HUF76639S3ST-F085 [ONSEMI]

100 V、51 A、23 mΩ、D2PAK、逻辑电平N 沟道 UltraFET®;
HUF76639S3ST-F085
型号: HUF76639S3ST-F085
厂家: ONSEMI    ONSEMI
描述:

100 V、51 A、23 mΩ、D2PAK、逻辑电平N 沟道 UltraFET®

开关 晶体管
文件: 总12页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
HUF76639S3ST_F085  
July 2012  
50A, 100V, 0.026 Ohm, N-Channel, Logic  
Level UltraFET® Power MOSFET  
Packaging  
Features  
JEDEC TO-263AB  
• Ultra Low On-Resistance  
- r = 0.026Ω, VGS = 10V  
DRAIN  
(FLANGE)  
DS(ON)  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Electrical Models  
GATE  
SOURCE  
- Spice and SABER Thermal Impedance Models  
- www.fairchildsemi.com  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
HUF76639S3S  
• Switching Time vs R  
Curves  
GS  
Symbol  
D
Ordering Information  
PART NUMBER  
PACKAGE  
TO-263AB  
BRAND  
G
HUF76639S3ST_F085  
76639S  
NOTE: When ordering, use the entire part number. Add the suffix T  
to obtain the variant in tape and reel, e.g., HUF76639S3ST.  
S
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HUF76639S3ST_F085  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
100  
100  
±16  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
Drain Current  
o
Continuous (T = 25 C, V  
C
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
50  
51  
35  
A
A
A
A
GS  
GS  
D
D
o
Continuous (T = 25 C, V  
C
o
Continuous (T = 100 C, V  
= 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
= 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
GS  
D
o
Continuous (T = 100 C, V  
34  
C
GS  
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Figure 4  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figures 6, 17, 18  
180  
1.2  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
NOTES:  
1. T = 25 C to 150 C.  
o
o
J
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html  
For severe environments, see our Automotive HUFA series.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
BV  
I
I
= 250µA, V  
= 250µA, V  
= 0V (Figure 12)  
o
100  
-
-
-
-
-
-
-
V
DSS  
D
D
GS  
GS  
GS  
GS  
= 0V , T = -40 C (Figure 12)  
C
90  
-
V
Zero Gate Voltage Drain Current  
I
V
V
V
= 95V, V  
= 90V, V  
= ±16V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
I
-
GSS  
V
r
V
I
= V , I = 250µA (Figure 11)  
1
-
-
3
V
GS(TH)  
GS  
DS  
D
= 51A, V  
= 10V (Figures 9, 10)  
0.023  
0.026  
DS(ON)  
D
GS  
THERMAL SPECIFICATIONS  
o
Thermal Resistance Junction to Case  
R
R
TO-263  
-
-
-
-
0.83  
62  
C/W  
θJC  
o
Thermal Resistance Junction to  
Ambient  
C/W  
θJA  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 4.5V)  
GS  
t
V
V
= 50V, I = 34A  
-
-
-
-
-
-
-
336  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
= 4.5V, R  
= 12Ω  
GS  
Turn-On Delay Time  
Rise Time  
t
17  
207  
83  
136  
-
-
d(ON)  
(Figures 15, 21, 22)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
328  
OFF  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
t
GS  
V
V
= 50V, I = 51A  
-
-
-
-
-
-
-
96  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
= 10V, R  
= 12Ω  
GS  
Turn-On Delay Time  
Rise Time  
t
10  
55  
151  
110  
-
-
d(ON)  
(Figures 16, 21, 22)  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
392  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 10V  
= 0V to 5V  
= 0V to 1V  
V
= 50V,  
-
-
-
-
-
71  
39  
2.0  
6
86  
47  
2.4  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
= 35A,  
I
I
D
Gate Charge at 5V  
Q
g(5)  
= 1.0mA  
g(REF)  
Threshold Gate Charge  
Q
g(TH)  
(Figures 14, 19, 20)  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
19  
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
2400  
520  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
C
OSS  
Reverse Transfer Capacitance  
140  
