HI5731BIB [INTERSIL]

12-Bit, 100 MSPS, High Speed D/A Converter; 12位, 100 MSPS ,高速D / A转换器
HI5731BIB
型号: HI5731BIB
厂家: Intersil    Intersil
描述:

12-Bit, 100 MSPS, High Speed D/A Converter
12位, 100 MSPS ,高速D / A转换器

转换器 光电二极管 信息通信管理
文件: 总15页 (文件大小:372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5731  
TM  
Data Sheet  
May 2000  
File Number 4070.6  
12-Bit, 100 MSPS, High Speed D/A  
Converter  
Features  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . 100 MSPS  
• Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650mW  
• Integral Linearity Error . . . . . . . . . . . . . . . . . . . . 0.75 LSB  
• Low Glitch Energy . . . . . . . . . . . . . . . . . . . . . . . . .3.0pV-s  
• TTL/CMOS Compatible Inputs  
The HI5731 is a 12-bit, 100 MSPS, D/A converter which is  
implemented in the Intersil BiCMOS 10V (HBC-10) process.  
Operating from +5V and -5.2V, the converter provides  
-20.48mA of full scale output current and includes an input  
data register and bandgap voltage reference. Low glitch  
energy and excellent frequency domain performance are  
achieved using a segmented architecture. The digital inputs  
are TTL/CMOS compatible and translated internally to ECL.  
All internal logic is implemented in ECL to achieve high  
switching speed with low noise. The addition of laser  
trimming assures 12-bit linearity is maintained along the  
entire transfer curve.  
• Improved Hold Time . . . . . . . . . . . . . . . . . . . . . . . . 0.25ns  
• Excellent Spurious Free Dynamic Range  
Applications  
• Cellular Base Stations  
• GSM Base Stations  
Ordering Information  
• Wireless Communications  
• Direct Digital Frequency Synthesis  
• Signal Reconstruction  
TEMP.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
28 Ld PDIP  
28 Ld SOIC  
PKG. NO.  
E28.6  
HI5731BIP  
HI5731BIB  
HI5731-EVS  
-40 to 85  
-40 to 85  
25  
M28.3  
Test Equipment  
Evaluation Board (SOIC)  
• High Resolution Imaging Systems  
• Arbitrary Waveform Generators  
Pinout  
HI5731  
(PDIP, SOIC)  
TOP VIEW  
D11 (MSB)  
1
2
3
4
5
6
7
8
9
28  
DGND  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
27 AGND  
26 REF OUT  
25 CTRL OUT  
24 CTRL IN  
23 R  
SET  
22 AV  
EE  
OUT  
21 I  
20  
I
OUT  
19 ARTN  
18 DV  
D2 10  
D1 11  
EE  
17 DGND  
16 DV  
D0 (LSB) 12  
NC 13  
CC  
15 CLOCK  
NC 14  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
3-1  
HI5731  
Typical Application Circuit  
+5V  
HI5731  
0.01µF  
DV  
(16)  
CC  
D11 (MSB) (1)  
D10 (2)  
D9 (3)  
D11  
0.1µF  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
(24) CTRL IN  
(25) CTRL OUT  
D8 (4)  
-5.2V (AV  
)
EE  
D7 (5)  
(26) REF OUT  
D6 (6)  
D5 (7)  
D/A OUT  
(21) I  
OUT  
64Ω  
D4 (8)  
D3 (9)  
64Ω  
D2 (10)  
D2  
D1  
D0  
(20) I  
OUT  
D1 (11)  
(23) R  
SET  
D0 (LSB) (12)  
976Ω  
(19) ARTN  
(27) AGND  
CLK (15)  
50Ω  
DGND (17, 28)  
(22) AV  
EE  
DV (18)  
EE  
0.01µF  
0.1µF  
0.01µF  
0.1µF  
- 5.2V (AV  
)
- 5.2V (DV  
)
EE  
EE  
Functional Block Diagram  
(LSB) D0  
D1  
D2  
D3  
8 LSBs  
CURRENT  
CELLS  
R2R  
NETWORK  
D4  
DATA  
BUFFER/  
LEVEL  
12-BIT  
MASTER  
REGISTER  
D5  
ARTN  
SLAVE  
REGISTER  
D6  
SHIFTER  
227Ω  
227Ω  
D7  
D8  
15  
15  
15  
D9  
D10  
UPPER  
4-BIT  
DECODER  
SWITCHED  
CURRENT  
CELLS  
I
I
OUT  
(MSB) D11  
OUT  
REF CELL  
CTRL  
IN  
CLK  
25Ω  
+
OVERDRIVEABLE  
VOLTAGE  
CTRL  
OUT  
-
REFERENCE  
AV  
AGND DV  
DGND DV  
REF OUT  
R
SET  
EE  
EE  
CC  
3-2  
HI5731  
Absolute Maximum Ratings  
Thermal Information  
o
Digital Supply Voltage V  
to DGND . . . . . . . . . . . . . . . . . . . +5.5V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
CC  
JA  
Negative Digital Supply Voltage DV to DGND . . . . . . . . . . -5.5V  
EE  
Negative Analog Supply Voltage AV to AGND, ARTN . . . . . -5.5V  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
HI5731BIx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
55  
70  
EE  
Digital Input Voltages (D11-D0, CLK) to DGND. . . . . DV  
to -0.5V  
CC  
