HA-5221 [INTERSIL]

100MHz, Low Noise, Precision Operational Amplifier; 为100MHz ,低噪声,精密运算放大器
HA-5221
型号: HA-5221
厂家: Intersil    Intersil
描述:

100MHz, Low Noise, Precision Operational Amplifier
为100MHz ,低噪声,精密运算放大器

运算放大器
文件: 总12页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-5221  
TM  
Data Sheet  
April 2000  
File Number 2915.5  
100MHz, Low Noise, Precision  
Operational Amplifier  
Features  
• Gain Bandwidth Product. . . . . . . . . . . . . . . . . . . . 100MHz  
• Unity Gain Bandwidth. . . . . . . . . . . . . . . . . . . . . . . 35MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V/µs  
• Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 0.3mV  
• High Open Loop Gain. . . . . . . . . . . . . . . . . . . . . . . 128dB  
• Low Noise Voltage at 1kHz. . . . . . . . . . . . . . . . 3.4nV/Hz  
• High Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 56mA  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
The HA-5221 is a single high performance dielectrically  
isolated, op amp, featuring precision DC characteristics while  
providing excellent AC characteristics. Designed for audio,  
video, and other demanding applications, noise (3.4nV/Hz at  
1kHz), total harmonic distortion (<0.005%), and DC errors are  
kept to a minimum.  
The precision performance is shown by low offset voltage  
(0.3mV), low bias currents (40nA), low offset currents  
(15nA), and high open loop gain (128dB). The combination  
of these excellent DC characteristics with the fast settling  
time (0.4µs) makes the HA-5221 ideally suited for precision  
signal conditioning.  
Applications  
• Precision Test Systems  
• Active Filtering  
The unique design of the HA-5221 gives it outstanding AC  
characteristics not normally associated with precision op  
amps, high unity gain bandwidth (35MHz) and high slew rate  
(25V/µs). Other key specifications include high CMRR (95dB)  
and high PSRR (100dB). The combination of these  
specifications will allow the HA-5221 to be used in RF signal  
conditioning as well as video amplifiers.  
• Small Signal Video  
• Accurate Signal Processing  
• RF Signal Conditioning  
Pinout  
For MIL-STD-883C compliant product and Ceramic LCC  
packaging, consult the HA-5221/883C data sheet. (Intersil  
AnswerFAX (321-724-7800) Document #3716.)  
HA-5221  
(CERDIP, SOIC)  
TOP VIEW  
Ordering Information  
-BAL  
-IN  
1
2
3
4
8
7
6
5
+BAL  
V+  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
PACKAGE  
8 Ld CERDIP  
8 Ld SOIC  
+
+IN  
V-  
OUT  
NC  
HA7-5221-5  
0 to 75  
F8.3A  
M8.15  
HA9P5221-5  
(H52215)  
0 to 75  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
1
HA-5221  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . 35V  
Differential Input Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . 5V  
Output Current Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Thermal Resistance (Typical, Note 2)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CERDIP Package. . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
135  
157  
50  
N/A  
o
Maximum Junction Temperature (Hermetic Package) . . . . . . . 175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
Operating Conditions  
o
o
Temperature Range  
HA-5221-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 75 C  
o
o
o