RSS  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
1.0  
UNITS  
Source to Drain Diode Voltage  
V
I
I
I
I
= 35A  
= 15A  
-
-
-
-
-
-
-
-
V
V
SD  
SD  
SD  
SD  
SD  
Reverse Recovery Time  
t
= 35A, dI /dt = 100A/µs  
SD  
137  
503  
ns  
nC  
rr  
Reverse Recovered Charge  
Q
= 35A, dI /dt = 100A/µs  
SD  
RR  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
60  
50  
40  
30  
20  
10  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
0
25  
50  
75  
100  
150  
175  
25  
50  
75  
100  
125  
o
150  
175  
125  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
-2  
10  
-1  
0
1
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
50  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
V
= 5V  
GS  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
Typical Performance Curves (Continued)  
500  
300  
100  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
)
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
AS  
DSS  
t
AV  
AS  
100  
100µs  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
10  
1
1ms  
LIMITED BY r  
DS(ON)  
10ms  
o
SINGLE PULSE  
= MAX RATED  
STARTING T = 150 C  
J
o
T
= 25 C  
T
C
J
1
1
10  
100  
300  
0.01  
0.1  
t
1
10  
100  
, TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
AV  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
100  
100  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
DD  
V
= 10V  
GS  
V
= 5V  
= 4V  
GS  
V
= 15V  
V
= 3.5V  
= 3V  
GS  
V
GS  
75  
50  
25  
0
75  
50  
25  
0
V
GS  
o
T
= 175 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
J
o
o
T
= -55 C  
J
T
= 25 C  
C
0
1
2
3
4
5
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
GS  
FIGURE 7. TRANSFER CHARACTERISTICS  
FIGURE 8. SATURATION CHARACTERISTICS  
40  
3.0  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 51A  
D
GS  
I
= 51A  
D
o
T
= 25 C  
2.5  
C
35  
30  
25  
20  
2.0  
1.5  
1.0  
0.5  
I
= 35A  
D
I
= 15A  
D
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
Typical Performance Curves (Continued)  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS  
GS  
D
I
= 250µA  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
10  
5000  
C
= C  
+ C  
GS GD  
V
= 50V  
ISS  
DD  
8
6
4
2
0
C
C
+ C  
DS GD  
OSS  
1000  
WAVEFORMS IN  
DESCENDING ORDER:  
C
= C  
GD  
RSS  
I
I
I
= 51A  
= 35A  
= 15A  
100  
40  
D
D
V
= 0V, f = 1MHz  
1
D
GS  
0.1  
10  
100  
0
15  
30  
45  
60  
75  
Q , GATE CHARGE (nC)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
g
DS  
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT  
GATE CURRENT  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
400  
600  
V
= 4.5V, V = 50V, I = 34A  
DD D  
V
= 10V, V  
DD  
= 50V, I = 51A  
D
GS  
GS  
500  
400  
300  
200  
100  
0
t
d(OFF)  
300  
200  
100  
0
t
f
r
t
t
f
t
d(OFF)  
t
r
t
d(ON)  
t
d(ON)  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
, GATE TO SOURCE RESISTANCE ()  
R
, GATE TO SOURCE RESISTANCE ()  
GS  
GS  
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE  
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 10V  
GS  
V
Q
GS  
g(5)  
+
-
V
DD  
V
= 5V  
V
GS  
GS  
DUT  
V
= 1V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT  
FIGURE 22. SWITCHING TIME WAVEFORM  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
PSPICE Electrical Model  
.SUBCKT HUF76639 2 1 3 ;  
rev 26 July 1999  
CA 12 8 4.2e-9  
CB 15 14 4.2e-9  
CIN 6 8 2.27e-9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
EBREAK 11 7 17 18 118.2  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
-
50  
+
IT 8 17 1  
-
17  
18  
-
DBODY  
RDRAIN  
6
ESG  
8
LDRAIN 2 5 1.0e-9  
LGATE 1 9 5.1e-9  
LSOURCE 3 7 3.1e-9  
EBREAK  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RGATE  
GATE  
1
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 15.8e-3  
RGATE 9 20 1.94  
RLDRAIN 2 5 10  
RLGATE 1 9 51  
RLSOURCE 3 7 31  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RSOURCE 8 7 RSOURCEMOD 3.6e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*99),3.5))}  
.MODEL DBODYMOD D (IS = 2.6e-12 RS = 2.65e-3 IKF = 6 TRS1 = 1.5e-3 TRS2 = 3.5e-6 CJO = 2.1e-9 TT = 5.6e-8 M = 0.52)  
.MODEL DBREAKMOD D (RS = 2.5e-1 TRS1 = 1e-4 TRS2 = -1e-6)  
.MODEL DPLCAPMOD D (CJO = 2.6e-9 IS = 1e-30 M = 0.89 N = 10)  
.MODEL MMEDMOD NMOS (VTO = 1.77 KP = 7 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U RG = 1.94)  
.MODEL MSTROMOD NMOS (VTO = 2.06 KP = 95 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U)  
.MODEL MWEAKMOD NMOS (VTO = 1.48 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1U W = 1U RG = 19.4 RS = .1)  
.MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -5e-7)  
.MODEL RDRAINMOD RES (TC1 = 8.5e-3 TC2 = 2.3e-5)  
.MODEL RSLCMOD RES (TC1 = 3.4e-3 TC2 = 2.5e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)  
.MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -4.5e-6)  
.MODEL RVTEMPMOD RES (TC1 = -1.7e-3 TC2 = 1.5e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.5 VOFF = -2.0)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF = -4.5)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF = 0.3)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.3 VOFF = -0.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEEPower Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
SABER Electrical Model  
REV 26 July 1999  
template huf76639 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 2.6e-12, cjo = 2.1e-9, tt = 5.6e-8, m = 0.52, n=10)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 2.6e-9, is = 1e-30, m = 0.89)  
m..model mmedmod = (type=_n, vto = 1.77, kp = 7, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 2.06,kp = 95, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 1.48, kp = 0.12,is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.0)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -2.0, voff = -4.5)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.3)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.3, voff = -0.5)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
c.ca n12 n8 = 4.2e-9  
c.cb n15 n14 = 4.2e-9  
c.cin n6 n8 = 2.27e-9  
RSLC2  
ISCL  
50  
-
d.dbody n7 n71 = model = dbodymod  
71  
RDRAIN  
6
8
d.dbreak n72 n11 = model = dbreakmod  
ESG  
d.dplcap n10 n5 = model = dplcapmod  
i.it n8 n17 = 1  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
l.ldrain n2 n5 = 1.0e-9  
l.lgate n1 n9 = 5.1e-9  
l.lsource n3 n7 = 3.1e-9  
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
m.mmed n16 n6 n8 n8 = model = mmedmod, l = 1u, w = 1u  
m.mstrong n16 n6 n8 n8 = model = mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model = mweakmod, l = 1u, w = 1u  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7  
res.rdbody n71 n5 = 2.65e-3, tc1 = 1.5e-3, tc2 = 3.5e-6  
res.rdbreak n72 n5 = 2.5e-1, tc1 = 1e-4, tc2 = -1e-6  
res.rdrain n50 n16 = 15.8e-3, tc1 = 8.5e-3, tc2 = 2.3e-5  
res.rgate n9 n20 = 1.94  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 51  
res.rlsource n3 n7 = 31  
res.rslc1 n5 n51 = 1e-6, tc1 = 3.4e-3, tc2 = 2.5e-6  
res.rslc2 n5 n50 = 1e3  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rsource n8 n7 = 3.6e-3, tc1 = 1e-3, tc2 = 1e-6  
res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1.5e-6  
res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -4.5e-6  
RVTHRES  
spe.ebreak n11 n7 n17 n18 = 118.2  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model = s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model = s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model = s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model = s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/99))** 3.5))  
