HI5810JIJ [INTERSIL]

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold; CMOS 10微秒, 12位,采样A / D转换器,内置跟踪保持
HI5810JIJ
型号: HI5810JIJ
厂家: Intersil    Intersil
描述:

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
CMOS 10微秒, 12位,采样A / D转换器,内置跟踪保持

转换器
文件: 总12页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5810  
CMOS 10 Microsecond, 12-Bit, Sampling  
A/D Converter with Internal Track and Hold  
August 1997  
Features  
Description  
• Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µs The HI5810 is a fast, low power, 12-bit, successive-  
approximation, analog-to-digital converter. It can operate from  
a single 3V to 6V supply and typically draws just 1.9mA when  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . .100 KSPS  
operating at 5V. The HI5810 features a built-in track and hold.  
The conversion time is as low as 10µs with a 5V supply.  
• Built-In Track and Hold  
• Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .+5V  
The twelve data outputs feature full high speed CMOS three-  
state bus driver capability, and are latched and held through a  
full conversion cycle. The output is user selectable: [i.e.,  
• Maximum Power Consumption. . . . . . . . . . . . . . .40mW  
12-bit, 8-bit (MSBs), and/or 4-bit (LSBs)]. A data ready flag,  
and conversion-start input complete the digital interface.  
• Internal or External Clock  
• 1MHz Input Bandwidth . . . . . . . . . . . . . . . . . . . . . -3dB  
An internal clock is provided and is available as an output.  
The clock may also be over-driven by an external source.  
Applications  
Ordering Information  
• Remote Low Power Data Acquisition Systems  
INL (LSB)  
(MAX OVER  
TEMP.)  
TEMP.  
PART  
NUMBER  
RANGE  
PKG.  
NO.  
• Digital Audio  
o
( C)  
PACKAGE  
• DSP Modems  
HI5810JIP  
HI5810KIP  
HI5810JIB  
HI5810KIB  
HI5810JIJ  
HI5810KIJ  
±2.5  
±2.0  
±2.5  
±2.0  
±2.5  
±2.0  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld SOIC  
-40 to 85 24 Ld SOIC  
E24.3  
E24.3  
M24.3  
M24.3  
• General Purpose DSP Front End  
µP Controlled Measurement Systems  
• Process Controls  
-40 to 85 24 Ld CERDIP F24.3  
-40 to 85 24 Ld CERDIP F24.3  
• Industrial Controls  
Pinout  
HI5810  
(PDIP, CERDIP, SOIC)  
TOP VIEW  
DRDY  
(LSB) D0  
D1  
1
2
3
4
5
6
7
8
9
24  
V
DD  
23 OEL  
22 CLK  
21 STRT  
D2  
D3  
20 V  
19 V  
-
REF  
REF  
D4  
+
D5  
18  
V
IN  
D6  
17 V  
+
AA  
D7  
16  
V
-
AA  
D8 10  
D9 11  
15 OEM  
14 D11 (MSB)  
13 D10  
V
12  
SS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
File Number 3633.1  
6-1777  
HI5810  
Functional Block Diagram  
STRT  
V
DD  
TO INTERNAL LOGIC  
V
SS  
V
IN  
CLK  
CLOCK  
CONTROL  
AND  
TIMING  
DRDY  
32C  
OEM  
V
+
REF  
16C  
8C  
D11 (MSB)  
50  