Internal Reference Output Current. . . . . . . . . . . . . . . . . . . . ±2.5mA  
Voltage from CTRL IN to AV . . . . . . . . . . . . . . . . . . . . 2.5V to 0V  
o
o
o
EE  
Control Amplifier Output Current . . . . . . . . . . . . . . . . . . . . . ±2.5mA  
Reference Input Voltage Range. . . . . . . . . . . . . . . . . .-3.7V to AV  
o
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
(SOIC - Lead Tips Only)  
EE  
) . . . . . . . . . . . . . . . . . . . . . . . . . 30mA  
Analog Output Current (I  
OUT  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV , DV = -4.94 to -5.46V, V = +4.75 to +5.25V, V = Internal  
REF  
EE  
EE  
CC  
o
T = 25 C for All Typical Values  
A
HI5731BI  
= -40 C TO 85 C  
o
o
T
A
PARAMETER  
SYSTEM PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
-
0.75  
0.5  
20  
1
-
1.5  
1.0  
75  
10  
0.05  
-
Bits  
LSB  
LSB  
µA  
Integral Linearity Error, INL  
Differential Linearity Error, DNL  
(Note 4) (“Best Fit” Straight Line)  
-
(Note 4)  
-
Offset Error, I  
OS  
(Note 4)  
-
Full Scale Gain Error, FSE  
Offset Drift Coefficient  
(Notes 2, 4)  
(Note 3)  
-
%
o
-
-
-
µA/ C  
Full Scale Output Current, I  
20.48  
-
mA  
V
FS  
Output Voltage Compliance Range  
DYNAMIC CHARACTERISTICS  
Throughput Rate  
(Note 3)  
(Note 3)  
-1.25  
0
100  
-
-
-
-
MSPS  
ns  
Output Voltage Full Scale Step  
To ±0.5 LSB Error Band R = 50Ω  
20  
L
Settling Time, t  
SETT  
, Full Scale  
(Note 3)  
Singlet Glitch Area, GE (Peak)  
Doublet Glitch Area, (Net)  
Output Slew Rate  
R
= 50(Note 3)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
pV-s  
pV-s  
V/µs  
ps  
L
R = 50, DAC Operating in Latched Mode (Note 3)  
1,000  
675  
470  
85  
L
Output Rise Time  
R = 50, DAC Operating in Latched Mode (Note 3)  
L
Output Fall Time  
R = 50, DAC Operating in Latched Mode (Note 3)  
ps  
L
Spurious Free Dynamic Range within a Window  
(Note 3)  
f
f
f
f
f
f
f
f
f
= 10 MSPS, f  
= 20 MSPS, f  
= 40 MSPS, f  
= 50 MSPS, f  
= 80 MSPS, f  
= 1.23MHz, 2MHz Span  
= 5.055MHz, 2MHz Span  
= 16MHz, 10MHz Span  
= 10.1MHz, 2MHz Span  
= 5.1MHz, 2MHz Span  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
77  
75  
80  
78  
= 100 MSPS, f  
= 10.1MHz, 2MHz Span  
79  
OUT  
Spurious Free Dynamic Range to Nyquist  
(Note 3)  
= 40 MSPS, f  
= 80 MSPS, f  
= 2.02MHz, 20MHz Span  
= 2.02MHz, 40MHz Span  
70  
OUT  
OUT  
70  
= 100 MSPS, f  
OUT  
= 2.02MHz, 50MHz Span  
69  
REFERENCE/CONTROL AMPLIFIER  
Internal Reference Voltage, V  
REF  
(Note 4)  
(Note 3)  
(Note 3)  
-1.27  
-
-1.23  
175  
-
-1.17  
-
V
o
Internal Reference Voltage Drift  
µV/ C  
Internal Reference Output Current Sink/Source  
Capability  
-125  
+50  
µA  
3-3  
HI5731  
Electrical Specifications AV , DV = -4.94 to -5.46V, V = +4.75 to +5.25V, V = Internal  
REF  
EE  
EE  
CC  
o
T = 25 C for All Typical Values (Continued)  
A
HI5731BI  
= -40 C TO 85 C  
o
o
T
A
PARAMETER  
Internal Reference Load Regulation  
Input Impedance at REF OUT pin  
Amplifier Large Signal Bandwidth (0.6V  
Amplifier Small Signal Bandwidth (0.1V  
Reference Input Impedance  
TEST CONDITIONS  
= -125µA  
MIN  
TYP  
50  
MAX  
UNITS  
µV  
I
= 0 to I  
REF  
-
-
-
-
-
-
-
-
-
-
-
-
REF  
(Note 3)  
1.4  
3
kΩ  
)
Sine Wave Input, to Slew Rate Limited (Note 3)  
Sine Wave Input, to -3dB Loss (Note 3)  
(Note 3)  
MHz  
MHz  
kΩ  
P-P  
)
10  
P-P  
12  
Reference Input Multiplying Bandwidth (CTL IN)  
R
= 50, 100mV Sine Wave, to -3dB Loss at I  
200  
MHz  
L
OUT  
(Note 3)  
DIGITAL INPUTS (D9-D0, CLK, INVERT)  
Input Logic High Voltage, V  
IH  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 3)  
2.0  
-
-
V
Input Logic Low Voltage, V  
IL  
-
-
-
-
-
-
0.8  
400  
700  
-
V
Input Logic Current, I  
Input Logic Current, I  
µA  
µA  
pF  
IH  
IL  
-
Digital Input Capacitance, C  
IN  
3.0  
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
3.0  
0.5  
-
2.0  
0.25  
4.5  
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
HLD  
Propagation Delay Time, t  
PD  
CLK Pulse Width, t , t  
POWER SUPPLY CHARACTERISTICS  
3.0  
PW1 PW2  
I
I
I
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
-
-
-
-
-
42  
70  
13  
650  
5
50  
85  
20  
-
mA  
mA  
EEA  
EED  
CCD  
mA  
Power Dissipation  
Power Supply Rejection Ratio  
NOTES:  
mW  
µA/V  
V
±5%, V ±5%  
EE  
-
CC  
2. Gain Error measured as the error in the ratio between the full scale output current and the current through R  
ratio should be 16.  
(typically 1.28mA). Ideally the  
SET  
3. Parameter guaranteed by design or characterization and not production tested.  
o
4. All devices are 100% tested at 25 C. 100% production tested at temperature extremes for military temperature devices, sample tested for  
industrial temperature devices.  
5. Dynamic Range must be limited to a 1V swing within the compliance range.  
Timing Diagrams  
50%  
CLK  
1
GLITCH AREA =  
/ (H x W)  
2
V
D11-D0  
HEIGHT (H)  
1
± / LSB ERROR BAND  
2
I
OUT  
t(ps)  
WIDTH (W)  
t
SETT  
t
PD  
FIGURE 1. FULL SCALE SETTLING TIME DIAGRAM  
FIGURE 2. PEAK GLITCH AREA (SINGLET) MEASUREMENT  
METHOD  
3-4  
HI5731  
Timing Diagrams (Continued)  
t
t
PW2  
PW1  
50%  
CLK  
t
t
t
SU  
SU  
SU  
t
HLD  
t
t
HLD  
HLD  
D11-D0  
t
PD  
I
OUT  
t
t
PD  
PD  
FIGURE 3. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM  
Typical Performance Curves  
-1.21  
680  
CLOCK FREQUENCY DOES NOT  
ALTER POWER DISSIPATION  
-1.23  
-1.25  
-1.27  
640  
600  
560  
-1.29  
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE  
TEMPERATURE  
FIGURE 4. TYPICAL POWER DISSIPATION OVER  
TEMPERATURE  
FIGURE 5. TYPICAL REFERENCE VOLTAGE OVER  
TEMPERATURE  
3-5  
HI5731  
Typical Performance Curves (Continued)  
1.5  
0.8  
0.4  
0.5  
-0.5  
1.5  
0.0  
-0.4  
-0.8  
400  
1000  
1600  
2200  
2800  
3400  
4000  
0
600  
1200  
1800  
2400  
3000  
3600  
4200  
CODE  
CODE  
FIGURE 6. TYPICAL INL  
FIGURE 7. TYPICAL DNL  
ATTEN 20dB  
RL -10.0dBm  
MKR -87.33dB  
-73kHz  
10dB/  
28  
f
= 10 MSPS  
C
24  
S
C
20  
16  
12  
CENTER 1.237MHz  
SPAN 2.000MHz  
-40  
-20  
-0  
20  
40  
60  
80  
100  
TEMPERATURE  
FIGURE 8. OFFSET CURRENT OVER TEMPERATURE  
FIGURE 9. SPURIOUS FREE DYNAMIC RANGE = 87.3dBc  
ATTEN 20dB  
RL -10.0dBm  
MKR -76.16dB  
ATTEN 20dB  
RL -10.0dBm  
MKR -75.17dB  
-53kHz  
10dB/  
10dB/  
-70kHz  
f
= 20 MSPS  
f
= 40 MSPS  
C
C
S
C
C
CENTER 5.055MHz  
SPAN 2.000MHz  
CENTER 16.00MHz  
SPAN 10.00MHz  
FIGURE 10. SPURIOUS FREE DYNAMIC RANGE = 76.16dBc  
FIGURE 11. SPURIOUS FREE DYNAMIC RANGE = 75.17dBc  
3-6  
HI5731  
Typical Performance Curves (Continued)  
ATTEN 20dB  
RL -10.0dBm  
MKR -81.67dB  
-953kHz  
ATTEN 20dB  
RL -10.0dBm  
MKR -77.00dB  
-93kHz  
10dB/  
10dB/  
f
= 50 MSPS  
f
= 80 MSPS  
C
C
S
C
C
CENTER 10.100MHz  
SPAN 2.000MHz  
CENTER 5.097MHz  
SPAN 2.000MHz  
FIGURE 12. SPURIOUS FREE DYNAMIC RANGE = -81.67dBc  
FIGURE 13. SPURIOUS FREE DYNAMIC RANGE = 77dBc  
ATTEN 20dB  
RL -10.0dBm  
MKR -85.60dB  
ATTEN 20dB  
RL -10.0dBm  
MKR -85.50dB  
-33kHz  
10dB/  
73kHz  
10dB/  
f
= 100 MSPS  
C
f
= 100 MSPS  
C
S
C
S
C
CENTER 2.027MHz  
SPAN 2.000MHz  
CENTER 5.000MHz  
SPAN 2.000MHz  
FIGURE 14. SPURIOUS FREE DYNAMIC RANGE = -85.60dBc  
FIGURE 15. SPURIOUS FREE DYNAMIC RANGE = 85.5dBc  
ATTEN 20dB  
RL -10.0dBm  
MKR -80.50dB  
ATTEN 20dB  
RL -10.0dBm  
MKR -72.17dB  
-807kHz  
-467kHz  
10dB/  
10dB/  
f
= 100 MSPS  
f
= 100 MSPS  
C
C
S
C
CENTER 10.133MHz  
SPAN 2.000MHz  
CENTER 26.637MHz  
SPAN 2.000MHz  
FIGURE 16. SPURIOUS FREE DYNAMIC RANGE = 80.5dBc  
FIGURE 17. SPURIOUS FREE DYNAMIC RANGE = 72.17dBc  
3-7  
HI5731  
Typical Performance Curves (Continued)  
ATTEN 20dB  
RL -10.0dBm  
MKR -71.16dB  
2.99MHz  
ATTEN 20dB  
RL -10.0dBm  
MKR -70.50dB  
1.98MHz  
10dB/  
10dB/  
f
f
= 40 MSPS  
f
f
= 80 MSPS  
= 2.02MHz  
C
O
C
O
= 2.02MHz  
S
C
S
C
START FREQUENCY 500kHz  
STOP FREQUENCY 20MHz  
START FREQUENCY 500kHz  
STOP FREQUENCY 40MHz  
FIGURE 18. SPURIOUS FREE DYNAMIC RANGE = 71.16dBc  
FIGURE 19. SPURIOUS FREE DYNAMIC RANGE = 70.5dBc  
ATTEN 20dB  
RL -10.0dBm  
MKR -70.00dB  
4.13MHz  
10dB/  
f
f
= 100 MSPS  
= 2.02MHz  
C
O
S
C
START FREQUENCY 500kHz  
STOP FREQUENCY 50MHz  
FIGURE 20. SPURIOUS FREE DYNAMIC RANGE = 70dBc  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
1-12  
D11 (MSB) thru Digital Data Bit 11, the Most Significant Bit thru Digital Data Bit 0, the Least Significant Bit.  
D0 (LSB)  
15  
13, 14  
16  
CLK  
NC  
Data Clock Pin DC to 100 MSPS.  
No Connect.  
DV  
Digital Logic Supply +5V.  
Digital Ground.  
CC  
DGND  
17, 28  
18  
DV  
-5.2V Logic supply.  
EE  
23  
R
External resistor to set the full scale output current. I = 16 x (V  
/ R  
REF OUT  
). Typically 976.  
SET  
SET  
FS  
27  
AGND  
ARTN  
Analog Ground supply current return pin.  
Analog Signal Return for the R/2R ladder.  
Current Output Pin.  
19  
21  
I
I
OUT  
OUT  
20  
Complementary Current Output Pin.  
-5.2V Analog Supply.  
22  
AV  
EE  
24  
CTRL IN  
CTRL OUT  
REF OUT  
Input to the current source base rail. Typically connected to CTRL OUT and a 0.1µF capacitor to AV . Allows  
external control of the current sources.  
EE  
25  
26  
Control Amplifier Out. Provides precision control of the current sources when connected to CTRL IN such that  
I
= 16 x (V  
/ R ).  
SET  
FS  
REF OUT  
-1.23V (Typ) bandgap reference voltage output. Can sink up to 125µA or be overdriven by an external  
reference capable of delivering up to 2mA.  
3-8  
HI5731  
Detailed Description  
The HI5731 is a 12-bit, current out D/A converter. The DAC can  
convert at 100 MSPS and runs on +5V and -5.2V supplies. The  
architecture is an R/2R and segmented switching current cell  
arrangement to reduce glitch. Laser trimming is employed to  
tune linearity to true 12-bit levels. The HI5731 achieves its low  
power and high speed performance from an advanced  
HI5731  
DAC  
Z
= 50Ω  
O
CLK  
R
= 50Ω  
T
FIGURE 21. CLOCK LINE TERMINATION  
BiCMOS process. The HI5731 consumes 650mW (typical) and  
has an improved hold time of only 0.25ns (typical). The HI5731  
is an excellent converter for use in communications  
Rise and Fall times and propagation delay of the line will be  
affected by the Shunt Terminator. The terminator should be  
connected to DGND.  
applications and high performance instrumentation systems.  
Digital Inputs  
Noise Reduction  
The HI5731 is a TTL/CMOS compatible D/A. Data is latched  
by a Master register. Once latched, data inputs D0 (LSB)  
thru D11 (MSB) are internally translated from TTL to ECL.  
The internal latch and switching current source controls are  
implemented in ECL technology to maintain high switching  
speeds and low noise characteristics.  
To reduce power supply noise, separate analog and digital  
power supplies should be used with 0.1µF and 0.01µF  
ceramic capacitors placed as close to the body of the  
HI5731 as possible on the analog (AV ) and digital (DV  
supplies. The analog and digital ground returns should be  
connected together back at the device to ensure proper  
)
EE EE  
Decoder/Driver  
operation on power up. The V  
power pin should also be  
CC  
decoupled with a 0.1µF capacitor.  
The architecture employs a split R/2R ladder and  
Segmented Current source arrangement. Bits D0 (LSB) thru  
D7 directly drive a typical R/2R network to create the binary  
weighted current sources. Bits D8 thru D11 (MSB) pass thru  
a “thermometer” decoder that converts the incoming data  
into 15 individual segmented current source enables. This  
split architecture helps to improve glitch, thus resulting in a  
more constant glitch characteristic across the entire output  
transfer function.  
Reference  
The internal reference of the HI5731 is a -1.23V (typical)  
bandgap voltage reference with 175µV/ C of temperature  
drift (typical). The internal reference is connected to the  
Control Amplifier which in turn drives the segmented current  
cells. Reference Out (REF OUT) is internally connected to  
the Control Amplifier. The Control Amplifier Output (CTRL  
