HA-2546 [INTERSIL]

30MHz, Voltage Output, Two Quadrant Analog Multiplier; 为30MHz ,电压输出,两个象限模拟乘法器
HA-2546
型号: HA-2546
厂家: Intersil    Intersil
描述:

30MHz, Voltage Output, Two Quadrant Analog Multiplier
为30MHz ,电压输出,两个象限模拟乘法器

文件: 总14页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-2546  
Data Sheet  
September 1998  
File Number 2861.3  
30MHz, Voltage Output, Two Quadrant  
Analog Multiplier  
Features  
• High Speed Voltage Output . . . . . . . . . . . . . . . . . 300V/µs  
• Low Multiplication error . . . . . . . . . . . . . . . . . . . . . . .1.6%  
• Input Bias Currents. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2µA  
• Signal Input Feedthrough . . . . . . . . . . . . . . . . . . . . . -52dB  
• Wide Signal Bandwidth . . . . . . . . . . . . . . . . . . . . . 30MHz  
• Wide Control Bandwidth. . . . . . . . . . . . . . . . . . . . . 17MHz  
• Gain Flatness to 5MHz. . . . . . . . . . . . . . . . . . . . . . 0.10dB  
The HA-2546 is a monolithic, high speed, two quadrant,  
analog multiplier constructed in the Intersil Dielectrically  
Isolated High Frequency Process. The HA-2546 has a  
voltage output with a 30MHz signal bandwidth, 300V/µs slew  
rate and a 17MHz control bandwidth. High bandwidth and  
slew rate make this part an ideal component for use in video  
systems. The suitability for precision video applications is  
demonstrated further by the 0.1dB gain flatness to 5MHz,  
1.6% multiplication error, -52dB feedthrough and differential  
inputs with 1.2µA bias currents. The HA-2546 also has low  
differential gain (0.1%) and phase (0.1 degree) errors.  
Applications  
• Military Avionics  
The HA-2546 is well suited for AGC circuits as well as mixer  
applications for sonar, radar, and medical imaging  
equipment. The voltage output simplifies many designs by  
eliminating the current to voltage conversion stage required  
for current output multipliers. For MIL-STD-883 compliant  
product, consult the HA-2546/883 datasheet.  
• Missile Guidance Systems  
• Medical Imaging Displays  
• Video Mixers  
• Sonar AGC Processors  
• Radar Signal Conditioning  
• Voltage Controlled Amplifier  
• Vector Generator  
Pinout  
HA-2546  
(PDIP, CERDIP, SOIC)  
TOP VIEW  
Ordering Information  
GND  
GA A  
GA C  
GA B  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
PART NUMBER  
HA1-2546-5  
PACKAGE  
16 Ld CERDIP  
16 Ld PDIP  
REF  
V
REF  
0 to 75  
F16.3  
HA3-2546-5  
0 to 75  
E16.3  
M16.3  
V
B
YIO  
HA9P2546-5  
0 to 65  
16 Ld SOIC  
V
V
+
-
X
X
V
A
YIO  
X
V
+
-
Y
Y
V+  
V
Y
V
Z
-
V-  
+
-
Z
Σ
V
V
Z
+
OUT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HA-2546  
Simplified Schematic  
V +  
V
BIAS  
V
BIAS  
+
+
V
+
V
-
V
+
V -  
Z
X
X
Z
-
-
GA A  
GA C  
OUT  
GA B  
REF  
V
+
V
-
Y
Y
1.67k  
GND  
V -  
V
A
V
B
YIO  
YIO  
2
HA-2546  
Absolute Maximum Ratings  
Thermal Information  