SUBSTRATE  
D10  
D9  
D8  
D7  
D6  
4C  
2C  
V
+
AA  
C
V
-
32C  
AA  
64C  
63  
16C  
12-BIT  
12-BIT EDGE  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
TRIGGERED  
“D” LATCHED  
8C  
4C  
2C  
D5  
D4  
D3  
C
C
P1  
D2  
D1  
V
-
REF  
D0 (LSB)  
OEL  
6-1778  
HI5810  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage  
Thermal Resistance (Typical, Note 1)  
CERDIP Package . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
V
to V  
. . . . . . . . . . . . . . . . . . . .(V -0.5V) < V < +6.5V  
SS DD  
60  
80  
75  
12  
N/A  
N/A  
DD  
SS  
V
+ to V -. . . . . . . . . . . . . . . . . . . . (V -0.5V) to (V +6.5V)  
AA AA SS SS  
V
+ to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.3V  
DD  
AA  
Analog and Reference Inputs  
+ V -. . . . . . . . . (V -0.3V) < V  
o
V
V
< (V  
+0.3V)  
+0.3V)  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Hermetic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
IN, REF , REF SS INA  
DD  
DD  
o
Digital I/O Pins . . . . . . . . . . . . . . (V -0.3V) < VI/O < (V  
SS  
o
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
Temperature Range  
PDIP, SOIC, and CERDIP Packages . . . . . . . . . . . -40 C to 85 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= V + = 5V, V  
AA  
+ = +4.608V, V = V - = V  
SS AA  
- = GND, CLK = External 1.5MHz,  
REF  
DD  
REF  
Unless Otherwise Specified  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
MAX  
TEST CONDITIONS  
UNITS  
ACCURACY  
Resolution  
12  
-
-
-
-
-
-
-
-
-
-
-
12  
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error, INL  
(End Point)  
J
±2.5  
±2.0  
±2.0  
±2.0  
±3.5  
±2.5  
±2.5  
±1.5  
±2.5  
±2.0  
±2.0  
±2.0  
±3.5  
±2.5  
±2.5  
±1.5  
K
J
-
-
Differential Linearity Error, DNL  
-
-
K
J
-
-
Gain Error, FSE  
(Adjustable to Zero)  
-
-
K
J
-
-
Offset Error, V  
OS  
(Adjustable to Zero)  
-
-
K
-
-
DYNAMIC CHARACTERISTICS  
Signal to Noise Ratio, SINAD  
RMS Signal  
J
f
f
= Internal Clock, f = 1kHz  
IN  
-
-
-
-
-
-
-
-
68.8  
62.1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
71.0  
63.6  
dB  
dB  
RMS Noise + Distortion  
S
S
= 1.5MHz, f = 1kHz  
IN  
Signal to Noise Ratio, SNR  
RMS Signal  
f
f
= Internal Clock, f = 1kHz  
IN  
70.5  
63.2  
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
71.5  
65.0  
dB  
dB  
RMS Noise  
S
S
= 1.5MHz, f = 1kHz  
IN  
Total Harmonic Distortion, THD  
f
f
= Internal Clock, f = 1kHz  
IN  
-73.9  
-68.4  
dBc  
dBc  
S
S
= 1.5MHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
-80.3  
69.7  
dBc  
dBc  
S
S
= 1.5MHz, f = 1kHz  
IN  
Spurious Free Dynamic Range, SFDR  
f
f
= Internal Clock, f = 1kHz  
IN  
75.4  
69.2  
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
K
f
f