OUT) should be used to drive the Control Amplifier Input  
o
Clocks and Termination  
(CTRL IN) and a 0.1µF capacitor to analog V . This  
EE  
improves settling time by providing an AC ground at the  
current source base node. The Full Scale Output Current is  
The internal 12-bit register is updated on the rising edge of  
the clock. Since the HI5731 clock rate can run to 100 MSPS,  
to minimize reflections and clock noise into the part proper  
termination should be used. In PCB layout clock runs should  
be kept short and have a minimum of loads. To guarantee  
consistent results from board to board controlled impedance  
PCBs should be used with a characteristic line impedance  
controlled by the REF OUT pin and the set resistor (R  
).  
SET  
The ratio is:  
I
(Full Scale) = (V  
/R ) x 16,  
REF OUT SET  
OUT  
The internal reference (REF OUT) can be overdriven with a  
more precise external reference to provide better  
performance over temperature. Figure 22 illustrates a typical  
external reference configuration.  
Z
of 50.  
O
To terminate the clock line, a shunt terminator to ground is  
the most effective type at a 100 MSPS clock rate. A typical  
value for termination can be determined by the equation:  
HI5731  
R = Z ,  
T
O
-1.25V  
R
(26) REF OUT  
for the termination resistor. For a controlled impedance  
board with a Z of 50, the R = 50. Shunt termination is  
best used at the receiving end of the transmission line or as  
close to the HI5731 CLK pin as possible.  
O
T
-5.2V  
FIGURE 22. EXTERNAL REFERENCE CONFIGURATION  
3-9  
HI5731  
Multiplying Capability  
TABLE 1. CAPACITOR SELECTION  
The HI5731 can operate in two different multiplying  
f
C1  
C2  
configurations. For frequencies from DC to 100kHz, a signal  
IN  
of up to 0.6V  
as shown in Figure 23.  
can be applied directly to the REF OUT pin  
P-P  
100kHz  
>1MHz  
0.01µF  
1µF  
0.001µF  
0.1µF  
HI5731  
Also, the input signal must be limited to 1V  
P-P  
distortion in the DAC output current caused by excessive  
modulation of the internal current sources.  
to avoid  
CTRL OUT  
CTRL IN  
0.01µF  
AV  
EE  
Outputs  
REF OUT  
RSET  
The outputs I  
OUT  
and I  
are complementary current  
OUT  
C
(OPTIONAL)  
IN  
V
IN  
outputs. Current is steered to either I  
or I  
in  
OUT  
OUT  
proportion to the digital input code. The sum of the two  
currents is always equal to the full scale current minus one  
LSB. The current output can be converted to a voltage by  
using a load resistor. Both current outputs should have the  
same load resistor (64typically). By using a 64load on  
FIGURE 23. LOW FREQUENCY MULTIPLYING BANDWIDTH  
CIRCUIT  
The signal must have a DC value such that the peak  
negative voltage equals -1.25V. Alternately, a capacitor can  
be placed in series with REF OUT if DC multiplying is not  
required. The lower input bandwidth can be calculated using  
the following formula:  
the output, a 50effective output resistance (R  
) is  
OUT  
achieved due to the 227(±15%) parallel resistance seen  
looking back into the output. This is the nominal value of the  
R2R ladder of the DAC. The 50output is needed for  
matching the output with a 50line. The load resistor should  
be chosen so that the effective output resistance (R  
matches the line resistance. The output voltage is:  
)
1
OUT  
-------------------------------------------  
C
=
.
IN  
(2π)(1400)(f  
)
IN  
V
= I  
OUT  
x R .  
OUT  
For multiplying frequencies above 100kHz, the CTRL IN pin  
can be driven directly as seen in Figure 24.  
OUT  
I
is defined in the reference section. I  
is not trimmed  
OUT  
OUT  
to 12 bits, so it is not recommended that it be used in  
conjunction with I in a differential-to-single-ended  
HI5731  
CTRL OUT  
OUT  
application. The compliance range of the output is from -  
C
2
200Ω  
1.25V to 0V, with a 1V  
range.  
voltage swing allowed within this  
P-P  
AV  
EE  
V
C
IN  
1
CTRL IN  
TABLE 2. INPUT CODING vs CURRENT OUTPUT  
