HI20201JCB [INTERSIL]

10-Bit, 160 MSPS, Ultra High Speed D/A Converter; 10位, 160 MSPS ,超高速D / A转换器
HI20201JCB
型号: HI20201JCB
厂家: Intersil    Intersil
描述:

10-Bit, 160 MSPS, Ultra High Speed D/A Converter
10位, 160 MSPS ,超高速D / A转换器

转换器 光电二极管
文件: 总11页 (文件大小:85K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI20201  
10-Bit, 160 MSPS,  
Ultra High Speed D/A Converter  
August 1997  
Features  
Description  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . 160MHz The HI20201 is a 160MHz ultra high speed D/A converter. The  
converter is based on an R/2R switched current source archi-  
tecture that includes an input data register with a complement  
• Resolution (HI20201) . . . . . . . . . . . . . . . . . . . . . . . 10-Bit  
feature and is Emitter Coupled Logic (ECL) compatible.  
• Differential Linearity Error . . . . . . . . . . . . . . . . 0.5 LSB  
• Low Glitch Noise  
The HI20201 is available in a commercial temperature range  
and offered in a 28 lead plastic SOIC (300 mil) and a 28 lead  
plastic DIP package.  
• Analog Multiplying Function  
• Low Power Consumption . . . . . . . . . . . . . . . . . .420mW  
• Evaluation Board Available  
Ordering Information  
• Direct Replacement for Sony CX20201-1, CX20202-1  
PART  
NUMBER  
TEMP.  
o
RANGE ( C)  
-20 to 75  
-20 to 75  
25  
PACKAGE  
28 Ld SOIC  
28 Ld PDIP  
Evaluation Kit  
PKG. NO.  
M28.3A-S  
E28.6A-S  
Applications  
HI20201JCB  
HI20201JCP  
HI20201-EV  
• Wireless Communications  
• Signal Reconstruction  
• Direct Digital Synthesis  
• High Definition Video Systems  
• Digital Measurement Systems  
• Radar  
Pinout  
HI20201  
(PDIP, SOIC)  
TOP VIEW  
1
2
28 AV  
SS  
(MSB) D9  
D8  
27  
V
REF  
3
26 AV  
EE  
D7  
25 NC  
24 NC  
23 NC  
22 NC  
21 NC  
4
D6  
5
D5  
6
D4  
7
D3  
8
D2  
9
20  
I
D1  
OUT  
10  
11  
12  
13  
14  
19 NC  
18 AV  
(LSB) D0  
NC  
SS  
17 DV  
NC  
SS  
16 COMPL  
CLK  
CLK  
15 DV  
EE  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 3581.5  
10-1197  
HI20201  
Typical Application Circuit  
HI20201  
.
(28) AV  
SS  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D9 (MSB) (1)  
1.5k  
1kΩ  
D8 (2)  
~2.7V  
D7 (3)  
D6 (4)  
D5 (5)  
D4 (6)  
D3 (7)  
D2 (8)  
D1 (9)  
D0 (LSB) (10)  
(11)  
(27) V  
REF  
2kΩ  
DIGITAL  
DATA  
(ECL)  
TL431CP  
-5.2V  
(26) AV  
EE  
0.047µF  
1.0µF  
75COAX CABLE  
D/A OUT  
(20) I  
(12)  
OUT  
(18, 19, 21-25) NC  
8282Ω  
(17) DV  
SS  
CLK (13)  
CLK (14)  
CLK  
(16) COMPL  
-1.3V  
1.0µF  
3.6kΩ  
0.047µF  
131Ω  
-5.2V  
(15) DV  
EE  
131Ω  
-5.2V  
Functional Block Diagram  
(LSB) D0  
D1  
6 LSBs  
CURRENT  
CELLS  
D2  
D3  
R/2R  
NET/WORK  
D4  
INPUT  
8-BIT  
REGISTER  
BUFFER  
D5  
15  
15  
15  
15  
15  
D6  
D7  
UPPER  
4-BIT  
ENCODER  
15  
15  
D8  
15  
15  
I
OUT  
(MSB) D9  
SWITCHED  
CURRENT  
CELLS  
COMPL  
BIAS CURRENT  
GENERATOR  
CLK  
CLK  
CLOCK  
BUFFER  
V
REF  
10-1198  
HI20201  
Absolute Maximum Ratings  
Thermal Information  
o
Digital Supply Voltage DV to DV  
. . . . . . . . . . . . . . . . . . . -7.0V  
. . . . . . . . . . . . . . . . . . -7.0V  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
EE  
SS  
to AV  
Analog Supply Voltage AV  
DD  
SS  