= Internal Clock, f = 1kHz  
IN  
80.9  
70.7  
dB  
dB  
S
S
= 1.5MHz, f = 1kHz  
IN  
ANALOG INPUT  
Input Current, Dynamic  
At V = V  
IN  
+, 0V  
-
±125  
±150  
-
±150  
µA  
REF  
6-1779  
HI5810  
Electrical Specifications  
V
= V + = 5V, V  
AA  
+ = +4.608V, V = V - = V  
- = GND, CLK = External 1.5MHz,  
REF  
DD  
REF  
SS  
AA  
Unless Otherwise Specified (Continued)  
o
o
o
25 C  
-40 C TO 85 C  
PARAMETER  
MIN  
TYP  
MAX  
MIN  
MAX  
TEST CONDITIONS  
UNITS  
Input Current, Static  
Conversion Stopped  
-
±0.6  
±10  
-
±10  
µA  
Input Bandwidth -3dB  
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
µA  
Reference Input Current  
160  
420  
380  
20  
Input Series Resistance, R  
In Series with Input C  
During Sample State  
During Hold State  
S
SAMPLE  
HOLD  
SAMPLE  
Input Capacitance, C  
Input Capacitance, C  
pF  
pF  
DIGITAL INPUTS OEL, OEM, STRT  
High-Level Input Voltage, V  
2.4  
-
-
-
0.8  
±10  
-
2.4  
-
V
V
IH  
Low-Level Input Voltage, V  
-
-
-
-
-
-
0.8  
±10  
-
IL  
Input Leakage Current, I  
IL  
Except CLK, V = 0V, 5V  
IN  
-
µA  
pF  
Input Capacitance, C  
10  
IN  
DIGITAL OUTPUTS  
High-Level Output Voltage, V  
I
I
= -400µA  
4.6  
-
-
-
0.4  
±10  
-
4.6  
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
= 1.6mA  
-
-
-
-
-
-
0.4  
±10  
-
OL  
SINK  
Three-State Leakage, I  
Except DRDY, V  
Except DRDY  
= 0V, 5V  
OUT  
-
µA  
pF  
OZ  
Output Capacitance, C  
20  
OUT  
CLOCK  
High-Level Output Voltage, V  
I
I
= -100µA (Note 2)  
4
-
-
-
-
-
4
-
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
Input Current  
= 100µA (Note 2)  
1
1
OL  
SINK  
CLK Only, V = 0V, 5V  
IN  
-
±5  
-
±5  
mA  
TIMING  
Conversion Time (t  
+ t  
)
10  
-
-
10  
-
µs  
CONV  
ACQ  
(Includes Acquisition Time)  
Clock Frequency  
Internal Clock, (CLK = Open)  
External CLK (Note 2)  
External CLK (Note 2)  
(Note 2)  
200  
300  
-
400  
2.0  
-
150  
500  
-
kHz  
MHz  
ns  
0.05  
-
Clock Pulse Width, t  
, t  
LOW HIGH  
100  
-
100  
-
Aperture Delay, t APR  
-
-
35  
105  
100  
30  
60  
4
50  
150  
160  
-
-
70  
180  
195  
-
ns  
D
Clock to Data Ready Delay, t DRDY  
D1  
(Note 2)  
-
ns  
Clock to Data Ready Delay, t DRDY  
D2  
(Note 2)  
-
-
75  
100  
15  
-
ns  
Start Removal Time, t STRT  
(Note 2)  
75  
85  
10  
-
ns  
R
Start Setup Time, t STRT  
SU  
(Note 2)  
-
-
ns  
Start Pulse Width, t STRT  
(Note 2)  
-
-
ns  
W
Start to Data Ready Delay, t DRDY  
D3  
(Note 2)  
65  
60  
20  
80  
105  
-
120  
-
ns  
Clock Delay from Start, t STRT  
(Note 2)  
-
-
ns  
D
Output Enable Delay, t  
(Note 2)  
-
30  
95  
-
50  
120  
ns  
EN  
Output Disabled Delay, t  
(Note 2)  
-
-
ns  
DIS  
POWER SUPPLY CHARACTERISTICS  
Supply Current, I  
NOTE:  