o
o
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Thermal Resistance (Typical, Note 1)  
CERDIP Package. . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
75  
86  
96  
20  
N/A  
N/A  
o
Maximum Junction Temperature (CERDIP Package) . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
Operating Conditions  
o
Temperature Range  
HA3-2546-5, HA1-2546-5. . . . . . . . . . . . . . . . . . . . . 0 C to 75 C  
HA9P2546-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 65 C  
o
o
o
o
o
o
o
(SOIC - Lead Tips Only)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±15V, R = 1k, C = 50pF, Unless Otherwise Specified  
SUPPLY L L  
o
PARAMETER  
MULTIPLIER PERFORMANCE  
Multiplication Error (Note 2)  
TEST CONDITIONS  
TEMP ( C)  
MIN  
TYP  
MAX  
UNITS  
25  
Full  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.6  
3.0  
3
%
%
7
o
Multiplication Error Drift  
0.003  
0.1  
-
0.2  
0.3  
0.2  
0.3  
5.0  
-
%/ C  
Differential Gain (Notes 3, 9)  
Differential Phase (Notes 3, 9)  
Gain Flatness (Note 9)  
%
Degrees  
dB  
25  
0.1  
DC to 5MHz, V = 2V  
25  
0.1  
X
5 MHz to 8MHz, V = 2V  
25  
0.18  
0.7  
dB  
X
Scale Factor Error  
Full  
25  
%
1% Amplitude Bandwidth Error  
1% Vector Bandwidth Error  
THD + N (Note 4)  
6
MHz  
kHz  
25  
260  
0.03  
400  
150  
75  
-
25  
-
%
Voltage Noise  
f
f
f
= 10Hz, V = V = 0V  
25  
-
nV/Hz  
nV/Hz  
nV/Hz  
V
O
O
O
X
Y
= 100Hz, V = V = 0V  
25  
-
X
Y
= 1kHz, V = V = 0V  
25  
-
X
Y
Common Mode Range  
25  
±9  
-
SIGNAL INPUT, V  
Y
Input Offset Voltage  
25  
Full  
Full  
25  
-
-
3
8
10  
20  
-
mV  
mV  
o
Average Offset Voltage Drift  
Input Bias Current  
-
45  
7
µV/ C  
-
15  
15  
2
3
-
µA  
µA  
Full  
25  
-
10  
0.7  
1.0  
2.5  
720  
30  
9.5  
-52  
78  
Input Offset Current  
-
µA  
Full  
25  
-
µA  
Input Capacitance  
-
pF  
Differential Input Resistance  
Small Signal Bandwidth (-3dB)  
Full Power Bandwidth (Note 5)  
Feedthrough  
25  
-
-
kΩ  
V
V
= 2V  
= 2V  
25  
-
-
MHz  
MHz  
dB  
X
X
25  
-
-
Note 11  
Note 6  
25  
-
-
CMRR  
Full  
60  
-
dB  
V
TRANSIENT RESPONSE (Note 10)  
Y
Slew Rate  
Rise Time  
V
= ±5V, V = 2V  
25  
25  
-
-
300  
11  
-
-
V/µs  
OUT  
X
Note 7  
ns  
3
HA-2546  
Electrical Specifications  
V
= ±15V, R = 1k, C = 50pF, Unless Otherwise Specified (Continued)  
SUPPLY  
L
L
o
PARAMETER  
Overshoot  
TEST CONDITIONS  
TEMP ( C)  
MIN  
TYP  
17  
MAX  
UNITS  
%
Note 7  
25  
25  
25  
-
-
-
-
-
-
Propagation Delay  
Settling Time (To 0.1%)  
25  
ns  
V
= ±5V, V = 2V  
200  
ns  
OUT  
X
CONTROL INPUT, V  
X
Input Offset Voltage  
25  
Full  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
-
0.3  
3
2
20  
-
mV  
mV  
o
Average Offset Voltage Drift  
Input Bias Current  
10  
µV/ C  
1.2  
1.8  
0.3  
0.4  
2.5  
360  
17  
2
5
2
3
-
µA  
µA  
Full  
25  
Input Offset Current  