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
67  
58  
Digital Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 to DV  
Reference Input Voltage . . . . . . . . . . . . . . . . . . . . . . +0.3 to AV  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA  
V
V
EE  
o
EE  
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
o
o
o
(SOIC - Lead Tips Only)  
Recommended Operating Conditions  
Supply Voltage  
Reference Input Voltage, V  
. . . . . . . . V + 0.5V to V + 1.4V  
EE EE  
REF  
AV , DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . -4.75V to -5.45V Load Resistance, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Ω  
EE  
EE  
L
AV - DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05V to +0.05V Output Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V to 1.2V  
EE EE  
OUT  
o
o
Digital Input Voltage  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-20 C to 75 C  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to -0.7V  
IH  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.9V to -1.6V  
IL  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications  
T = 25 C, AV = DV = -5.2V, AGND = DGND = 0V, R = , V  
= -1V  
A
EE  
EE  
L
OUT  
HI20201JCB/JCP  
TYP  
PARAMETER  
SYSTEM PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
MAX  
UNITS  
10  
-
-
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
mA  
Integral Linearity Error, INL  
Differential Linearity Error, DNL  
f
f
= 160MHz (End Point)  
= 160MHz  
±1.0  
±0.50  
-
S
-
-
S
Offset Error, V  
OS  
(Adjustable to Zero)  
(Note 3)  
(Note 3)  
-
7
-
Full Scale Error, FSE (Adjustable to Zero)  
Full Scale Output Current, I  
-
±102  
20  
-
-
FS  
DYNAMIC CHARACTERISTICS  
Throughput Rate  
See Figure 11  
160  
-
-
-
-
MHz  
pV/s  
Glitch Energy, GE  
R
= 75Ω  
15  
OUT  
REFERENCE INPUT  
Voltage Reference Input Range  
Reference Input Current  
With Respect to AV  
+0.5  
-0.1  
-
-
+1.4  
-3.0  
-
V
EE  
V
= -4.58V  
-0.4  
14.0  
µA  
REF  
Voltage Reference to Output Small  
Signal Bandwidth  
-3dB point 1V  
Input  
MHz  
P-P  
Output Rise Time, t  
R
R
= 75Ω  
-
-
1.5  
1.5  
-
-
ns  
ns  
r
LOAD  
LOAD  
Output Fall Time, t  
= 75Ω  
f
DIGITAL INPUTS  
Input Logic High Voltage, V  
IH  
(Note 2)  
(Note 2)  
-1.0  
-0.89  
-1.75  
1.5  
V
V
Input Logic Low Voltage, V  
-1.6  
6.0  
IL  
Input Logic Current, I , I  
IL IH  
(For D9 thru D6, COMPL)  
V
= -0.89V, V = -1.75V (Note 2)  
IL  
0.1  
0.1  
µA  
IH  
Input Logic Current, I , I (For D5 thru D0)  
IL IH  
V
= -0.89V, V = -1.75V (Note 2)  
IL  
0.75  
3.0  
µA  
IH  
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 11  
See Figure 11  
See Figure 11  
See Figure 11  
5
1
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
-
HLD  
Propagation Delay Time, t  
1
3.8  
5.2  
PD  
Settling Time, t  
(to / LSB)  
-
SET  
2
10-1199  
HI20201  
o
Electrical Specifications  
T = 25 C, AV = DV = -5.2V, AGND = DGND = 0V, R = , V = -1V (Continued)  
EE EE OUT  
A
L
HI20201JCB/JCP  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNITS  
POWER SUPPLY CHARACTERISITICS  
I
-60  
-
-75  
-90  
mA  
EE  
Power Dissipation  
NOTES:  
75load  
420  
470  
mW  
2. Parameter guaranteed by design or characterization and not production tested.  
3. Excludes error due to reference drift.  
4. Electrical specifications guaranteed only under the stated operating conditions.  
Timing Diagram  
CLK  
CLK  
DATA  
t
t
HD  
SU  
N
N + 1  
t
t
D
D
0V  
N + 1  
90%  
N
D/A OUT  
-1V  
50%  
10%  
t
t
f
r
FIGURE 1. LADDER SETTLING TIME FULL POWER BANDWIDTH (LS)  
Pin Descriptions  
28 PIN SOIC  
PIN NAME  
PIN DESCRIPTION  
1-10  
D0 (LSB)-D9 (MSB) Digital Data Bit 0, the Least Significant Bit thru Digital Data Bit 9, the Most Significant Bit.  
11, 12, 19, 21- 25  
NC  
No Connect, not used.  
13  
14  
15  
16  
Negative Differential Clock Input.  
Positive Differential Clock Input  
Digital (ECL) Power Supply -4.75V to -7V.  
CLK  
CLK  
DV  
EE  
COMPL  
Data Complement Pin. When set to a (ECL) logic High the input data is complemented in the  
input buffer. When cleared to a (ECL) logic Low the input data is not complemented.  
17  
18  
20  
26  
27  
28  
DV  
AV  
Digital Ground.  
SS  
Analog Ground.  
SS  
I
Current Output Pin.  
OUT  
AV  
Analog Supply -4.75V to -7V.  
Input Reference Voltage used to set the output full scale range.  
Analog Ground.  
EE  
V
REF  
AV  
SS  
10-1200  
HI20201  
Typical Performance Curves  
1.05  
1.00  
0.95  
-2.0  
o
T
= 25 C, V = -5.2V  
EE  
A
LINEAR AREA  
R
= 10kΩ  
L
R
= 10kΩ  
L
-1.0  
R
= 75Ω  
L
R
= 75Ω  
L
0
0.5  
-20  
0
20  
40  
60  
80  
1.0  
1.5  
o
AMBIENT TEMPERATURE ( C)  
V
- V (V)  
EE  
REF  
FIGURE 2. V  
RATIO vs (V  
REF  
- V  
EE  
)
FIGURE 3. FULL SCALE OUTPUT VOLTAGE vs AMBIENT  
TEMPERATURE  
O(FS)  
0
-10  
-20  
f
= 100MHz  
CLK  
10.0  
8.0  
6.0  
4.0  
2.0  
GAIN  
0
PHASE  
-90  
-180  
10K  
100K  
1M  
10M  
100M  
-50  
0
50  
100  
o
MULTIPLYING INPUT SIGNAL FREQUENCY (Hz)  
CASE TEMPERATURE ( C)  
FIGURE 4. OUTPUT CHARACTERISTICS vs MULTIPLYING  
INPUT SIGNAL FREQUENCY  
FIGURE 5. GLITCH ENERGY vs CASE TEMPERATURE (FULL  
SCALE - 1023mV)  
10-1201  
HI20201  
Detailed Description  
The HI20201 is a 10-bit, current output D/A converter. The 01 1111 1111 to 10 0000 0000. But in the HI20201 the glitch  
DAC can run at 160MHz and is ECL compatible. The archi- is moved to the 00 0001 1111 to 11 1110 0000 transition.  
tecture is segmented/R2R combination to reduce glitch and This is achieved by the split R2R/segmented current source  
improve linearity.  
architecture. This decreases the amount of current switching  
at any one time and makes the glitch practically constant  
over the entire output range. By making the glitch a constant  
size over the entire output range this effectively integrates  
this error out of the end application.  
Architecture  
The HI20201 is a combined R2R/segmented current source  
design. The 6 least significant bits of the converter are  
derived by a traditional R2R network to binary weight the  
1mA current sources. The upper 4 most significant bits are  
implemented as segmented or thermometer encoded cur-  
rent sources. The encoder converts the incoming 4 bits to 15  
control lines to enable the most significant current sources.  
The thermometer encoder will convert binary to individual  
control lines. See Table 1.  
In measuring the output glitch of the HI20201 the output is  