+ I  
AA  
-
2.6  
8
-
8.5  
mA  
DD  
2. Parameter guaranteed by design or characterization, not production tested.  
6-1780  
HI5810  
Timing Diagrams  
5 - 14  
4
15  
1
3
1
2
2
3
CLK  
(EXTERNAL  
OR INTERNAL)  
t
LOW  
t
DRDY  
D1  
t
HIGH  
STRT  
DRDY  
t
DRDY  
D2  
DATA N - 1  
D0 - D11  
DATA N  
HOLD N  
TRACK N  
TRACK N + 1  
V
IN  
OEL = OEM = V  
SS  
FIGURE 1. CONTINUOUS CONVERSION MODE  
2
2
3
15  
2
4
1
5
CLK  
(EXTERNAL)  
t
STRT  
t STRT  
SU  
R
t
STRT  
W
STRT  
t
DRDY  
D3  
DRDY  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK  
6-1781  
HI5810  
Timing Diagrams (Continued)  
15  
1
3
4
5
CLK  
(INTERNAL)  
2
t STRT  
D
t STRT  
R
t
STRT  
W
STRT  
DON’T CARE  
t
DRDY  
D3  
DRDY  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK  
OEL OR OEM  
t
DIS  
t
EN  
D0 - D3 OR  
D4 - D11  
90%  
10%  
50%  
HIGH  
TO  
OUTPUT  
PIN  
IMPEDANCE  
TO HIGH  
HIGH  
IMPEDANCE  
TO LOW  
50%  
1.6mA  
1.6mA  
+2.1V  
+2.1V  
50pF  
50pF  
-400µA  
-1.6mA  
FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM  
FIGURE 5. TIMING LOAD CIRCUIT  
Typical Performance Curves  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
2.0  
V
= V + = 5V, V + = 4.608V, CLK = 1.5MHz  
AA REF  
V
= V + = 5V, V  
AA REF  
+ = 4.608V, CLK = 1.5MHz  
DD  
DD  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 6. NL vs TEMPERATUREI  
FIGURE 7. OFFSET ERROR vs TEMPERATURE  
6-1782  
HI5810  
Typical Performance Curves (Continued)  
-1.0  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
1.75  
1.70  
V
= V + = 5V, V + = 4.608V, CLK = 1.5MHz  
AA REF  
V
= V + = 5V, V + = 4.608V, CLK = 1.5MHz  
AA REF  
DD  
DD  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 8. DNL vs TEMPERATURE  
FIGURE 9. FULL SCALE ERROR vs TEMPERATURE  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
INPUT FREQUENCY = 1kHz  
SAMPLING RATE = 100kHz  
SNR = 64.92dB  
SINAD = 63.82dB  
EFFECTIVE BITS = 10.30  
THD = -69.44dBc  
PEAK NOISE = -70.1dB  
SFDR = 70.1dB  
FREQUENCY  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
TEMPERATURE ( C)  
FIGURE 10. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 11. FFT SPECTRUM  
500  
V
= V + = 5V, V + = 4.608V  
AA REF  
DD  
450  
400  
350  
300  
250  
200  
150  
-60  
-20  
0
20  
40  
60  
80 100 120 140  
-40  
o
TEMPERATURE ( C)  
FIGURE 12. INTERNAL CLOCK FREQUENCY vs TEMPERATURE  
6-1783  
HI5810  
During the first three clock periods of a conversion cycle, the  
TABLE 1. PIN DESCRIPTIONS  
switchable end of every capacitor is connected to the input  
and the comparator is being auto balanced at the capacitor  
common node.  
PIN NO. NAME  
DESCRIPTION  
1
DRDY Output flag signifying new data is available.  
Goes high at end of clock period 15. Goes low  
when new conversion is started.  
During the fourth period, all capacitors are disconnected  
from the input; the one representing the MSB (D11) is  
connected to the V  
+ terminal; and the remaining  
REF  
-. The capacitor common node, after the  
2
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Bit-0 (Least Significant Bit, LSB).  
capacitors to V  
REF  
charges balance out, will indicate whether the input was  
Bit 1.  
1
above  
period, the comparator output is stored and the MSB  
capacitor is either left connected to V + (if the comparator  
/
of (V  
+ - V  
-). At the end of the fourth  
2
REF  
REF  
4
Bit 2.  
5
Bit 3.  
REF  
-. This allows the next  
was high) or returned to V  
comparison to be at either / or / of (V  
REF  
6
Bit 4.  
3
1
+ - V  
-).  
