HUF76633S3S [INTERSIL]

38A, 100V, 0.036 Ohm, N-Channel, Logic Level UltraFET Power MOSFET; 38A , 100V , 0.036 Ohm的N通道,逻辑电平UltraFET功率MOSFET
HUF76633S3S
型号: HUF76633S3S
厂家: Intersil    Intersil
描述:

38A, 100V, 0.036 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
38A , 100V , 0.036 Ohm的N通道,逻辑电平UltraFET功率MOSFET

晶体 晶体管 开关
文件: 总9页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF76633P3, HUF76633S3S  
Data Sheet  
October 1999  
File Number 4693.3  
38A, 100V, 0.036 Ohm, N-Channel, Logic  
Level UltraFET Power MOSFET  
Packaging  
Features  
JEDEC TO-220AB  
JEDEC TO-263AB  
• Ultra Low On-Resistance  
- r  
- r  
= 0.035Ω, VGS = 10V  
= 0.036Ω, VGS = 5V  
DS(ON)  
DS(ON)  
SOURCE  
DRAIN  
(FLANGE)  
DRAIN  
GATE  
• Simulation Models  
®
©
- Temperature Compensated PSPICE and SABER  
Electrical Models  
GATE  
SOURCE  
©
- Spice and SABER Thermal Impedance Models  
DRAIN  
(FLANGE)  
- www.Intersil.com  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
HUF76633P3  
HUF76633S3S  
• Switching Time vs R  
GS  
Curves  
Symbol  
D
S
Ordering Information  
PART NUMBER  
HUF76633P3  
PACKAGE  
BRAND  
76633P  
76633S  
G
TO-220AB  
TO-263AB  
HUF76633S3S  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUF76633S3ST.  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
HUF76633P3,  
HUF76633S3S  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
100  
100  
16  
V
V
V
DSS  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
38  
39  
27  
A
A
A
A
C
GS  
D
D
o
Continuous (T = 25 C, V  
C
GS  
o
Continuous (T = 100 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
D
o
Continuous (T = 100 C, V  
27  
C
GS  
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS  
Figures 6, 17, 18  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
145  
0.97  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
1. T = 25 C to 150 C.  
o
o
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.  
1
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999.  
HUF76633P3, HUF76633S3S  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
BV  
DSS  
I
I
= 250µA, V  
= 250µA, V  
= 0V (Figure 12)  
o
100  
-
-
-
-
-
-
-
V
D
GS  
GS  
GS  
GS  
= 0V , T = -40 C (Figure 12)  
C
90  
-
V
D
Zero Gate Voltage Drain Current  
I
V
V
V
= 95V, V  
= 90V, V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
=
16V  
-
GSS  
V
V
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
GS  
GS  
GS  
r
I
I
I
= 39A, V  
= 27A, V  
= 27A, V  
= 10V (Figures 9, 10)  
= 5V (Figure 9)  
0.029  
0.030  
0.031  
0.035  
0.036  
0.037  
DS(ON)  
D
D
D
-
= 4.5V (Figure 9)  
-
THERMAL SPECIFICATIONS  
o
Thermal Resistance Junction to Case  
R
TO-220 and TO-263  
-
-
-
-
1.03  
62  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
R
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
= 4.5V)  
GS  
Turn-On Time  
t
V
V
= 50V, I = 27A  
-
-
-
-
-
-
-
12  
110  
43  
58  
-
185  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
= 4.5V, R  
= 4.7Ω  
GS  
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
(Figures 15, 21, 22)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
150  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
R
= 50V, I = 39A  
D
= 10V,  
= 5.1Ω  
-
-
-
-
-
-
-
95  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
Turn-On Delay Time  
Rise Time  
t
7.5  
55  
63  
83  
-
-
d(ON)  
GS  
t
-
r
(Figures 16, 21, 22)  
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
220  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 50V,  
-
-
-
-
-
56  
30  
2
67  
37  
2.4  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 27A,  
I
I
D
Gate Charge at 5V  
Q
g(5)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
g(TH)  
(Figures 14, 19, 20)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
6
gs  
gd  
Q
15  
-
C
V
= 25V, V = 0V,  
GS  
-
-
-
1820  
415  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
115  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.0  
UNITS  
V
Source to Drain Diode Voltage  
V
I
I
I
I
= 27A  
= 13A  
-
-
-
-
-
-
-
-
SD  
SD  
SD  
SD  
SD  
V
Reverse Recovery Time  
t
= 27A, dI /dt = 100A/µs  
SD  
113  
425  
ns  
rr  
Reverse Recovered Charge  
Q
= 27A, dI /dt = 100A/µs  
SD  
nC  
RR  
2