terminated into a 75load. The glitch is measured at the  
major carry’s throughout the DAC’s output range.  
HI20201  
34MHz  
LOW PASS  
FILTER  
TABLE 1. THERMOMETER ENCODER  
THERMOMETER CODE  
SCOPE  
(20) I  
OUT  
50Ω  
75Ω  
MSB  
0
BIT 8  
BIT 7  
BIT 6  
1 = ON, 0 = OFF, I - I  
15  
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
000 0000 0000 0000  
000 0000 0000 0001  
000 0000 0000 0011  
000 0000 0000 0111  
000 0000 0000 1111  
000 0000 0001 1111  
000 0000 0011 1111  
000 0000 0111 1111  
000 0000 1111 1111  
000 0001 1111 1111  
000 0011 1111 1111  
000 0111 1111 1111  
000 1111 1111 1111  
001 1111 1111 1111  
011 1111 1111 1111  
111 1111 1111 1111  
0
FIGURE 6. HI20201 GLITCH TEST CIRCUIT  
0
0
The glitch energy is calculated by measuring the area under  
the voltage-time curve. Figure 7 shows the area considered  
as glitch when changing the DAC output. Units are typically  
specified in picoVolt/seconds (pV/s).  
0
0
0
0
1
1
1
1
1
1
A (mV)  
GLITCH ENERGY = (a x t)/2  
1
1
The architecture of the HI20201 is designed to minimize  
glitch while providing a manufacturable 10-bit design that  
does not require laser trimming to achieve good linearity.  
t (ns)  
FIGURE 7. GLITCH ENERGY  
Glitch  
Glitch is caused by the time skew between bits of the Setting Full Scale  
incoming digital data. Typically the switching time of digital  
The full scale output voltage is set by the Voltage Reference  
pin (27). The output voltage performance will vary as shown  
in Figure 2.  
inputs are asymmetrical meaning that the turn off time is  
faster than the turn on time (TTL designs). In an ECL system  
where the logic levels switch from one non-saturated level to  
another, the switching times can be considered close to The output structure of the HI20201 can handle down to a  
symmetrical. This helps to reduce glitch in the D/A. Unequal 75load effectively. To drive a 50load Figure 8 is sug-  
delay paths through the device can also cause one current gested. Note the equivalent output load is ~75.  
source to change before another. To minimize this the Intersil  
HI20201 employs an internal register, just prior to the current  
sources, that is updated on the clock edge. Lastly the worst  
case glitch usually happens at the major transition i.e.,  
10-1202  
HI20201  
Clock Phase Relationship  
The HI20201 is designed to be operated at very high speed  
(i.e., 160MHz). The clock lines should be driven with  
ECL100K logic for full performance. Any external data  
drivers and clock drivers should be terminated with 50to  
minimize reflections and ringing.  
HI20201  
(20) I  
50COAX CABLE  
39Ω  
D/A OUT  
OUT  
100Ω  
Internal Data Register  
(18, 19, 21-25) NC  
The HI20201 incorporates a data register as shown in the  
Functional Block Diagram. This register is updated on the  
rising edge of the CLK line. The state of the Complement bit  
(COMPL) will determine the data coding. See Table 2.  
FIGURE 8. HI20201 DRIVING A 50LOAD  
Variable Attenuator Capability  
The HI20201 can be used in a multiplying mode with a  
TABLE 2. INPUT CODING TABLE  
OUTPUT CODE  
variable frequency input on the V  
pin. In order for the  
REF  
part to operate correctly a DC bias must be applied and the  