4
4
REF  
REF  
7
Bit 5.  
At the end of periods 5 through 14, capacitors representing  
D10 through D1 are tested, the result stored, and each  
capacitor either left at V  
8
Bit 6.  
+ or at V  
-.  
REF  
REF  
9
Bit 7.  
At the end of the 15th period, when the LSB (D0) capacitor is  
tested, (D0) and all the previous results are shifted to the  
output registers and drivers. The capacitors are reconnected  
to the input, the comparator returns to the balance state, and  
the data ready output goes active. The conversion cycle is  
now complete.  
10  
11  
12  
13  
14  
15  
Bit 8.  
Bit 9.  
V
Digital Ground, (0V).  
SS  
D10 Bit 10.  
Analog Input  
D11 Bit 11 (Most Significant Bit, MSB)  
The analog input pin is a predominately capacitive load that  
changes between the track and hold periods of the  
conversion cycle. During hold, clock period 4 through 15, the  
input loading is leakage and stray capacitance, typically less  
than 5µA and 20pF.  
OEM Three-State Enable for D4-D11. Active low  
input.  
16  
17  
18  
19  
V
-
Analog Ground, (0V).  
AA  
V
+
Analog Positive Supply. (+5V) (See text.)  
Analog Input.  
AA  
At the start of input tracking, clock period 1, some charge is  
dumped back to the input pin. The input source must have low  
enough impedance to dissipate the current spike by the end of  
the tracking period as shown in Figure 13. The amount of  
charge is dependent on supply and input voltages. The  
average current is also proportional to clock frequency.  
V
IN  
V
+
Reference Voltage Positive Input, sets 4095  
code end of input range.  
REF  
20  
21  
22  
V
-
Reference Voltage Negative Input, sets 0  
code end of input range.  
REF  
STRT Start Conversion Input active low, recognized  
after end of clock period 15.  
20mA  
CLK CLK Input or Output. Conversion functions are  
synchronized to positive going edge (see text).  
I
IN  
10mA  
0mA  
23  
24  
OEL Three-State Enable for D0 D3. Active low input.  
V
Digital Positive Supply (+5V).  
DD  
5V  
CLK  
Theory of Operation  
0V  
5V  
The HI5810 is a CMOS 12-bit, Analog-to-Digital Converter  
that uses capacitor charge balancing to successively  
approximate the analog input. A binarily weighted capacitor  
network forms the A/D heart of the device. See the block  
diagram for the HI5810.  
DRDY  
0V  
200ns/DIV.  
CONDITIONS: V  
V
= V + = 5.0V, V  
= 4.608V, CLK = 750kHz, T = 25 C  
+ = 4.608V,  
REF  
The capacitor network has a common node which is  
connected to a comparator. The second terminal of each  
DD  
AA  
o
IN  
A
capacitor is individually switchable to the input, V  
+ or  
REF  
FIGURE 13. TYPICAL ANALOG INPUT CURRENT  
V
-.  
REF  
6-1784  
HI5810  
As long as these current spikes settle completely by end of The HI5810 is specified with a 4.608V reference, however, it  
the signal acquisition period, converter accuracy will be will operate with a reference down to 3V having a slight  
preserved. The analog input is tracked for 3 clock cycles. degradation in performance.  
With an external clock of 1.5MHz the track period is 2µs.  
Full Scale and Offset Adjustment  
A simplified analog input model is presented in Figure 14.  
During tracking, the A/D input (V ) typically appears as a  
IN  
380pF capacitor being charged through a 420internal  
switch resistance. The time constant is 160ns. To charge  
this capacitor from an external “zero ” source to 0.5 LSB  
(1/8192), the charging time must be at least 9 time  
constants or 1.4µs. The maximum source impedance  
In many applications the accuracy of the HI5810 would be  
sufficient without any adjustments. In applications where  
accuracy is of utmost importance full scale and offset errors  
may be adjusted to zero.  