50Ω  
INPUT CODE (D11-D0)  
1111 1111 1111  
I
(mA)  
I
(mA)  
OUT  
OUT  
-20.48  
0
FIGURE 24. HIGH FREQUENCY MULTIPLYING BANDWIDTH  
CIRCUIT  
1000 0000 0000  
-10.24  
0
-10.24  
-20.48  
0000 0000 0000  
The nominal input/output relationship is defined as:  
V  
Settling Time  
IN  
-------------  
.
I  
=
OUT  
80Ω  
The settling time of the HI5731 is measured as the time it  
1
takes for the output of the DAC to settle to within a / LSB  
2
In order to prevent the full scale output current from  
exceeding 20.48mA, the R resistor must be adjusted  
according to the following equation:  
error band of its final value during a full scale (code 0000...  
to 1111.... or 1111... to 0000...) transition. All claims made by  
Intersil with respect to the settling time performance of the  
HI5731 have been fully verified by the National Institute of  
Standards and Technology (NIST) and are fully traceable.  
SET  
16V  
REF  
-----------------------------------------------------------------------------------------------  
R
=
.
SET  
V
IN(PEAK)  
80Ω  
-----------------------------  
I
(FULL SCALE) –  
OUT  
Glitch  
The circuit in Figure 24 can be tuned to adjust the lower  
cutoff frequency by adjusting capacitor values. Table 1 below  
illustrates the relationship.  
The output glitch of the HI5731 is measured by summing the  
area under the switching transients after an update of the  
DAC. Glitch is caused by the time skew between bits of the  
incoming digital data. Typically, the switching time of digital  
inputs are asymmetrical meaning that the turn off time is  
3-10  
HI5731  
faster than the turn on time (TTL designs). Unequal delay  
paths through the device can also cause one current source  
to change before another. In order to minimize this, the  
Intersil HI5731 employes an internal register, just prior to the  
current sources, which is updated on the clock edge. Lastly,  
the worst case glitch on traditional D/A converters usually  
occurs at the major transition (i.e., code 2047 to 2048).  
However, due to the split architecture of the HI5731, the  
glitch is moved to the 255 to 256 transition (and every  
subsequent 256 code transitions thereafter). This split R/2R  
segmented current source architecture, which decreases the  
amount of current switching at any one time, makes the  
glitch practically constant over the entire output range. By  
making the glitch a constant size over the entire output  
range this effectively integrates this error out of the end  
application.  
buffered to create the bipolar offset current needed to  
generate the -2V output with all bits ‘off’. The output current  
must be converted to a voltage and then gained up and  
offset to produce the proper swing. Care must be taken to  
compensate for the voltage swing and error.  
5kΩ  
-
-
REF OUT  
(26)  
+
+
5kΩ  
60Ω  
1
1
/
CA2904  
/
CA2904  
2
2
0.1µF  
240Ω  
240Ω  
HI5731  
50Ω  
I
V
OUT  
OUT  
(21)  
-
+
In measuring the output glitch of the HI5731 the output is  
terminated into a 64load. The glitch is measured at any  
one of the current cell carry (code 255 to 256 transition or  
any multiple thereof) throughout the DACs output range.  
HFA1100  
FIGURE 27. BIPOLAR OUTPUT CONFIGURATION  
Interfacing to the HSP45106 NCO-16  
The glitch energy is calculated by measuring the area under  
the voltage-time curve. Figure 26 shows the area considered  
as glitch when changing the DAC output. Units are typically  
specified in picoVolt-seconds (pV-s).  
The HSP45106 is a 16-bit, Numerically Controlled Oscillator  
(NCO). The HSP45106 can be used to generate various  
modulation schemes for Direct Digital Synthesis (DDS)  
applications. Figure 28 shows how to interface an HI5731 to  
the HSP45106.  
HI5731  
Interfacing to the HSP45102 NCO-12  
100MHz  
SCOPE  
The HSP45102 is a 12-bit, Numerically Controlled Oscillator  
(NCO). The HSP45102 can be used to generate various  
modulation schemes for Direct Digital Synthesis (DDS)  