HUF76633P3, HUF76633S3S  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
40  
30  
20  
10  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
30  
V
= 5V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
-5  
10  
-4  
-3  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
3
HUF76633P3, HUF76633S3S  
Typical Performance Curves (Continued)  
200  
100  
500  
100  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
)
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
t
AV  
- V ) +1]  
DD  
AS DSS  
100µs  
o
STARTING T = 25 C  
J
10  
OPERATION IN THIS  
AREA MAY BE  
10  
1
LIMITED BY r  
1ms  
DS(ON)  
o
STARTING T = 150 C  
J
SINGLE PULSE  
= MAX RATED  
10ms  
o
T
= 25 C  
T
C
J
1
1
10  
100  
300  
0.001  
0.01  
t
0.1  
1
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
, TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
80  
80  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DD  
V
= 10V  
= 5V  
GS  
V
GS  
V
= 15V  
V
= 3.5V  
GS  
V
= 4V  
GS  
60  
40  
20  
0
60  
40  
20  
0
V
= 3V  
GS  
o
T
= 175 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
J
o
T
= -55 C  
o
J
T
= 25 C  
C
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
1
2
3
4
5
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
50  
3.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 39A  
D
I
= 39A  
GS  
D
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
T
= 25 C  
C
2.5  
2.0  
1.5  
1.0  
0.5  
45  
40  
35  
30  
25  
I
= 27A  
D
I
= 15A  
D
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
4
HUF76633P3, HUF76633S3S  
Typical Performance Curves (Continued)  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS  
GS  
D
I
= 250µA  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
5000  
V
= 50V  
C
= C + C  
GS GD  
DD  
ISS  
8
6
4
2
0
C
C + C  
DS  
OSS  
GD  
1000  
100  
10  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
= 39A  
= 27A  
= 15A  
D
D
D
V
= 0V, f = 1MHz  
1
GS  
0
10  
20  
30  
40  
50  
60  
0.1  
10  
100  
Q , GATE CHARGE (nC)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
g
DS  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
400  
500  
V
= 4.5V, V = 50V, I = 27A  
DD D  
V
= 10V, V  
DD  
= 50V, I = 39A  
D
GS  
GS  
400  
300  
200  
100  
0
t
300  
200  
100  
0
d(OFF)  
t
r
t
f
t
d(OFF)  
t
f
t
r
t
t
d(ON)  
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
5
HUF76633P3, HUF76633S3S  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
6
HUF76633P3, HUF76633S3S  
PSPICE Electrical Model  
.SUBCKT HUF76633 2 1 3 ;  
rev 10 September1999  
CA 12 8 3.50e-9  
CB 15 14 3.50e-9  
CIN 6 8 1.70e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
EBREAK 11 7 17 18 120.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
DBREAK  
51  
+
RSLC2  
5
51  
ESLC  
11  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
IT 8 17 1  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LDRAIN 2 5 1.00e-9  
LGATE 1 9 5.17e-9  
LSOURCE 3 7 2.13e-9  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 2.04e-2  
RGATE 9 20 2.15  
RLDRAIN 2 5 10  
RLGATE 1 9 51.7  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 21.3  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 4.85e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*79),3.5))}  
.MODEL DBODYMOD D (IS = 1.96e-12 RS = 3.87e-3 TRS1 = 9.93e-4 TRS2 = 4.97e-6 CJO = 1.53e-9 TT = 7.41e-8 M = 0.50)  
.MODEL DBREAKMOD D (RS = 3.12e-1 TRS1 = 1.07e-3 TRS2 = 0)  
.MODEL DPLCAPMOD D (CJO = 1.97e-9 IS = 1e-30 M = 0.87)  
.MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2.80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.15)  
.MODEL MSTROMOD NMOS (VTO = 2.04 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 1.50 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 21.5 RS = 0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.74e-4 TC2 = -3.71e-7)  
.MODEL RDRAINMOD RES (TC1 = 9.71e-3 TC2 = 2.90e-5)  
.MODEL RSLCMOD RES (TC1 = 2.17e-3 TC2 = 1.27e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -6.82e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.52e-3 TC2 = -1.21e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.00 VOFF= -1.50)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.50 VOFF= -6.00)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 0.0)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.0 VOFF= -0.50)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