The V  
+ and V - pins reference the two ends of the  
REF  
REF  
analog input range and may be used for offset and full scale  
(R  
Max) for a 2µs acquisition time settling to within  
adjustments. In a typical system the V - might be returned  
SOURCE  
REF  
to a clean ground, and the offset adjustment done on an input  
amplifier. V + would then be adjusted to null out the full  
0.5 LSB is 164.  
REF  
scale error. When this is not possible, the V  
If the clock frequency was slower, or the converter was not  
restarted immediately (causing a longer sample time), a  
higher source impedance could be tolerated.  
- input can be  
REF  
- must be well  
adjusted to null the offset error, however, V  
decoupled.  
REF  
V
IN  
R
SW 420Ω  
Full scale and offset error can also be adjusted to zero in the  
signal conditioning amplifier driving the analog input (V ).  
IN  
CSAMPLE 380pF  
R
SOURCE  
Control Signal  
-t  
ACQ  
ln [2  
- R  
R
=
The HI5810 may be synchronized from an external source  
by using the STRT (Start Conversion) input to initiate conver-  
sion, or if STRT is tied low, may be allowed to free run. Each  
conversion cycle takes 15 clock periods.  
SW  
SOURCE (MAX)  
-(N + 1)  
C
]
SAMPLE  
FIGURE 14. ANALOG INPUT MODEL IN TRACK MODE  
Reference Input  
The input is tracked from clock period 1 through period 3,  
then disconnected as the successive approximation takes  
The reference input V  
REF  
+ should be driven from a low  
impedance source and be well decoupled.  
place. After the start of the next period 1 (specified by t  
data), the output is updated.  
D
As shown in Figure 15, current spikes are generated on the  
reference pin during each bit test of the successive approxi-  
mation part of the conversion cycle as the charge balancing  
The DRDY (Data Ready) status output goes high (specified  
by t DRDY) after the start of clock period 1, and returns  
D1  
capacitors are switched between V  
- and V  
+ (clock  
low (specified by t DRDY) after the start of clock period 2.  
D2  
REF  
REF  
periods 5 - 14). These current spikes must settle completely  
The 12 data bits are available in parallel on three-state bus  
driver outputs. When low, the OEM input enables the most  
significant byte (D4 through D11) while the OEL input  
during each bit test of the conversion to not degrade the  
accuracy of the converter. Therefore V  
REF  
+ and V  
-
REF  
- is normally  
- is  
should be well bypassed. Reference input V  
REF  
enables the four least significant bits (D0 - D3). t  
specify the output enable and disable times.  
and t  
connected directly to the analog ground plane. If V  
REF  
EN  
DIS  
biased for nulling the converters offset it must be stable  
during the conversion cycle.  
If the output data is to be latched externally, either the trailing  
edge of data ready or the next falling edge of the clock after  
data ready goes high can be used.  
20mA  
When STRT input is used to initiate conversions, operation is  
slightly different depending on whether an internal or  
external clock is used.  
I
+
10mA  
0mA  
REF  
Figure 3 illustrates operation with an internal clock. If the  
STRT signal is removed (at least t STRT) before clock  
R
5V  
0V  
period 1, and is not reapplied during that period, the clock  
will shut off after entering period 2. The input will continue to  
track and the DRDY output will remain high during this time.  
CLK  
5V  
0V  
DRDY  
A low signal applied to STRT (at least t STRT wide) can  
W
now initiate a new conversion. The STRT signal (after a  
2µs/DIV.  
delay of (t STRT)) causes the clock to restart.  
D
CONDITIONS: V  
= V + = 5.0V, V  
AA REF  
= 2.3V, CLK = 750kHz, T = 25 C  
A
+ = 4.608V,  
o
DD  
Depending on how long the clock was shut off, the low  
portion of clock period 2 may be longer than during the  
remaining cycles.  