(SOIC - Lead Tips Only)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Input is protected by back-to-back zener diodes. See applications section.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
PARAMETER  
V
= ±15V, Unless Otherwise Specified  
SUPPLY  
o
TEST CONDITIONS  
TEMP. ( C)  
MIN  
TYP  
MAX  
UNITS  
INPUT CHARACTERISTICS  
Input Offset Voltage  
25  
Full  
Full  
25  
-
0.30  
0.35  
0.5  
40  
0.75  
1.5  
-
mV  
mV  
-
o
Average Offset Voltage Drift  
Input Bias Current  
-
µV/ C  
-
100  
200  
100  
150  
750  
1500  
-
nA  
nA  
nA  
nA  
µV  
µV  
V
Full  
25  
-
70  
Input Offset Current  
-
15  
Full  
25  
-
30  
Input Offset Voltage Match  
-
400  
-
Full  
25  
-
Common Mode Range  
Differential Input Resistance  
Input Noise Voltage  
±12  
-
25  
-
-
-
-
-
-
-
-
-
70  
-
kΩ  
f = 0.1Hz to 10Hz  
25  
0.25  
6.2  
3.6  
3.4  
4.7  
1.8  
0.97  
<0.005  
-
µV  
P-P  
Input Noise Voltage Density (Notes 3, 11) f = 10Hz  
25  
10  
6
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
pA/Hz  
%
f = 100Hz  
25  
f = 1000Hz  
25  
4.0  
8.0  
2.8  
1.8  
-
Input Noise Current Density (Notes 3, 11) f = 10Hz  
25  
f = 100Hz  
25  
f = 1000Hz  
25  
THD+N  
Note 4  
25  
TRANSFER CHARACTERISTICS  
Large Signal Voltage Gain  
Note 5  
25  
Full  
Full  
25  
106  
100  
86  
-
128  
120  
95  
-
-
-
-
dB  
dB  
CMRR  
V
= ±10V  
dB  
CM  
Unity Gain Bandwidth  
-3dB  
35  
MHz  
2
HA-5221  
Electrical Specifications  
PARAMETER  
V
= ±15V, Unless Otherwise Specified (Continued)  
SUPPLY  
o
TEST CONDITIONS  
1kHz to 400kHz  
TEMP. ( C)  
MIN  
TYP  
100  
-
MAX  
UNITS  
MHz  
V/V  
Gain Bandwidth Product  
Minimum Stable Gain  
25  
-
-
-
Full  
1
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
= 333Ω  
Full  
25  
±10  
±12  
±11.5  
±30  
-
-
-
-
-
-
-
-
V
V
L
L
L
R
R
= 1kΩ  
= 1kΩ  
±12.5  
±12.1  
±56  
10  
Full  
Full  
25  
V
Output Current  
V
= ±10V  
mA  
OUT  
Output Resistance  
Full Power Bandwidth  
Note 6  
25  
239  
398  
kHz  
TRANSIENT RESPONSE (Note 11)  
Slew Rate  
Notes 7, 11  
Notes 8, 11  
Notes 8, 11  
0.1%  
Full  
Full  
Full  
25  
15  
-
25  
13  
-
20  
50  
-
V/µs  
ns  
Rise Time  
Overshoot  
-
28  
%
Settling Time (Notes 9, 10)  
-
0.4  
1.5  
µs  
0.01%  
25  
-
-
µs  
POWER SUPPLY  
PSRR  
V
= ±10V to ±20V  
Full  
Full  
86  
-
100  
8
-
dB  
S
Supply Current  
11  
mA  
NOTES:  
3. Refer to typical performance curve in data sheet.  
4. A  
5. V  
= 10, f = 1kHz, V = 5V , R = 600, 10Hz to 100kHz, minimum resolution of test equipment is 0.005%.  
RMS L  
VCL  
O
O
= 0 to ±10V, R = 1k, C = 50pF.  
OUT  
L
L
Slew Rate  
--------------------------  
6. Full Power Bandwidth is calculated by: FPBW =  
, V  
= 10V .  
PEAK  
2πV  
PEAK  
7. V  
8. V  
= ±2.5V, R = 1k, C = 50pF.  
L L  
OUT  
= ±100mV, R = 1k, C = 50pF.  
OUT  
L
L
9. Settling time is specified for a 10V step and A = -1.  
V
10. See Test Circuits.  
11. Guaranteed by characterization.  
Test Circuits and Waveforms  
V
+
IN  
V
OUT  
-
1k  
50pF  
FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT  
3
HA-5221  
Test Circuits and Waveforms (Continued)  
100mV  
0V  
2.5V  
0V  
V
IN  
-100mV  
-2.5V  
2.5V  
100mV  
V
0V  
-100mV  
OUT  
0V  
-2.5V  
V
= ±100mV  
OUT  
V
= 2.5V  
OUT  
Vertical Scale = 100mV/Div.,  
Horizontal Scale = 200ns/Div.  
Vertical Scale = 2V/Div.,  
Horizontal Scale = 200ns/Div.  
FIGURE 2. LARGE SIGNAL RESPONSE  