7
HUF76633P3, HUF76633S3S  
SABER Electrical Model  
REV 10 September 1999  
template huf76633 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 1.96e-12, cjo = 1.53e-9, tt = 7.41e-8, m = 0.50)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 1.97e-9, is = 1e-30, m = 0.87 )  
m..model mmedmod = (type=_n, vto = 1.73, kp = 2.8, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.04, kp = 80, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.50, kp = 0.1, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.00, voff = -1.50)  
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.50, voff = -6.00)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 0.0)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -0.50)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
c.ca n12 n8 = 3.50e-9  
c.cb n15 n14 = 3.50e-9  
c.cin n6 n8 = 1.70e-9  
ISCL  
50  
-
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
i.it n8 n17 = 1  
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 5.17e-9  
l.lsource n3 n7 = 2.13e-9  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RSOURCE  
RLSOURCE  
S1A  
S2A  
14  
13  
RBREAK  
12  
res.rbreak n17 n18 = 1, tc1 = 9.74e-4, tc2 = -3.71e-7  
res.rdbody n71 n5 = 3.87e-3, tc1 = 9.93e-4, tc2 = 4.97e-6  
res.rdbreak n72 n5 = 3.12e-1, tc1 = 1.07e-3, tc2 = 0  
res.rdrain n50 n16 = 20.40e-3, tc1 = 9.71e-3, tc2 = 2.90e-5  
res.rgate n9 n20 = 2.15  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 51.7  
res.rlsource n3 n7 = 21.3  
15  
13  
17  
18  
8
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
res.rslc1 n5 n51 = 1e-6, tc1 = 2.17e-3, tc2 = 1.27e-6  
res.rslc2 n5 n50 = 1e3  
-
-
8
22  
res.rsource n8 n7 = 4.85e-3, tc1 = 1.00e-3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -1.52e-3, tc2 = 1.21e-7  
res.rvthres n22 n8 = 1, tc1 = -2.08e-3, tc2 = -6.82e-6  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 120.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/79))** 3.5))  
}
}
8
HUF76633P3, HUF76633S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 9 September1999  
HUF76633T  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 th 6 2.90e-3  
CTHERM2 6 5 1.25e-2  
CTHERM3 5 4 1.00e-2  
CTHERM4 4 3 6.50e-3  
CTHERM5 3 2 2.75e-2  
CTHERM6 2 tl 12.55  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 7.04e-3  
RTHERM2 6 5 1.75e-2  
RTHERM3 5 4 4.94e-2  
RTHERM4 4 3 2.77e-1  
RTHERM5 3 2 4.18e-1  
RTHERM6 2 tl 5.54e-2  
5
SABER Thermal Model  
SABER thermal model HUF76633T  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 2.90e-3  
ctherm.ctherm2 6 5 = 1.25e-2  
ctherm.ctherm3 5 4 = 1.00e-2  
ctherm.ctherm4 4 3 = 6.50e-3  
ctherm.ctherm5 3 2 = 2.75e-2  
ctherm.ctherm6 2 tl = 12.55  
rtherm.rtherm1 th 6 = 7.04e-3  
rtherm.rtherm2 6 5 = 1.75e-2  
rtherm.rtherm3 5 4 = 4.94e-2  
rtherm.rtherm4 4 3 = 2.77e-1  
rtherm.rtherm5 3 2 = 4.18e-1  
rtherm.rtherm6 2 tl = 5.54e-2  
}
tl  
CASE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reli-  
able. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
9

相关型号:

HUF76633S3ST

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 39A I(D) | TO-263AB
ETC

HUF76633S3ST_F085

Power Field-Effect Transistor, 39A I(D), 100V, 0.035ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT PACKAGE-3/2
FAIRCHILD

HUF76633S3ST_NL

Power Field-Effect Transistor, 39A I(D), 100V, 0.037ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,
FAIRCHILD

HUF76639P3

50A, 100V, 0.027 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76639P3

50A, 100V, 0.027 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76639P3T

TRANSISTOR | MOSFET | N-CHANNEL | 100V V(BR)DSS | 51A I(D) | TO-220AB
ETC

HUF76639P3_NL

暂无描述
FAIRCHILD

HUF76639S3S

50A, 100V, 0.027 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76639S3S

50A, 100V, 0.027 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76639S3ST

N 沟道,逻辑电平,UltraFET® Power MOSFET,100V,50A,26mΩ
ONSEMI

HUF76639S3ST-F085

100 V、51 A、23 mΩ、D2PAK、逻辑电平N 沟道 UltraFET®
ONSEMI

HUF76645P3

75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD