient, of the  
JA  
application (package + PCB combination). Refer to the  
Package Power Dissipation curves.  
Application Circuit  
Video Transmission Along CAT-5 Cable  
VGA input RGB plus sync is connected with 75termination  
to the inputs of the EL4543. Single-ended RGB video is  
EL4543 & EL9110 Sync Extraction  
CAT1  
CAT2  
RJOUTA+  
49.9  
R32 75  
1
2
EL4543 QSOP  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
EN  
OUTA+  
OUTA-  
N.C.  
Red Out Differential  
RED  
C34  
0.1uf  
INA+  
INA-  
N.C.  
1
2
3
4
8
7
6
5
RJA+ 75  
RJOUTA-  
49.9  
VS+  
+VS  
3
R31 75  
_
1
2
GREEN  
4
VS+  
+VS  
0.1uf  
C35  
3
4
5
6
7
8
5
_
VSYNC  
HSYNC  
N.C.  
VS-  
RVSYNC 1K  
6
N.C.  
RJOUTB+  
49.9  
9
1K  
RHSYNC  
VS-  
RED  
GREEN  
10  
11  
12  
13  
14  
15  
1
C35a  
200pF  
7
OUTB+  
OUTB-  
N.C.  
2
3
BLUE  
Green Out Differential  
EL8201IS  
U3  
4
5
6
7
R30  
2K  
8
R29  
2K  
INB+  
INB-  
RJOUTB-  
49.9  
RJB+ 75  
9
8
INPUT  
RJOUTC+  
49.9  
9
10  
11  
12  
13  
14  
15  
10  
11  
12  
N.C.  
OUTC+  
OUTC-  
N.C.  
HSYNC  
VSYNC  
Blue Out Differential  
INC+  
INC-  
BLUE  
RJOUTC-  
49.9  
RJC+ 75  
OUTPUT  
UJ1  
-VS  
+VS  
-VS  
D10  
DIODE  
DIODE  
D9  
+VS  
+VS  
-VS  
DIODE D12  
DIODE D11  
DIODE D2  
DIODE D4  
DIODE D1  
+VS  
-VS  
D3  
DIODE  
-VS  
+VS  
D5  
DIODE  
DIODE D6  
VCRTL  
VadjBlu  
+VS  
-VS  
C20  
DIODE D7  
D8  
VadjRed  
DIODE  
VCRTL  
1uf  
VCRTL  
C9  
Green InDifferential  
Red In Differential  
Blue In Differential  
R31  
Rred4  
3000  
1uf  
330  
NL  
C1  
NL  
NL  
C12  
C23  
5
GREEN  
RED  
5
BLUE  
R1  
49.9  
NL  
R2  
R15  
49.9  
NL  
R16  
R26  
49.9  
NL  
R27  
51  
R21  
51  
R10  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R14  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
51  
R32  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Ctrl-ref  
Vctrl  
Vinp  
Vinm  
Vsm  
Cmout  
Vgain  
Logic-ref  
Cmext  
Vsp  
Ctrl-ref  
Vctrl  
Vinp  
Vinm  
Vsm  
Cmout  
Vgain  
Logic-ref  
Cmext  
Vsp  
Ctrl-ref  
Vctrl  
Vinp  
Vinm  
Vsm  
Cmout  
Vgain  
Logic-ref  
Cmext  
Vsp  
R6 1K  
R30 1K  
R32 1K  
Enbl  
Vspo  
Vout  
Vsmo  
0V  
Enbl  
Vspo  
Vout  
Vsmo  
0V  
Enbl  
Vspo  
Vout  
Vsmo  
0V  
R5  
R29  
49.9  
R31  
49.9  
+VS  
+VS  
49.9  
51  
R11  
0.1uf  
C31  
0.1uf  
C32  
C13  
0.1uf  
51  
R22  
C24  
51  
1uf  
C2 0.1uf  
0.1uf  
C33  
R33  
+VS  
R3  
49.9  
R17  
49.9  
R28  
49.9  
NL  
X2  
NL  
X2  
NL  
X2  
NL  
C3  
NL  
NL  
R4  
R18  
R29  
C14  
C25  
EL9110 BLUE C  
EL9110 GREEN B  
EL9110 RED A  
R9  
330  
R20  
330  
R27  
330  
C17  
0.1uf  
C27  
0.1uf  
-VS  
VGAN  
VGAN  
-VS  
VGAN  
-VS  
INDUCTOR 1  
5
R12  
INDUCTOR3  
5
INDUCTOR 5  
5
C5  
1uf  
C16  
1uf  
C26  
1uf  
C7  
1uf  
C18  
1uf  
C19  
0.1uf  
C28  
1uf  
C29  
0.1uf  
R23  
R28  
C8  
0.1uf  
+VS  
+VS  
+VS  
+VS  
+VS  
+VS  
NL = Not Loaded  
BANANA JACK  
GND  
+
R33  
3.6K  
C36  
R34  
R35  
3.6K  
C37  
0.1uF  
Inductor =Ferrite 68 Ohms  
R39  
4.7uf  
3.6K  
3.6K  
BANANA JACK  
-VS  
+
C38  
4.7uf  
R36  
1K Pot  
C39  
R40  
R37  
1K Pot  
R38  
1K Pot  
VadjBlue  
1K Pot  
VGAN  
VCRTL  
0.1uF  
VadjRed  
-VS  
BANANA JACK  
FN7325.5  
October 26, 2005  
13  
EL4543  
compensation network can be manipulated to provide some  
EL4543/EL5375/EL8201 CAT-5 RGB +  
Sync Video Transmission System  
measure of cable prop delay skew compensation for slight  
differences in cable lengths between CAT-5 pairs. Cable  
skew can best be done around the 300 ft range by under  
compensating the shortest color pair (color on the left side of  
a vertical line) and over compensate the longest color pair  
(color on the right side of a vertical line). Around 450 ft only  
the shortest color pair can be under compensated.  
Introducing a low cost turn-key system for transmitting  
component video over short to moderate CAT-5 cable  
lengths (1 to 500 feet) with selectable cable loss and skew  
compensation. Using only 3 of the 4 pairs in standard CAT-5  
th  
the 4 pair is available for audio, function control or data  
transmission; an additional benefit.  
The board for the driver and receiver should use strip lines  
or strip line waveguides for the inputs and outputs of the  
drivers and receivers. The 75input and output strip lines  
waveguide on 0.06 inch epoxy board with ground back plain  
should be 0.016 inch wide with 0.01 inch space to ground  
area around them. The diff pair strip line waveguides should  
be two 0.045 inch 50lines spaced 0.01 inch apart and  
spaced 0.01 inch to ground area around them. This is a  
general guide and size values may very for many reasons.  
RGB video plus sync (5 channels) is received at the VGA  
terminal and presented single ended to the EL4543. The  
EL4543 converts single ended RGB into fully differential  
signals on three twisted pairs. Sync is encoded on the three  
RGB differential signals as differential common mode and  
then drives the differential signals with encoded sync  
through CAT-5 cable. The common mode of the signals is  
extracted from the differential signals with a passive network  
of resistors and passed to the EL8201 for sync decoding.  
The differential signal is passed directly to the EL5375 where  
it is amplified, converted back into single ended format.  
Signal attenuation occurs in all transmission lines as a  
function of increasing cable length; this application system  
utilizes individual channel 2-pole compensation for cable  
lengths of 150, 300 and 500 feet. Additionally, the  
The receiver feedback and gain resistor network which goes  
directly to the minus input should be connected very close  
with minimal trace length and minimal capacitance to  
ground. The ground plane on the backside of the board, in  
back of these resistors and the minus input pin should be  
removed as well.  
Output +5V  
R34  
U2  
Open  
R35  
1
24  
23  
22  
21  
R40  
2K  
REF1  
INP1  
INN1  
NC  
NC  
FB1  
0
2
R41  
2K  
C20  
~4pF  
3
OUT1  
NC  
R47  
500  
R48  
1K  
150 Feet Comp  
300 Feet Comp  
Output +5V  
4
R36  
R12  
57  
R13  
57  
Output +5V  
R53 10K  
C7 C8  
Open  
R55 3.9K  
C9  
68p  
C5  
0.1uF  
R54  
68K  
R37  
0
5
20  
19  
R56  
33K  
REF2  
INP2  
INN2  
NC  
VSP  
VSN  
NC  
36p  
10p  
C10  
22p  
C6  
0.1uF  
6
R14  
49.9  
R43  
2K  
7
18Output -5V  
Output +5V  
R38  
R21  
1K  
8
17  
16  
15  
14  
13  
C2  
0.1uF  
FB2  
Open  
150 Feet Comp  
R57 10K  
300 Feet Comp  
R59 3.9K  
C21  
Compensation Control Switch  
On Off  
R39  
0
~4pF  
R49  
500  
R50  
1K  
9
R44  
2K  
REF3  
INP3  
INN3  
NC  
OUT2  
EN  
R58  
68K  
1
2
3
4
5
6
12  
11  
10  
9
8
7
C12  
10p  
C13  
68p  
C14  
22p  
R60  
33K  
C11  
36p  
10  
11  
12  
FB3  
R15  
57  
R16  
57  
SW DIP-6  
OUT3  
Red In  
R6  
49.9  
R45  
2K  
R51  
1K  
R52  
500  
1
2
EL4543 QSOP  
24  
EN  
OUTA+  
OUTA-  
N.C.  
300 Feet Comp  
150 Feet Comp  
R63 10K  
EL5375  
R1  
75  
Red Out Differential  
23  
3.9K  
R61  
R64  
68K  
R17  
49.9  
INA+  
INA-  
N.C.  
R62  
33K  
C15  
68p  
C18  
10p  
C16  
22p  
C17  
36p  
R7  
49.9  
C22  
3
22  
21  
20  
19  
18  
R46  
2K  
1
2
R63  
75  
~4pF  
1
Input +5V  
3
2
R22  
1K  
4
C3  
0.1uF  
75  
4
VS+  
R64  
3
R65 75  
5
4
C1  
0.1uf  
6
5
5
7
VSYNC  
HSYNC  
N.C.  
VS-  
6
8
R2  
7
1K  
9
8
6
10  
11  
12  
13  
14  
15  
N.C.  
9
10  
11  
12  
13  
14  
15  
R3 1K  
R8  
49.9  
7
OUTB+  
OUTB-  
N.C.  
R66 75  
R67 75  
Green Out Differential  
17  
R18  
55  
R19  
55  
Green In  
8
INB+  
INB-  
R9  
R4  
75  
INPUT  
49.9  
C19  
0.1uF  
9
16  
OUTPUT  
R10  
49.9  
1
2
3
4
8
R20  
49.9  
VS+  
10  
11  
12  
15  
N.C.  
OUTC+  
OUTC-  
N.C.  
Blue Out Differential  
14  
Output +5V  
Blue In  
7
6
5
_
INC+  
INC-  
R11  
R5  
75  
C4  
0.1uF  
R23  
1K  
C4a  
220pF  
49.9  
13  
_
EL4543IU  
VS-  
U3  
EL8201IS  
Input +5V  
Input -5V  
JB1  
JB2  
-VS In  
+VS In  
Csup2  
4.7uF  
+
JP+  
JUMPER  
+
Ground  
JUMPER  
Csup1  
4.7uF  
JP-  
JUMPER  
JB3  
GND  
Output +5V  
Output -5V  
JB4  
JB5  
-VS Out  
+VS Out  
Csup4  
4.7uF  
+
Csup3  
4.7uF  
+
JB6  
GND  
OUTPUT  
INPUT  
FN7325.5  
October 26, 2005  
14  
EL4543  
QSOP Package Outline Drawing  
FN7325.5  
15  
October 26, 2005  
EL4543  
QFN Package Outline Drawing  
NOTE: The package drawings shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7325.5  
16  
October 26, 2005  

相关型号:

EL4543IUZ-T13

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding
INTERSIL

EL4543IUZ-T7

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding
INTERSIL

EL4543_07

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding
INTERSIL

EL4543_0709

Triple Differential Twisted-Pair Driver with Common-Mode Sync Encoding
INTERSIL

EL4544

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
INTERSIL

EL4544IGZ

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
INTERSIL

EL4544_07

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
INTERSIL

EL4544_0712

Triple 16x5 Differential Crosspoint Switch Capable of Operation in Single-Ended or Differential Input Modes
INTERSIL

EL4581

Sync Separator, 50% Slice, S-H, Filter
INTERSIL

EL4581C

Sync Separator, 50% Slice, S-H, Filter
ELANTEC

EL4581CN

Sync Separator, 50% Slice, S-H, Filter
ELANTEC

EL4581CN

Sync Separator, 50% Slice, S-H, Filter
INTERSIL