applications. Figure 29 shows how to interface an HI5731 to  
the HSP45102.  
LOW PASS  
FILTER  
(21) I  
OUT  
64Ω  
50Ω  
FIGURE 25. GLITCH TEST CIRCUIT  
This high level block diagram is that of a basic PSK  
modulator. In this example the encoder generates the PSK  
waveform by driving the Phase Modulation Inputs (P1, P0) of  
the HSP45102. The P1-0 inputs impart a phase shift to the  
carrier wave as defined in Table 2.  
TABLE 3. PHASE MODULATION INPUT CODING  
P1  
0
P0  
0
PHASE SHIFT (DEGREES)  
a (mV)  
0
0
1
90  
GLITCH ENERGY = (a x t)/2  
1
0
270  
180  
1
1
t (ns)  
The data port of the HSP45102 drives the 12-bit HI5731  
DAC which converts the NCO output into an analog  
waveform. The output filter connected to the DAC can be  
tailored to remove unwanted spurs for the desired carrier  
frequency. The controller is used to load the desired center  
frequency and control the HSP45102. The HI5731 coupled  
with the HSP45102 make an inexpensive PSK modulator  
with Spurious Free performance down to -76dBc.  
FIGURE 26. MEASURING GLITCH ENERGY  
Applications  
Bipolar Applications  
To convert the output of the HI5731 to a bipolar 4V swing,  
the following applications circuit is recommended. The  
reference can only provide 125µA of drive, so it must be  
3-11  
HI5731  
Definition of Specifications  
Integral Linearity Error, INL, is the measure of the worst  
case point that deviates from a best fit straight line of data  
values along the transfer curve.  
Differential Linearity Error, DNL, is the measure of the  
error in step size between adjacent codes along the  
converter’s transfer curve. Ideally, the step size is 1 LSB  
from one code to the next, and the deviation from 1 LSB is  
known as DNL. A DNL specification of greater than -1 LSB  
guarantees monotonicity.  
Feedthru, is the measure of the undesirable switching noise  
coupled to the output.  
Output Voltage Full Scale Settling Time, is the time  
required from the 50% point on the clock input for a full scale  
1
step to settle within an ± / LSB error band.  
2
Output Voltage Small Scale Settling Time, is the time  
required from the 50% point on the clock input for a 100mV  
1
step to settle within an / LSB error band. This is used by  
2
applications reconstructing highly correlated signals such as  
sine waves with more than 5 points per cycle.  
Glitch Area, GE, is the switching transient appearing on the  
output during a code transition. It is measured as the area  
under the curve and expressed as a picoVolt-time  
specification (typically pV-s).  
Differential Gain, A , is the gain error from an ideal sine  
V
wave with a normalized amplitude.  
Differential Phase, ∆Φ, is the phase error from an ideal  
sine wave.  
Signal to Noise Ratio, SNR, is the ratio of a fundamental to  
the noise floor of the analog output. The first 5 harmonics  
1
are ignored, and an output filter of / the clock frequency is  
2
used to eliminate alias products.  
Total Harmonic Distortion, THD, is the ratio of the DAC  
output fundamental to the RMS sum of the harmonics. The  
1
first 5 harmonics are included, and an output filter of / the  
2
clock frequency is used to eliminate alias products.  
Spurious Free Dynamic Range, SFDR, is the amplitude  
difference from a fundamental to the largest harmonically or  
non-harmonically related spur. A sine wave is loaded into the  
1
D/A and the output filtered at / the clock frequency to  
2
eliminate noise from clocking alias terms.  
Intermodulation Distortion, IMD, is the measure of the  
sum and difference products produced when a two tone  
input is driven into the D/A. The distortion products created  
will arise at sum and difference frequencies of the two tones.  
IMD can be calculated using the following equation:  
20Log (RMS of Sum and Difference Distortion Products)  
IMD =  
.
------------------------------------------------------------------------------------------------------------------------------------------------------  