µA  
Full  
25  
µA  
Input Capacitance  
pF  
Differential Input Resistance  
Small Signal Bandwidth (-3dB)  
Feedthrough  
25  
-
kΩ  
MHz  
dB  
V
= 5V, V - = -1V  
25  
-
Y
X
Note 12  
Note 13  
25  
-40  
80  
-
Common Mode Rejection Ratio  
25  
-
dB  
V
TRANSIENT RESPONSE (Note 10)  
X
Slew Rate  
Note 13  
Note 14  
Note 14  
25  
25  
25  
25  
25  
-
-
-
-
-
95  
20  
-
-
-
-
-
V/µs  
ns  
Rise Time  
Overshoot  
17  
%
Propagation Delay  
Settling Time (To 0.1%)  
50  
ns  
Note 13  
200  
ns  
V
CHARACTERISTICS  
Z
Input Offset Voltage  
V
V
= V = 0V  
25  
Full  
25  
-
-
-
-
4
8
15  
20  
-
mV  
mV  
dB  
X
X
Y
Open Loop Gain  
70  
900  
Differential Input Resistance  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
25  
-
kΩ  
= 2.5V, V = ±5V  
Full  
Full  
25  
-
±20  
-
±6.25  
±45  
1
-
-
-
V
mA  
Y
Output Resistance  
POWER SUPPLY  
PSRR  
Note 8  
Full  
Full  
58  
-
63  
23  
-
dB  
Supply Current  
29  
mA  
NOTES:  
2. Error is percent of full scale, 1% = 50mV.  
3. f = 3.58MHz/4.43MHz, V = 300mV , 0 to 1V offset, V = 2V.  
P-P DC X  
O
Y
4. f = 10kHz, V = 1V  
, V = 2V.  
O
Y
RMS  
X
Slew Rate  
---------------------------  
5. Full Power Bandwidth calculated by equation: FPBW =  
, V  
= 5V.  
PEAK  
2π V  
PEAK  
6. V = 0 to ±5V, V = 2V.  
Y
X
7. V  
= 0 to ±100mV, V = 2V.  
OUT  
X
8. V = ±12V to ±15V, V = 5V, V = 2V.  
S
Y
X
9. Guaranteed by characterization and not 100% tested.  
10. See Test Circuit.  
11. f = 5MHz, V = 0, V = 200mV  
RMS  
.
O
X
Y
12. f = 100kHz, V = 0, V + = 200mV  
, V - = -0.5V.  
X
O
Y
X
RMS  
13. V = 0 to 2V, V = 5V.  
X
Y
14. V = 0 to 200mV, V = 5V.  
X
Y
4
HA-2546  
Test Circuits and Waveforms  
1
2
16  
15  
14  
13  
12  
11  
10  
9
NC  
REF  
NC  
NC  
NC  
3
4
5
6
7
8
V
+
X
+
-
X
V
+
Y
+
-
Y
V+  
+
V-  
-
-
Z
Σ
+
V
OUT  
50Ω  
1kΩ  
50pF  
FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT  
+5V  
100mV  
IN  
0
IN  
0
-5V  
-100mV  
+5V  
100mV  
OUT  
0
OUT  
0
-5V  
-100mV  
Vertical Scale: 5V/Div.; Horizontal Scale: 50ns/Div.  
LARGE SIGNAL RESPONSE  
Vertical Scale: 100mV/Div.; Horizontal Scale: 50ns/Div.  
SMALL SIGNAL RESPONSE  
V
V
Y
Y
2V  
200mV  
IN  
IN  
0
0
5V  
500mV  
OUT  
OUT  
0
0
Vertical Scale: 2V/Div.; Horizontal Scale: 50ns/Div.  
Vertical Scale: 200mV/Div.; Horizontal Scale: 50ns//Div.  
SMALL SIGNAL RESPONSE  
V
LARGE SIGNAL RESPONSE  
V
X
X
5
HA-2546  
Application Information  
1
2
16  
15  
14  
13  
12  
11  
10  
9
NC  
Theory Of Operation  
The HA-2546 is a two quadrant multiplier with the following  
three differential inputs; the signal channel, V + and V -,  
REF  
NC  
NC  
NC  
Y
Y
3
4
5
6
7
8
the control channel, V + and V -, and the summed channel,  
X
X
V + and V -, to complete the feedback of the output  
Z
Z
V
+
X
+
-
amplifier. The differential voltages of channel X and Y are  