}
}
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
HUF76639S3ST_F085  
SPICE Thermal Model  
JUNCTION  
th  
REV 26 July 1999  
HUF76639T  
RTHERM1  
CTHERM1  
CTHERM1 th 6 3.2e-3  
CTHERM2 6 5 8.5e-3  
CTHERM3 5 4 1.2e-2  
CTHERM4 4 3 1.6e-2  
CTHERM5 3 2 5.5e-2  
CTHERM6 2 tl 1.5  
6
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 8.0e-3  
RTHERM2 6 5 6.8e-2  
RTHERM3 5 4 9.2e-2  
RTHERM4 4 3 2.0e-1  
RTHERM5 3 2 2.4e-1  
RTHERM6 2 tl 5.2e-2  
5
SABER Thermal Model  
SABER thermal model HUF76639T  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 3.2e-3  
ctherm.ctherm2 6 5 = 8.5e-3  
ctherm.ctherm3 5 4 = 1.2e-2  
ctherm.ctherm4 4 3 = 1.6e-2  
ctherm.ctherm5 3 2 = 5.5e-2  
ctherm.ctherm6 2 tl = 1.5  
rtherm.rtherm1 th 6 = 8.0e-3  
rtherm.rtherm2 6 5 = 6.8e-2  
rtherm.rtherm3 5 4 = 9.2e-2  
rtherm.rtherm4 4 3 = 2.0e-1  
rtherm.rtherm5 3 2 = 2.4e-1  
rtherm.rtherm6 2 tl = 5.2e-2  
}
tl  
CASE  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
®
®
2Cool™  
F-PFS™  
FRFET  
Global Power Resource  
Green Bridge™  
PowerTrench  
PowerXS™  
The Power Franchise  
®
®
AccuPower™  
AX-CAP™*  
SM  
Programmable Active Droop™  
®
®
BitSiC  
QFET  
TinyBoost™  
TinyBuck™  
TinyCalc™  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Green FPS™  
Green FPS™ e-Series™  
Gmax™  
GTO™  
IntelliMAX™  
ISOPLANAR™  
QS™  
Quiet Series™  
RapidConfigure™  
®
TinyLogic  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
Current Transfer Logic™  
Saving our world, 1mW/W/kW at a time™  
®
DEUXPEED  
Marking Small Speakers Sound Louder SignalWise™  
Dual Cool™  
EcoSPARK  
EfficentMax™  
ESBC™  
and Better™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
SmartMax™  
®
TranSiC  
®
SMART START™  
Solutions for Your Success™  
TriFault Detect™  
TRUECURRENT *  
®
®
SPM  
μSerDes™  
MicroPak™  
STEALTH™  
®
®
MicroPak2™  
MillerDrive™  
MotionMax™  
Motion-SPM™  
mWSaver™  
OptoHiT™  
SuperFET  
®
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
Fairchild  
®
UHC  
®
Fairchild Semiconductor  
FACT Quiet Series™  
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
VoltagePlus™  
XS™  
®
®
SupreMOS  
FACT  
®
SyncFET™  
Sync-Lock™  
®*  
FAST  
®
OPTOLOGIC  
OPTOPLANAR  
FastvCore™  
FETBench™  
FlashWriter  
FPS™  
®
®
*
®
tm  
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used here in:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I61  
©2012 Fairchild Semiconductor Corporation  
HUF76639S3ST_F085 Rev. C1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

HUF76645P3

75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76645P3

75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76645S3S

75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
FAIRCHILD

HUF76645S3S

75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET Power MOSFET
INTERSIL

HUF76645S3ST

Power Field-Effect Transistor, 75A I(D), 100V, 0.015ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,
FAIRCHILD

HUF76645S3S_NL

Power Field-Effect Transistor, 75A I(D), 100V, 0.015ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB,
FAIRCHILD

HUFA75229P3

TRANSISTOR | MOSFET | N-CHANNEL | 50V V(BR)DSS | 44A I(D) | TO-220AB
ETC

HUFA75307D3

15A, 55V, 0.090 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUFA75307D3S

15A, 55V, 0.090 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUFA75307D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 55V V(BR)DSS | 15A I(D) | TO-252AA
FAIRCHILD

HUFA75307P3

15A, 55V, 0.090 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUFA75307T3ST

2.6A, 55V, 0.090 Ohm, N-Channel UltraFET Power MOSFET
FAIRCHILD