incoming AC signal should be coupled to the V pin. See  
INPUT CODE  
00 0000 0000  
10 0000 0000  
11 1111 1111  
COMPL = 1  
COMPL = 0  
REF  
0
-0.5  
-1  
-1  
-0.5  
0
Figure 13 for the application circuit. The user must first  
adjust the DC reference voltage. The incoming signal must  
be attenuated so as not to exceed the maximum (+1.4V) and  
minimum (+0.5V) reference input. The typical output Small  
Signal Bandwidth is 14MHz.  
Thermal Considerations  
Integral Linearity  
The temperature coefficient of the full scale output voltage  
and zero offset voltage depend on the load resistance con-  
The Integral Linearity is measured using the End Point  
method. In the End Point method the gain is adjusted. A line  
is then established from the zero point to the end point or  
Full Scale of the converter. All codes along the transfer curve  
must fall within an error band of 1 LSB of the line. Figure 10  
shows the linearity test circuit.  
nected to I  
. The larger the load resistor, the better (i.e.,  
OUT  
smaller) the temperature coefficient of the D/A. See Figure 3  
in the performance curves section.  
Noise Reduction  
Differential Linearity  
Digital switching noise must be minimized to guarantee system  
specifications. Since 1 LSB corresponds to 1mV for 10-bit reso-  
lution, care must be taken in the layout of a circuit board.  
The Differential Linearity is the difference from the ideal step.  
To guarantee monotonicity a maximum of 1 LSB differential  
error is allowed. When more than 1 LSB is specified the con-  
verter is considered to be missing codes. Figure 10 shows  
the linearity test circuit.  
Separate ground planes should be used for DV  
SS  
and  
AV . They should be connected back at the power supply.  
SS  
Separate power planes should be used for DV and AV  
EE  
.
EE  
They should be decoupled with a 1µF tantalum capacitor  
and a ceramic 0.047µF capacitor positioned as close to the  
body of the IC as possible.  
10-1203  
HI20201  
Test Circuits  
S1  
S2  
S3  
a
b
a
b
a
b
a
b
a
b
a
b
a
b
a
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
a
b
a
S20  
S16  
a
b
I6  
3
I1  
5.2V  
b
S4  
S5  
S6  
S7  
S8  
S9  
S10  
4.56V  
4
5
I2  
S11  
b
6
a
7
-0.89V  
-1.75V  
8
1mA  
b
a
b
a
S19  
a
b
9
10  
11  
12  
13  
14  
V1  
b
-0.89V OR  
-1.75V  
S17  
a
b
S12  
a
b
a
S18  
S14  
I5  
I3  
I4  
a
a
b
b
a
S13  
S15  
5.2V  
b
b
-0.89V  
-1.75V  
FIGURE 9. CURRENT CONSUMPTION, INPUT CURRENT AND OUTPUT RESISTANCE  
LINEARITY ERRORS ARE MEASURED AS FOLLOWS  
S1  
0
S2  
0
S3  
0
• • • •  
• • • •  
• • • •  
• • • •  
S9  
0
S10 D/A OUT  
0
1
0
V
V
V
0
1
2
0
0
0
0
“1”  
S1  
S2  
S3  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0
0
0
1
“0”  
10K  
0.89V  
1.75V  
3
1
1
1
• • • •  
1
1
V
1023  
5.2V  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
4
INTEGRAL  
LINEARITY ERROR  
DIFFERENTIAL  
LINEARITY ERROR  
5
6
V
V
V
V
V
V
V
V
V
V
0
10-BIT  
DATA  
V
V
V
V
- V  
- V  
- V  
- V  
- V  
- V  
- V  
- V  
- V  
1
1
2
4
8
0
7
2
1
D/A  
OUT  
8
4
3
8
7
9
V
16  
32  
64  
128  
192  
16  
32  
64  
15  
31  
63  
127  
191  
V
V
V0  
10  
11  
12  
13  
14  
V
V
128  
192  
1.3V  
5.2V  
V
V
V
- V  
960  
960  
959  
1 SHOT  