converted to differential currents. These currents are then  
multiplied in a circuit similar to a Gilbert Cell multiplier,  
producing a differential current product. The differential  
voltage of the Z channel is converted into a differential  
current which then sums with the products currents. The  
differential “product/sum” currents are converted to a single-  
ended current and then converted to a voltage output by a  
transimpedance amplifier.  
X
V
+
Y
+
-
Y
V+  
+
V-  
-
+
-
Z
Σ
V
OUT  
50Ω  
50pF  
1kΩ  
The open loop transfer equation for the HA-2546 is:  
(V - V ) (V - V )  
X+ X- Y+ Y-  
FIGURE 2.  
- (V - V )  
Z+ Z-  
V
= A  
OUT  
SF  
The V terminal is usually grounded allowing the V to  
Y- Y+  
swing ±5V. The V terminal is usually connected directly to  
Z+  
where;  
A = Output Amplifier Open Loop Gain  
SF = Scale Factor  
V
to complete the feedback loop of the output amplifier  
OUT  
while V is grounded. The scale factor is normally set to 2  
Z-  
V , V , V = Differential Inputs  
X
Y
Z
by connecting GA B to GA C. Therefore the transfer equation  
simplifies to V  
OUT  
= (V V ) / 2.  
X Y  
The scale factor is used to maintain the output of the  
multiplier within the normal operating range of ±5V. The  
scale factor can be defined by the user by way of an optional  
Offset Adjustment  
The signal channel offset voltage may be nulled by using a  
20kpotentiometer between V Adjust pins A and B and  
external resistor, R  
, and the Gain Adjust pins, Gain  
EXT  
YIO  
connecting the wiper to V-. Reducing the signal channel  
offset will reduce V AC feedthrough. Output offset voltage  
Adjust A (GA A), Gain Adjust B (GA B), and Gain Adjust C  
(GA C). The scale factor is determined as follows:  
X
can also be nulled by connecting V to the wiper of a 20kΩ  
potentiometer which is tied between V+ and V-.  
Z-  
SF = 2, when GA B is shorted to GA C  
SF 1.2 R  
, when R  
EXT  
is connected between  
is in k)  
EXT  
GA A and GA C (R  
Capacitive Drive Capability  
EXT  
When driving capacitive loads >20pF, a 50resistor is  
SF 1.2 (R  
EXT  
+ 1.667k), when R  
EXT  
is  
connected to GA B and GA C (R  
is in k)  
recommended between V  
and V , using V as the  
EXT  
OUT  
Z+ Z+  
output (see Figure 2). This will prevent the multiplier from going  
unstable.  
The scale factor can be adjusted from 2 to 5. It should be  
noted that any adjustments to the scale factor will affect the  
Power Supply Decoupling  
AC performance of the control channel, V . The normal  
X
Power supply decoupling is essential for high frequency  
circuits. A 0.01µF high quality ceramic capacitor at each  
supply pin in parallel with a 1µF tantalum capacitor will  
provide excellent decoupling. Chip capacitors produce the  
best results due to the close spacing with which they may be  
placed to the supply pins minimizing lead inductance.  
input operating range of V is equal to the scale factor  
voltage.  
X
The typical multiplier configuration is shown in Figure 2. The  
ideal transfer function for this configuration is:  
(V - V ) (V - V )  
X+ X- Y+ Y-  
V
=
+ V , when V 0V  
Z-  
OUT  
X
Adjusting Scale Factor  
2
0
Adjusting the scale factor will tailor the control signal, V ,  
X
, when V < 0V  
X
input voltage range to match your needs. Referring to the  
simplified schematic on the front page and looking for the V  
input stage, you will notice the unusual design. The internal  
X
The V pin is usually connected to ground so that when  
X-  
V
is negative there is no signal at the output, i.e. two  
reference sets up a 1.2mA current sink for the V differential  
X+  
X
quadrant operation. If the V input is a negative going signal  
pair. The control signal applied to this input will be forced  
across the scale factor setting resistor and set the current  
X
the V pin maybe grounded and the V pin used as the  
X+  
X-  
control input.  
flowing in the V side of the differential pair. When the  
X+  
6
HA-2546  
current through this resistor reaches 1.2mA, all the current  
available is flowing in the one side and full scale has been  
reached. Normally the 1.67kinternal resistor sets the scale  
factor to 2V when the Gain Adjust pins B and C are connected  
together, but you may set this resistor to any convenient value  
using pins 16 (GA A) and 15 (GA C) (See Figure 3).  
provides stability and a response time adjustment for the  
gain control circuit.  
This multiplier has the advantage over other AGC circuits,  
in that the signal bandwidth is not affected by the control  
signal gain adjustment.  
1
2
16  
NC  
REF  
1
2
16  
15  
14  
13  
12  
11  
10  
9
NC  
15  
14  
NC  
NC  
NC  
REF  
NC  
NC  
NC  
3
4
5
6
7
8
3
4
5
6
7
8
13  
12  
11  
10  
9
+
-
X
V
+
X
+
-
V
+
Y
X
+
-
Y
V
+
Y
+
-
V+  
Y
V+  
+
V-  
-
+
-
Z
+
Σ
V-  
-
+
-
Z
Σ
V
OUT  
V
50Ω  
OUT  
1N914  
10kΩ  
MULTIPLIER, V  
OUT  
= V V / 2V  
1K  
0.1µF  
X
Y
SCALE FACTOR = 2V  
0.01µF  
10kΩ  
+15V  
-
+
5kΩ  
HA-5127  
1
2
16  
15  
14  
13  
12  
3.3V  
4.167K  
20kΩ  
REF  
0.1µF  
NC  
NC  
NC  
3
4
5
6
7
8
NC  
FIGURE 4. AUTOMATIC GAIN CONTROL  
V
+
X
+
-
Voltage Controlled Amplifier  
X
V
+
Y
A wide range of gain adjustment is available with the Voltage  
Controlled Amplifier configuration shown in Figure 5. Here  
the gain of the HFA0002 is swept from 20V/V at a control  
voltage of 0.902V to a gain of almost 1000V/V with a control  
voltage of 0.03V.  
+
-
Y
11  
10  
9
V+  
+
V-  
-
+
-
Z
Σ
Video Fader  
V
OUT  
The Video Fader circuit provides a unique function. Here Ch B  
is applied to the minus Z input in addition to the minus Y input.  
MULTIPLIER, V  
OUT  
= V V / 5V  
X Y  
1K  
In this way, the function in Figure 6 is generated. V  
will  
MIX  
SCALE FACTOR = 5V  
control the percentage of Ch A and Ch B that are mixed  
together to produce a resulting video image or other signal.  
FIGURE 3. SETTING THE SCALE FACTOR  
Many other applications are possible including division,  
squaring, square-root, percentage calculations, etc. Please  
refer to the HA-2556 four quadrant multiplier data sheet for  
additional applications.  
Typical Applications  
Automatic Gain Control  
In Figure 4 the HA-2546 is configured in a true Automatic  
Gain Control or AGC application. The HA-5127, low noise op  
amp, provides the gain control level to the X input. This level  
will set the peak output voltage of the multiplier to match the  
reference level. The feedback network around the HA-5127  
7
HA-2546  
100  
80  
1
2
16  
15  
14  
13  
12  
11  
10  
9
NC  
REF  
0.126V  
0.4V  
V
= 0.030V  
GAIN  
NC  
NC  
NC  
60  
3
4
5
6
7
8
40  
20  
0.902V  
+
-
180  
135  
90  
45  
0
0
X
-20  
-40  
-60  
-80  
-100  
+
-
Y
V+  
+
V-  
-
+
-
Z
Σ
1K  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
5kΩ  
500Ω  
V
-
IN  
+
V
OUT  
HFA0002  
FIGURE 5. VOLTAGE CONTROLLED AMPLIFIER  
1
2
16  
15  
14  
13  
12  
11  
10  
9
NC  
REF  
NC  
NC  
NC  
3
4
5
6
7
8
V
(0V to 2V)  
MIX  
+
-
X
Ch A  
Ch B  
+
-
Y
V+  
+
V-  
-
+
-
Z
Σ
V
OUT  
50Ω  
V
= Ch B + (Ch A - Ch B) V / Scale Factor  
MIX  
OUT  
Scale Factor = 2  
V
= All Ch B; if V  
= All Ch A; if V  
= 0V  
OUT  
MIX  
V
= 2V (Full Scale)  
OUT  
MIX  
V
= Mix of Ch A and Ch B; if 0V < V  
< 2V  
OUT  
MIX  
FIGURE 6. VIDEO FADER  
8
HA-2546  
o
Typical Performance Curves V = ±15V, T = 25 C, See Test Circuit For Multiplier Configuration  
S
A
9
6
R
= 1K, V = 2V , V = 200mV  
DC RMS  
L
X
Y
R
= 1K, V + = 200mV  
X
, V = 5V , V - = -1V  
L
RMS  
Y
DC  
X
DC  
15  
10  
5
C
= 50pF  
L
3
0
C
= 0pF  
L
-3  
-6  
0
-5  
0
C
= 0pF  
0
L
-10  
45  
45  
90  
135  
180  
90  
C
= 50pF  
L
135  
180  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 7. V GAIN AND PHASE vs FREQUENCY  
FIGURE 8. V GAIN AND PHASE vs FREQUENCY  
X
Y
-10  
R
= 1K, V + = 200mV , V = 0V  
RMS Y  
L
X
V
= 0V, R = 1K, V = 200mV  
L Y RMS  
X
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
V
= -2.0V  
X
DC  
V
= -1.0V  
DC  
X
V
= -0.5V  
X
DC  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 9. V FEEDTHROUGH vs FREQUENCY  
FIGURE 10. V FEEDTHROUGH vs FREQUENCY  
X
Y
9
6
V + = 200mV  
, R = 1K, V - = -1V  
DC  
X
RMS  
DC  
L
X
15  
10  
5
R
= 1K, C = 50pF, V = 200mV  
L Y  
L
RMS  
DC  
3
V
= 2.0V  
= 1.0V  
= 0.5V  
V
= 5V  
X
X
X
Y
0
0
-3  
-6  
-9  
-12  
-15  
V
= 2V  
DC  
Y
V
V
DC  
DC  
-5  
V
= 1V  
DC  
Y
Y
-10  
-15  
-20  
V
= 0.5V  
DC  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 11. VARIOUS V FREQUENCY RESPONSES  
Y
FIGURE 12. VARIOUS V FREQUENCY RESPONSES  
X
9
HA-2546  
o