FIGURE 3. SMALL SIGNAL RESPONSE  
V
SETTLE  
5K  
5K  
2K  
+
2K  
V
IN  
V
OUT  
NOTES:  
12. A = -1.  
V
13. Feedback and summing resistors must be matched (0.1%).  
14. HP5082-2810 clipping diodes recommended.  
15. Tektronix P6201 FET probe used at settling point.  
FIGURE 4. SETTLING TIME TEST CIRCUIT  
Application Information  
Operation at Various Supply Voltages  
+15V  
The HA-5221 operates over a wide range of supply voltages  
with little variation in performance. The supplies may be  
varied from ±5V to ±15V. See typical performance curves for  
variations in supply current, slew rate and output voltage  
swing.  
7
R
1
P
2
3
8
6
+
Offset Adjustment  
4
The following diagram shows the offset voltage adjustment  
configuration for the HA-5221. By moving the potentiometer  
wiper towards pin 8 (+BAL), the op amps output voltage will  
increase; towards pin 1 (-BAL) decreases the output voltage.  
A 20ktrim pot will allow an offset voltage adjustment of  
about 10mV.  
-15V  
Capacitive Loading Considerations  
When driving capacitive loads >80pF, a small resistor, 50Ω  
to 100, should be connected in series with the output and  
inside the feedback loop.  
4
HA-5221  
Saturation Recovery  
R
LIMIT  
2
When an op amp is over driven, output devices can saturate  
and sometimes take a long time to recover. By clamping the  
input, output saturation can be avoided. If output saturation  
can not be avoided, the maximum recovery time when  
overdriven into the positive rail is 10.6µs. When driven into  
the negative rail the maximum recovery time is 3.8µs.  
6
V  
IN  
V
+
OUT  
R
LIMIT  
3
PC Board Layout Guidelines  
When designing with the HA-5221, good high frequency  
(RF) techniques should be used when building a PC board.  
Use of ground plane is recommended. Power supply  
decoupling is very important. A 0.01µF to 0.1µF high quality  
ceramic capacitor at each power supply pin with a 2.2µF to  
10µF tantalum close by will provide excellent decoupling.  
Chip capacitors produce the best results due to ease of  
placement next to the op amp and basically no lead  
inductance. If leaded capacitors are used, the leads should  
be kept as short as possible to minimize lead inductance.  
Input Protection  
The HA-5221 has built in back-to-back protection diodes  
which limit the maximum allowable differential input voltage  
to approximately 5V. If the HA-5221 is used in circuits where  
the maximum differential voltage may be exceeded, then  
current limiting resistors must be used. The input current  
should be limited to a maximum of 10mA.  
o
Typical Performance Curves V = ±15V, T = 25 C  
S
A
12  
R
= 1K, C = 50pF  
L
L
9
A
= +1, R = 1K, C = 50pF  
V
L
L
120  
100  
80  
60  
40  
20  
0
6
3
GAIN  
GAIN  
0
-3  
-6  
180  
135  
90  
45  
0
180  
135  
PHASE  
PHASE  
10K  
90  
45  
0
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
1K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 5. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY  
9
80  
A
= -1, R = 1K, C = 50pF  
A = -1000  
V
V
L
L
R
= 1K, C = 50pF  
L
L
6
3
0
60  
40  
20  
0
A
= -100  
= -10  
V
A
GAIN  
V
A
= -10  
V
180  
135  
90  
180  
135  
90  
45  
0
A
= -100  
V
PHASE  
A
= -1000  
V
45  
0
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY  
FIGURE 8. VARIOUS CLOSED LOOP GAINS vs FREQUENCY  
5
HA-5221  
o
Typical Performance Curves V = ±15V, T = 25 C (Continued)  
S
A
A
= +1, R = 1K  
L
A
= +1, R = 1K  
L
V
V
120  
100  
80  
60  
40  
20  
0
100  
80  
-PSRR  
60  
40  
20  
0
+PSRR  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY  
FIGURE 10. PSRR vs FREQUENCY  
300  
250  
200  
150  
100  
50  
20  
18  
16  
14  
12  
10  
8
R
= 1K  
L
6
0
4
-50  
2
0
-60  
-100  
-40  
-20  
0
20  
40  
60  
o
80  
100 120  
-60  
-40 -20  
0
20  
40  
60  
o
80  
100 120  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 11. OPEN LOOP GAIN vs TEMPERATURE  
FIGURE 12. OFFSET VOLTAGE vs TEMPERATURE  
(4 REPRESENTATIVE UNITS)  
14  
R
= 600Ω  
L
13.5  
13  
160  
140  
120  
100  
80  
12.5  
12  
60  
40  
11.5  
11  
20  
0
-20  
-40  
10.5  
10  
-60  
-40  
-20  
0
20  
40  
60  
o
80  
100 120  
-60  
-40 -20  
0
20  
40  
60  
o
80  
100 120  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE  
FIGURE 13. BIAS CURRENT vs TEMPERATURE  
(4 REPRESENTATIVE UNITS)  
6
HA-5221  
o
Typical Performance Curves V = ±15V, T = 25 C (Continued)  
S
A
70  
60  
1.1  
A
= +1, R = 1K, C = 50pF  
V
L
L
1.05  
50  
40  
1.0  
0.95  
0.9  
30  
20  
0.85  
0.8  
10  
0
0
1
2
3
4
5
-60  
-40 -20  
0
20  
40  
60  
o
80  
100 120  
TEMPERATURE ( C)  
TIME AFTER POWER UP (MINUTES)  
FIGURE 15. SLEW RATE vs TEMPERATURE  
FIGURE 16. OFFSET VOLTAGE WARM-UP DRIFT  
(CERDIP PACKAGES)  
8.5  
8.25  
8
36  
A
= +1, R = 2K, C = 50pF  
L L  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
V
+SLEW RATE  
-SLEW RATE  
7.75  
7.5  
5
7
9
11  
13  
15  
17  
5
7
9
11  
13  
15  
17  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE  
20  
FIGURE 18. SLEW RATE vs SUPPLY VOLTAGE  
R
= 600Ω  
L
16  
24  
21  
18  
15  
12  
9
15  
10  
14  
12  
10  
8
6
5
0
4
6
VOLTAGE NOISE  
CURRENT NOISE  
2
3
0
0
10K  
1
10  
100  
1K  
5
7
9
11  
13  
15  
17  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FIGURE 19. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE  
FIGURE 20. NOISE CHARACTERISTICS  
7
HA-5221  
o
Typical Performance Curves V = ±15V, T = 25 C (Continued)  
S
A
100  
90  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
80  
70  
60  
50  
40  
30  
+PSRR  
-PSRR  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
CMRR  
98  
97  
96  
95  
-60  
-40  
-20  
0
20  
40  
60  
o
80  
100  
120  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 21. OFFSET CURRENT vs TEMPERATURE  
(4 REPRESENTATIVE UNITS)  
FIGURE 22. CMRR AND PSRR vs TEMPERATURE  
130  
45  
120  
100  
80  
PHASE MARGIN  
A
= +1, R = 1K  
L
V
40  
35  
30  
110  
90  
BANDWIDTH  
60  
40  
20  
0
25  
20  
15  
70  
50  
1
10  
100  
1000  
0
1
2
3
4
5
LOAD CAPACITANCE (pF)  
TIME AFTER SHORT CIRCUIT (MINUTES)  
FIGURE 23. BANDWIDTH AND PHASE MARGIN vs LOAD  
CAPACITANCE  
FIGURE 24. SHORT CIRCUIT OUTPUT CURRENT vs TIME  
Vertical Scale = 1mV/Div.; Horizontal Scale = 1s/Div.  
Vertical Scale = 10mV/Div.; Horizontal Scale = 1s/Div.  
A
= +25,000; E = 0.168µV  
RTI  
P-P  
A
= +25,000; E = 1.5µV RTI  
P-P  
V
N
V
N
FIGURE 25. 0.1Hz TO 10Hz NOISE  
FIGURE 26. 0.1Hz TO 1MHz  
8
HA-5221  
o
Typical Performance Curves V = ±15V, T = 25 C (Continued)  
S
A
18  
16  
14  
12  
10  
8
18  
16  
A
= +1, R = 1K, C = 15pF, THD 0.01%  
L L  
A
= +1, THD 0.01%, f = 1kHz  
V
V
V
V
= ±18  
= ±15  
S
S
V
V
= ±18  
= ±15  
S
14  
12  
S
10  
8
V
= ±10  
= ±5  
S
V
V
= ±10  
= ±5  
S
6
4
2
6
4
2
0
V
S
S
0
10  
10K  
100K  
1M  
10M  
100  
1K  
10K  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
FIGURE 27. OUTPUT VOLTAGE SWING vs FREQUENCY  
FIGURE 28. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE  
10  
9.5  
9
8.5  
8
7.5  
7
6.5  
6
-60  
-40  
-20  
0
20  
40  
60  
o
80  
100 120  
TEMPERATURE ( C)  
FIGURE 29. SUPPLY CURRENT vs TEMPERATURE  
9
HA-5221  
Die Characteristics  
DIE DIMENSIONS:  
SUBSTRATE POTENTIAL (POWERED UP):  
72 mils x 94 mils  
V-  
1840µm x 2400µm  
TRANSISTOR COUNT:  
METALLIZATION:  
62  
Type: Al, 1% Cu  
Thickness: 16kÅ ±2kÅ  
PROCESS:  
Bipolar Dielectric Isolation  
PASSIVATION:  
Type: Nitride (Si N ) over Silox (SiO , 5% Phos.)  
3
4
2
Silox Thickness: 12kÅ ±2kÅ  
Nitride Thickness: 3.5kÅ ±1.5kÅ  
Metallization Mask Layout  
HA-5221  
-IN  
V-  
+IN  
-BAL  
+BAL  
OUT  
V+  
10  
HA-5221  
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)  
c1 LEAD FINISH  
F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A)  
8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES  
MIN  
MILLIMETERS  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.405  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
10.29  
7.87  
NOTES  
b1  
A
b
-
-
M
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
b1  
b2  
b3  
c
3
SECTION A-A  
bbb  
C A - B  
D
D
S
S
S
-
4
BASE  
PLANE  
Q
A
2
-C-  
SEATING  
PLANE  
c1  
D
3
L
α
5
S1  
b2  
eA  
A A  
e
E
0.220  
5.59  
5
b
C A - B  
eA/2  
aaa M C A - B S  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
ccc  
D
D
S
M
S
S
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.005  
0.38  
0.13  
6
S1  
7
o
o
o
o
90  
105  
90  
105  
-
α
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
aaa  
bbb  
ccc  
M
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
8
8
Rev. 0 4/94  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH  
11  
HA-5221  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC  
PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
E
INCHES  
MILLIMETERS  
-B-  
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
1
2
3
L
-
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
o
h x 45  
D
3
4
-C-  
α
0.050 BSC  
1.27 BSC  
-
e
A1  
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
C
B
0.10(0.004)  
5
0.25(0.010) M  
C
A M B S  
L
6
N
α
8
8
7
NOTES:  
o
o
o
o
0
8
0
8
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 0 12/93  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
12  

相关型号:

HA-5221/883

Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5221883

Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5221_03

100MHz, Low Noise, Precision Operational Amplifier
INTERSIL

HA-5222

Dual, Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5222/883

Dual, Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5222883

Dual, Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5222_01

Dual, Low Noise, Wideband, Precision Operational Amplifier
INTERSIL

HA-5320

1 Microsecond Precision Sample and Hold Amplifier
INTERSIL

HA-5320/883

High Speed Precision Sample and Hold Amplifier
INTERSIL

HA-5320883

High Speed Precision Sample and Hold Amplifier
INTERSIL

HA-5320_05

1 Microsecond Precision Sample and Hold Amplifier
INTERSIL

HA-5330

650ns Precision Sample and Hold Amplifier
INTERSIL