V
IN  
FIGURE 15. TYPICAL REFERENCE INPUT CURRENT  
6-1785  
HI5810  
The input will continue to track until the end of period 3, the Except for V +, which is a substrate connection to V , all  
AA  
DD  
and V  
same as when free running.  
pins have protection diodes connected to V  
.
DD  
SS  
Input transients above V  
the digital supplies.  
or below V will get steered to  
DD  
SS  
Figure 2 illustrates the same operation as above but with an  
external clock. If STRT is removed (at least t STRT) before  
R
clock period 2, a low signal applied to STRT will drop the The V + and V - terminals supply the charge balancing  
AA AA  
DRDY flag as before, and with the first positive going clock comparator only. Because the comparator is autobalanced  
edge that meets the (t STRT) setup time, the converter will between conversions, it has good low frequency supply  
SU  
continue with clock period 3.  
rejection. It does not reject well at high frequencies however;  
V
- should be returned to a clean analog ground and V  
+
AA AA  
Clock  
should be RC decoupled from the digital supply as shown in  
Figure 17.  
The HI5810 can operate either from its internal clock or from  
one externally supplied. The CLK pin functions either as the  
clock output or input. All converter functions are synchro-  
nized with the rising edge of the clock signal.  
There is approximately 50of substrate impedance  
between V  
part of a low pass RC filter to attenuate switching supply  
and V +. This can be used, for example, as  
DD  
AA  
noise. A 10µF capacitor from V + to ground would  
attenuate 30kHz noise by approximately 40dB. Note that  
Figure 16 shows the configuration of the internal clock. The  
clock output drive is low power: if used as an output, it  
should not have more than 1 CMOS gate load applied, and  
stray wiring capacitance should be kept to a minimum.  
AA  
back-to-back diodes should be placed from V  
to V + to  
DD  
AA  
handle supply to capacitor turn-on or turn-off current spikes.  
Dynamic Performance  
The internal clock will shut down if the A/D is not restarted  
after a conversion. The clock could also be shut down with  
an open collector driver applied to the CLK pin. This should  
only be done during the sample portion (the first three clock  
periods) of a conversion cycle, and might be useful for using  
the device as a digital sample and hold.  
Fast Fourier Transform (FFT) techniques are used to evalu-  
ate the dynamic performance of the A/D. A low distortion  
sine wave is applied to the input of the A/D converter. The  
input is sampled by the A/D and its output stored in RAM.  
The data is than transformed into the frequency domain with  
a 4096 point FFT and analyzed to evaluate the converters  
dynamic performance such as SNR and THD. See Typical  
Performance Characteristics.  
If an external clock is supplied to the CLK pin, it must have  
sufficient drive to overcome the internal clock source. The  
external clock can be shut off, but again, only during the  
sample portion of a conversion cycle. At other times, it must  
be above the minium frequency shown in the specifications.  
Signal-To-Noise Ratio  
In the above two cases, a further restriction applies in that The signal to noise ratio (SNR) is the measured RMS signal to  
the clock should not be shut off during the third sample RMS sum of noise at a specified input and sampling frequency.  
period for more than 1ms. This might cause an internal The noise is the RMS sum of all except the fundamental and  
charge pump voltage to decay.  
the first five harmonic signals. The SNR is dependent on the  
number of quantization levels used in the converter. The theo-  
retical SNR for an N-bit converter with no differential or integral  
linearity error is: SNR = (6.02N + 1.76)dB. For an ideal 12-bit  
converter the SNR is 74dB. Differential and integral linearity  
errors will degrade SNR.  
If the internal or external clock was shut off during the  
conversion time (clock cycles 4 through 15) of the A/D, the  
output might be invalid due to balancing capacitor droop.  
An external clock must also meet the minimum t  
and  
times shown in the specifications. A violation may  
LOW  
t
HIGH  
cause an internal miscount and invalidate the results.  