Typical Performance Curves V = ±15V, T = 25 C, See Test Circuit For Multiplier Configuration (Continued)  
S
A
14  
12  
10  
8
975  
900  
825  
750  
675  
600  
525  
450  
375  
300  
225  
150  
75  
BIAS CURRENT  
6
4
2
0
OFFSET CURRENT  
-2  
0
-4  
1
10  
100  
1K  
10K  
100K  
-55  
-25  
0
25  
50  
75  
100  
125  
o
FREQUENCY (Hz)  
TEMPERATURE ( C)  
FIGURE 13. VOLTAGE NOISE DENSITY  
FIGURE 14. V OFFSET AND BIAS CURRENT vs TEMPERATURE  
Y
10  
3
2
8
6
4
V
Y
V
2
X
BIAS CURRENT  
0
1
-2  
-4  
-6  
-8  
-10  
V
Z
OFFSET CURRENT  
0
-1  
-55  
-25  
0
25  
50  
75  
100  
125  
-55  
-25  
0
25  
50  
75  
100  
125  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 15. OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 16. V OFFSET AND BIAS CURRENT vs TEMPERATURE  
X
120  
V
= 200mV  
RMS  
Ycm  
100  
80  
60  
40  
20  
0
7
6
5
4
3
2
1
0
V
= 0V  
X
-V  
OUT  
+V  
OUT  
V
= 2V  
X
±17  
±15  
±12  
±8 ±7  
±5  
100  
1K  
10K  
100K  
1M  
10M  
100M  
V
FREQUENCY (Hz)  
SUPPLY  
FIGURE 17. V  
OUT  
vs V  
FIGURE 18. V CMRR vs FREQUENCY  
Y
SUPPLY  
10  
HA-2546  
o
Typical Performance Curves V = ±15V, T = 25 C, See Test Circuit For Multiplier Configuration (Continued)  
S
A
120  
100  
80  
60  
40  
20  
0
V
= V = 0V  
X
Y
V
= 200mV  
RMS  
100  
80  
60  
40  
20  
0
X
+PSSR  
-PSSR  
V
= 0V  
Y
V
= 2V  
Y
100  
1K  
10K  
100K  
1M  
10M  
100M  
100  
1K  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. V COMMON MODE REJECTION RATIO vs  
X
FIGURE 20. PSRR vs FREQUENCY  
FREQUENCY  
25  
14  
12  
10  
8
-I  
CC  
+I  
CC  
CMR(-)  
20  
6
CMR(+)  
4
2
0
15  
-55  
±17  
±15  
±12  
±8 ±7  
±5  
-25  
0
25  
50  
75  
100  
125  
o
V
TEMPERATURE ( C)  
SUPPLY  
FIGURE 21. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 22. CMR vs V  
SUPPLY  
1.5  
100  
X = 1  
X = 1.2  
+PSRR  
-PSRR  
1
0.5  
0
80  
60  
40  
20  
0
X = 1.4  
-0.5  
-1  
X = 1.6  
X = 1.8  
X = 2  
-1.5  
-55  
-25  
0
25  
50  
75  
100  
125  
-6  
-4  
-2  
0
2
4
6
o
TEMPERATURE ( C)  
Y INPUT (V)  
FIGURE 23. PSRR vs TEMPERATURE  
FIGURE 24. MULTIPLICATION ERROR vs V  
Y
11  
HA-2546  
o
Typical Performance Curves V = ±15V, T = 25 C, See Test Circuit For Multiplier Configuration (Continued)  
S
A
2
1.5  
1
2
1.5  
1
X = 0.8  
X = 0.4, 0.6  
Y = -5  
Y = -4  
Y = -3  
X = 0.2  
X = 1  
0.5  
0
0.5  
0
X = 0  
-0.5  
-1  
Y = -2  
Y = -1  
Y = 0  
-0.5  
-1  
-1.5  
-2  
-1.5  
0
0.5  
1
1.5  
2
2.5  
-6  
-4  
-2  
0
2
4
6
Y INPUT (V)  
X INPUT (V)  
FIGURE 25.  
FIGURE 26.  
1
0.5  
0
2.0  
Y = 0  
Y = 1  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.5  
-1  
Y = 2  
Y = 3  
Y = 4  
Y = 5  
-1.5  
-2  
0
0.5  
1
1.5  
2
2.5  
-55  
-25  
0
25  
50  
75  
100  
125  
o
X INPUT (V)  
TEMPERATURE ( C)  
FIGURE 27.  
FIGURE 28. WORST CASE MULTIPLICATION ERROR vs  
TEMPERATURE  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
R
= 1K, V = 2V , V = 200mV  
DC RMS  
L
X
Y
0.6  
0.4  
0.2  
0
C
= 50pF  
L
C
= 0pF  
L
-0.2  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
-55  
-25  
0
25  
50  
75  
100  
125  
o
TEMPERATURE ( C)  
FIGURE 29. MULTIPLICATION ERROR vs TEMPERATURE  
FIGURE 30. GAIN VARIATION vs FREQUENCY  
12  
HA-2546  
o
Typical Performance Curves V = ±15V, T = 25 C, See Test Circuit For Multiplier Configuration (Continued)  
S
A
2.010  
2.008  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
f
= 10kHz, V = 2V , THD < 0.1%  
O
X
DC  
V
= ±15  
S
V
= ±12  
S
V
= ±10  
S
V
= ±8  
S
-25  
0
25  
50  
75  
100  
125  
10  
100  
1K  
10K  
100K  
-55  
o
LOAD RESISTANCE ()  
TEMPERATURE ( C)  
FIGURE 31. SCALE FACTOR vs TEMPERATURE  
FIGURE 32. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE  
500  
400  
300  
200  
100  
0
24  
22  
20  
V
V
CHANNEL  
CHANNEL  
V
CHANNEL  
X
Y
18  
16  
14  
12  
10  
8
Y
V
CHANNEL  
6
X
4
2
0
-60  
-60 -40  
-20  
0
20  
40  
60  
o
80  
100 120  
-40  
-20  
0
20  
40  
60  
o
80  
100 120  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 33. SLEW RATE vs TEMPERATURE  
FIGURE 34. RISE TIME vs TEMPERATURE  
28  
-I  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
CC  
+I  
CC  
6
4
2
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE (±V)  
FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE  
13  
HA-2546  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
Type: Nitride (Si N ) over Silox (SiO , 5% Phos)  
Silox Thickness: 12kÅ ±2kÅ  
Nitride Thickness: 3.5kÅ ±2kÅ  
79.9 mils x 119.7 mils x 19 mils  
METALLIZATION:  
3
4
2
Type: Al, 1% Cul  
Thickness: 16kÅ ±2kÅ  
TRANSISTOR COUNT:  
87  
Metallization Mask Layout  
HA-2546  
V
GND  
1
GA A GA C  
REF  
2
16  
15  
14 GA B  
V
V
B
3
4
YIO  
13 V +  
X
A
YIO  
V +  
5
12 V -  
X
Y
V -  
6
11 V+  
Y
7
8
9
V +  
10  
V -  
V-  
V
OUT  
Z
Z
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
14  

相关型号:

HA-2546/883

Wideband Two Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA-2546_04

30MHz, Voltage Output, Two Quadrant Analog Multiplier
INTERSIL

HA-2548

150MHz, High Slew Rate, Precision Operational Amplifier
INTERSIL

HA-2548/883

Precision, High Slew Rate, Wideband Operational Amplifier
INTERSIL

HA-2548883

Precision, High Slew Rate, Wideband Operational Amplifier
INTERSIL

HA-2556

57MHz, Wideband, Four Quadrant, Voltage Output Analog Multiplier
INTERSIL

HA-2556/883

Wideband Four Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA-2556_08

57MHz, Wideband, Four Quadrant, Voltage Output Analog Multiplier
INTERSIL

HA-2557/883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA-2600

12MHz, High Input Impedance Operational Amplifiers
INTERSIL

HA-2600_06

12MHz, High Input Impedance Operational Amplifier
INTERSIL

HA-2602/883

Wideband, High Impedance Operational Amplifier
INTERSIL