(RMS Amplitude of the Fundamental)  
3-12  
HI5731  
U2  
K9  
33 MSPS  
CLK  
CLK  
C11  
B11  
C10  
MOD2  
MOD1  
BASEBAND  
BIT  
STREAM  
TO RF  
UP-CONVERT  
STAGE  
FILTER  
ENCODER  
U1  
DV  
MOD0  
16  
R1  
64  
R2  
64  
V
CC  
CC  
21  
20  
L1  
A11  
I
I
OUT  
OUT  
PMSEL  
DACSTRB  
F10  
F9  
F11  
H11  
G11  
G9  
1
2
3
4
5
6
7
8
9
K3  
L2  
L3  
L4  
J5  
K5  
L5  
K6  
J6  
J7  
L7  
L6  
L8  
K8  
L9  
L10  
SIN15  
SIN14  
SIN13  
SIN12  
SIN11  
SIN10  
SIN9  
SIN8  
SIN7  
SIN6  
SIN5  
SIN4  
SIN3  
SIN2  
SIN1  
SIN0  
D11 (MSB)  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ENPOREG  
ENOFREG  
ENCFREG  
ENPHAC  
ENTIREG  
INHOFR  
24  
25  
CNTRL IN  
-5.2V_A  
-5.2V_A  
C2 0.1µF  
J11  
G10  
INITPAC  
INITTAC  
CNTRL OUT  
C1 0.01µF  
10  
11  
12  
D10  
J10  
TEST  
V
PARSER  
BINFMT  
CC  
D0 (LSB)  
REF OUT  
26  
23  
19  
CONTROLLER  
K11  
15  
CLK  
R3  
R4  
50  
R
28  
17  
SET  
B8  
A8  
B6  
B7  
A7  
C7  
C6  
A6  
A5  
C5  
A4  
B4  
A3  
A2  
B3  
A1  
C15_MSB  
C4  
DGND  
DGND  
976  
C13  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
ARET  
27  
22  
AV  
AV  
SS  
EE  
C2  
B1  
C1  
D1  
E3  
E2  
E1  
F2  
F3  
G3  
G1  
G2  
H1  
H2  
J1  
COS15  
COS14  
COS13  
COS12  
COS11  
COS10  
COS9  
COS8  
COS7  
COS6  
COS5  
COS4  
COS3  
COS2  
COS1  
COS0  
18  
-5.2V_A  
DV  
EE  
-5.2V_D  
HI5731  
L1  
-5.2V_D  
-5.2V_A  
10µH  
C0  
B10  
B9  
A10  
E11  
E9  
A2  
A1  
A0  
CS  
WR  
L2  
10µH  
K1  
H10  
K2  
B2  
V
V
PACI  
TICO  
CC  
CC  
OES  
OEC  
J2  
HSP45106  
FIGURE 28. MODULATOR USING THE HI5731 AND THE HSP45106 16-BIT NCO  
3-13  
HI5731  
TO RF  
UP-CONVERT  
STAGE  
FILTER  
U2  
DV  
16  
R1  
64  
R2  
64  
U1  
V
CC  
CC  
21  
20  
I
I
OUT  
OUT  
16  
19  
20  
40 MSPS  
CLK  
6
5
4
3
2
1
2
3
4
5
6
7
8
9
CLK  
OUT11  
D11 (MSB)  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
I
BASEBAND  
BIT  
STREAM  
P1  
OUT10  
OUT9  
OUT8  
OUT7  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
OUT0  
ENCODER  
Q
P0  
18  
17  
12  
9
LOAD#  
24  
25  
1
CNTRL IN  
-5.2V_A  
-5.2V_A  
C2 0.1µF  
28  
27  
26  
25  
24  
23  
TXFR#  
CNTRL OUT  
C1 0.01µF  
ENPHAC#  
SEL_L/M#  
10  
11  
12  
CONTROL  
BUS  
D0 (LSB)  
CONTROLLER  
26  
23  
REF OUT  
15  
14  
13  
10  
11  
CLK  
SCLK  
SD  
R3  
R4  
50  
RSET  
28  
17  
DGND  
DGND  
976  
19  
SFTEN#  
MSB/LSB#  
ARET  
27  
22  
AV  
AV  
SS  
EE  
HSP45102  
18  
-5.2V_A  
DV  
EE  
-5.2V_D  
HI5731  
L1  
10µH  
L2  
-5.2V_D  
-5.2V_A  
10µH  
FIGURE 29. PSK MODULATOR USING THE HI5731 AND THE HSP45102 12-BIT NCO  
3-14  
HI5731  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
161.5 mils x 160.7 mils x 19 mils  
Type: Sandwich Passivation  
Undoped Silicon Glass (USG) + Nitride  
Thickness: USG - 8kÅ, Nitride - 4.2kÅ  
Total 12.2kÅ + 2kÅ  
METALLIZATION:  
Type: AlSiCu  
Thickness: M1 - 8kÅ, M2 - 17kÅ  
SUBSTRATE POTENTIAL (POWERED UP):  
V
EED  
Metallization Mask Layout  
HI5731  
D8  
D9  
D10  
D11  
DGND  
CTRL OUT  
CTRL IN  
D7  
D6  
R
SET  
D5  
AV  
EE  
D4  
I
I
OUT  
D3  
D2  
OUT  
ARTN  
D1  
D0  
CLK  
DV  
DGND  
DV  
EE  
CC  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
3-15  

相关型号:

HI5731BIB-T

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731BIBZ

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731BIP

12-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5731BIPZ

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5731_04

12-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5735

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCB

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCB96

PARALLEL, WORD INPUT LOADING, 0.02us SETTLING TIME, 12-BIT DAC, PDSO28
RENESAS

HI5735KCBZ

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCP

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735_04

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5740

3V, Dual 10-Bit, 20/ 40/60 MSPS A/D Converter with Internal Voltage Reference (2 pages) FN4821
ETC