CLK  
1023  
Error at individual measurement points are calculated  
according to the following definition.  
Adjust so that the full scale of DC voltage at pin 20 becomes  
1.023V, that is, to satisfy V - V = 1.023V.  
(V  
- V )/1023 = V  
/1023 1 LSB.  
0(FS)  
1023  
0
O
1023  
FIGURE 10. DIFFERENTIAL LINEARITY ERROR AND LINEARITY ERROR  
10-1204  
HI20201  
Test Circuits (Continued)  
1
/
HD100151  
6
B
10kΩ  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MSB  
82  
82  
D
Q
Q
3
131  
131  
4
-5.2V  
-5.2V CLKF  
-5.2V  
5
TO PG  
6
-1.3V  
7
50Ω  
8
C
1
50Ω  
39  
9
OUT  
HD100116  
TO SCOPE  
82  
10  
11  
12  
13  
14  
LSB  
100  
1
CLKF  
470  
131  
82  
82  
A
DL  
CLK  
CLK  
1
-5.2V  
131  
131  
131  
DL: Delay line  
Capacitors are 0.047µF ceramic chip capacitors unless otherwise specified.  
-1.3V  
-5.2V  
FIGURE 11. MAXIMUM CONVERSION RATE, RISE TIME, FALL TIME, PROPAGATION DELAY, SETUP TIME, HOLD TIME AND  
SETTLING TIME CIRCUIT  
Measuring Settling Time  
Settling time is measured as follows. The relationship  
between V and V  
as shown in the D/A output waveform  
0(FS)  
in Figure 12 is expressed as  
-tτ  
V = V  
(1 - e ).  
0(FS)  
The settling time for respective accuracy of 10, 9 and 8-bit is  
specified as  
τ
V = 0.9995 V  
V = 0.999 V  
V = 0.999 V  
0(FS)  
0(FS)  
0(FS)  
which results in the following:  
t
t
t
= 7.60τ for 10-bit,  
= 6.93τ for 9-bit, and  
= 6.24τ for 8-bit,  
V
= 1V  
S
S
S
0(FS)  
V
Rise time (t ) and fall time (t ) are defined as the time interval  
r
f
to slew from 10% to 90% of full scale voltage (V  
):  
0(FS)  
τ
V = 0.1 V  
V = 0.9 V  
0(FS)  
0(FS)  
FIGURE 12. D/A OUTPUT WAVEFORM  
and calculated as t = t = 2.20τ.  
r
f
The settling time is obtained by combining these expressions:  
t
t
t
= 3.45t for 10-bit,  
r
S
S
S
= 3.15t for 9-bit, and  
r
= 6.24t for 8-bit  
r
10-1205  
HI20201  
Test Circuits (Continued)  
Adjust so that the voltage at point B  
becomes -1V with no AC input.  
“1”  
10kΩ  
0.1µF  
OSC  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
0.047µ  
51  
3
A
4
-5.2V  
5
6
7
8
B
TO SCOPE  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
CLK  
CLK  
A GND D GND  
-5.2V  
FIGURE 13A.  
FIGURE 13B.  
FIGURE 13C.  
V
V
-0.62V  
WAVEFORM AT POINT A  
EE  
EE  
-0.31V  
1V  
AT 1MHz  
-1V  
P-P  
WAVEFORM AT POINT B  
FIGURE 13. MULTIPLYING BANDWIDTH  
10-1206  
HI20201  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
10-1207  

相关型号:

HI20201JCB-T

10-Bit Digital-to-Analog Converter
ETC

HI20201JCP

10-Bit, 160 MSPS, Ultra High Speed D/A Converter
INTERSIL

HI20203

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20203JCB

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20203JCP

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20203_00

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20206

Triple 8-Bit, 35 MSPS, RGB, 3-Channel D/A Converter
INTERSIL

HI20206JCP

Triple 8-Bit, 35 MSPS, RGB, 3-Channel D/A Converter
INTERSIL

HI20206JCP

TRIPLE, PARALLEL, 8 BITS INPUT LOADING, 0.016 us SETTLING TIME, 8-BIT DAC, PDIP42
ROCHESTER

HI20412

8位, 50个中型项目,视频A / D转换器与钳位功能
INTERSIL

HI210

PNP EPITAXIAL PLANAR TRANSISTOR
HSMC

HI21002000J0G

Barrier Strip Terminal Block
AMPHENOL