Sinewave Signal Power  
SNR = 10 Log  
Total Noise Power  
Signal-To-Noise + Distortion Ratio  
INTERNAL  
ENABLE  
SINAD is the measured RMS signal to RMS sum of noise  
plus harmonic power and is expressed by the following.  
CLOCK  
CLK  
OPTIONAL  
EXTERNAL  
CLOCK  
Sinewave Signal Power  
SINAD = 10 Log  
100kΩ  
18pF  
Noise + Harmonic Power (2nd - 6th)  
Effective Number of Bits  
FIGURE 16. INTERNAL CLOCK CIRCUITRY  
The effective number of bits (ENOB) is derived from the  
SINAD data;  
Power Supplies and Grounding  
and V are the digital supply pins: they power all  
V
DD  
internal logic and the output drivers. Because the output  
drivers can cause fast current spikes in the V and V  
SS  
SINAD - 1.76  
ENOB =  
6.02  
DD  
SS  
lines, V  
should have a low impedance path to digital  
SS  
ground and V  
should be well bypassed.  
DD  
6-1786  
HI5810  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
The total harmonic distortion (THD) is the ratio of the RMS The spurious-free dynamic range (SFDR) is the ratio of the  
sum of the second through sixth harmonic components to fundamental RMS amplitude to the RMS amplitude of the  
the fundamental RMS signal for a specified input and next largest spur or spectral component. If the harmonics  
sampling frequency.  
are buried in the noise floor it is the largest peak.  
Total Harmonic Power (2nd - 6th Harmonic)  
Sinewave Signal Power  
SFDR = 10Log  
THD = 10Log  
Sinewave Signal Power  
Highest Spurious Signal Power  
TABLE 2. CODE TABLE  
INPUT  
BINARY OUTPUT CODE  
VOLTAGE  
REF  
V
+ = 4.608V  
MSB  
LSB  
CODE  
DESCRIPTION  
V
- = 0V  
DECIMAL  
COUNT  
REF  
(V)  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Full Scale (FS)  
4.6069  
4.6058  
3.4560  
2.3040  
1.1520  
4095  
4094  
3072  
2048  
1024  
1
1
1
1
1
0
0
0
1
1
1
0
1
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
1
0
FS - 1 LSB  
3
/
/
/
FS  
FS  
FS  
4
2
4
1
1
1 LSB  
Zero  
0.001125  
0
0
The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.  
+5V  
0.1µF  
4.7µF  
10µF  
0.1µF  
0.1µF  
0.01µF  
V
+
V
DD  
AA  
D11  
.
.
.
OUTPUT  
DATA  
D0  
V
REF  
V
+
REF  
4.7µF  
0.001µF  
DRDY  
OEM  
OEL  
ANALOG  
INPUT  
V
V
IN  
STRT  
CLK  
1.5MHz CLOCK  
-
V
-
V
SS  
REF  
AA  
FIGURE 17. GROUND AND SUPPLY DECOUPLING  
6-1787  
HI5810  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
3200µm x 3940µm  
Type: PSG  
Thickness: 13kÅ ±2.5kÅ  
METALLIZATION:  
WORST CASE CURRENT DENSITY:  
Type: AlSi  
Thickness: 11kÅ ±1kÅ  
5
2
1.84 x 10 A/cm  
Metallization Mask Layout  
HI5810  
DRDY  
D0  
(LSB)  
D1  
V
OEL  
DD  
CLK  
D2  
D3  
STRT  
V
-
REF  
D4  
D5  
D6  
V
V
+
REF  
D7  
D8  
IN  
V
+
-
AA  
V
AA  
D9  
V
D10  
D11  
(MSB)  
OEM  
SS  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
6-1788  

相关型号:

HI5810JIP

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIB

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIJ

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810KIP

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5810_01

CMOS 10 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIB

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIBZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIJ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIP

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIPZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812KIB

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL