ISL21080CIH350Z-TK [INTERSIL]

300nA NanoPower Voltage References; 300nA的纳安级功耗电压参考
ISL21080CIH350Z-TK
型号: ISL21080CIH350Z-TK
厂家: Intersil    Intersil
描述:

300nA NanoPower Voltage References
300nA的纳安级功耗电压参考

光电二极管
文件: 总21页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300nA NanoPower Voltage References  
ISL21080  
Features  
• Reference Output Voltage . . . . . 0.900V, 1.024V, 1.250V,  
1.500V, 2.048V, 2.500V, 3.000V, 3.300V, 4.096V, 5.000V  
The ISL21080 analog voltage references feature low  
supply voltage operation at ultra-low 310nA typ, 1.5µA  
max operating current. Additionally, the ISL21080 family  
features guaranteed initial accuracy as low as ±0.2%  
and 50ppm/°C temperature coefficient.  
• Initial Accuracy:  
- ISL21080-09 and -10 . . . . . . . . . . . . . . . . . . ±0.7%  
- ISL21080-12 . . . . . . . . . . . . . . . . . . . . . . . . ±0.6%  
- ISL21080-15. . . . . . . . . . . . . . . . . . . . . . . . . ±0.5%  
- ISL21080-20 and -25 . . . . . . . . . . . . . . . . . . ±0.3%  
- ISL21080-30, -33, -41, and -50 . . . . . . . .±0.2%  
These references are ideal for general purpose portable  
applications to extend battery life at lower cost. The  
ISL21080 is provided in the industry standard 3 Ld  
SOT-23 pinout.  
The ISL21080 output voltages can be used as precision  
voltage sources for voltage monitors, control loops,  
standby voltages for low power states for DSP, FPGA,  
Datapath Controllers, microcontrollers and other core  
voltages: 0.9V, 1.024V, 1.25V, 1.5V, 2.048V, 2.5V, 3.0V,  
3.3V, 4.096V and 5.0V.  
• Input Voltage Range:  
- ISL21080-09. . . . . . . . . . . . . . . . . . . . . 2.0V to 5.5V  
- ISL21080-10, -12, -15, -20 and -25. . . . .2.7V to 5.5V  
- ISL21080-30. . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
- ISL21080-33. . . . . . . . . . . . . . . . . . . . . 3.5V to 5.5V  
- ISL21080-41. . . . . . . . . . . . . . . . . . . . . 4.5V to 8.0V  
- ISL21080-50. . . . . . . . . . . . . . . . . . 5.5V to 8.0V  
Special Note: Post-assembly x-ray inspection may lead to  
permanent changes in device output voltage and should be  
minimized or avoided. For further information, please see  
“Applications Information” on page 14 and AN1533, “X-Ray  
Effects on Intersil FGA References.  
• Output Voltage Noise . . . . 30µV  
P-P  
(0.1Hz to 10Hz)  
• Supply Current. . . . . . . . . . . . . . . . . . 1.5µA (Max)  
Tempco . . . . . . . . . . . . . . . . . . . . . . . . 50ppm/°C  
• Output Current Capability . . . . . . . . . . . . . . ±7mA  
• Operating Temperature Range . . . . -40°C to +85°C  
• Package . . . . . . . . . . . . . . . . . . . . . . 3 Ld SOT-23  
• Pb-Free (RoHS compliant)  
Applications*(see page 20)  
• Energy Harvesting Applications  
• Wireless Sensor Network Applications  
• Low Power Voltage Sources for Controllers, FPGA,  
ASICs or Logic Devices  
• Battery Management/Monitoring  
• Low Power Standby Voltages  
• Portable Instrumentation  
Related Literature*(see page 20)  
• See AN1494, “Reflow and PC Board Assembly Effects  
on Intersil FGA References”  
• Consumer/Medical Electronics  
• Wearable Electronics  
• See AN1533, “X-Ray Effects on Intersil FGA  
References”  
• Lower Cost Industrial and Instrumentation  
• Power Regulation Circuits  
• Control Loops and Compensation Networks  
• LED/Diode Supply  
500  
UNIT 1  
400  
300  
200  
100  
0
UNIT 2  
UNIT 3  
2.72.93.13.33.53.73.94.14.34.54.74.95.15.35.5  
V
(V)  
IN  
FIGURE 1. I  
vs V , 3 UNITS  
IN  
IN  
May 25, 2010  
FN6934.4  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
FGA is a trademark of Intersil Corporation. Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
ISL21080  
Pin Configuration  
Pin Descriptions  
PIN NUMBER PIN NAME  
ISL21080  
(3 LD SOT-23)  
TOP VIEW  
DESCRIPTION  
Input Voltage Connection.  
Voltage Reference Output  
Ground Connection  
1
2
3
V
IN  
V
OUT  
1
2
V
IN  
GND  
3
GND  
V
OUT  
Ordering Information  
PACKAGE  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
V
OPTION  
(V)  
GRADE  
(%)  
TEMP. RANGE  
(°C)  
Tape & Reel  
(Pb-Free)  
PKG.  
OUT  
DWG. #  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
ISL21080DIH309Z-TK  
ISL21080DIH310Z-TK  
ISL21080DIH312Z-TK  
ISL21080CIH315Z-TK  
ISL21080CIH320Z-TK  
ISL21080CIH325Z-TK  
ISL21080CIH330Z-TK  
ISL21080CIH333Z-TK  
ISL21080CIH341Z-TK  
ISL21080CIH350Z-TK  
NOTES:  
BCLA  
BCMA  
BCNA  
BCDA  
BCPA  
BCRA  
BCSA  
BCTA  
BCVA  
BCWA  
0.9  
±0.7  
±0.7  
±0.6  
±0.5  
±0.3  
±0.3  
±0.2  
±0.2  
±0.2  
±0.2  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
3 Ld SOT-23  
1.024  
1.25  
1.5  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
2.048  
2.5  
3.0  
3.3  
4.096  
5.0  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL21080. For more information on MSL please  
see techbrief TB363.  
FN6934.4  
May 25, 2010  
2
ISL21080  
Absolute Maximum Ratings  
Thermal Information  
Max Voltage  
Thermal Resistance (Typical, Notes 5, 6) θJA (°C/W)  
3 Lead SOT-23. . . . . . . . . . . . . . . 275  
Maximum Junction Temperature . . . . . . . . . . . . . . . +107°C  
θ
JC (°C/W)  
V
V
to GND. . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
to GND (ISL21080-41 and 50 only) . . .-0.5V to +10V  
IN  
IN  
110  
V
V
to GND (10s). . . . . . . . . . . . . . -0.5V to VOUT +1V  
to GND (10s)  
ISL21080-41 and 50 only . . . . . . . . . . -0.5V to +5.1V  
OUT  
OUT  
Continuous Power Dissipation (T = +85°C). . . . . . . . 99mW  
A
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile (Note 7). . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
ESD Ratings  
Human Body Model (Tested to JESD22-A114) . . . . . . . 5kV  
Machine Model (Tested to JESD22-A115) . . . . . . . . . 500V  
Charged Device Model (Tested to JESD22-C101) . . . . . 2kV  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . 100mA  
Recommended Operating Conditions  
Temperature. . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.5V  
Environmental Operating Conditions  
X-Ray Exposure (Note 4). . . . . . . . . . . . . . . . . . . .10mRem  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure  
levels should be analyzed for Output Voltage drift effects. See “Applications Information” on page 14.  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
6. For θ , the “case temp” location is taken at the package top center.  
JC  
7. Post-reflow drift for the ISL21080 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4  
double sided boards. The design engineer must take this into account when considering the reference voltage after assembly.  
8. Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or  
avoided. Initial accuracy can change 10mV or more under extreme radiation. Most inspection equipment will not affect the  
FGA reference voltage, but if x-ray inspection is required, it is advisable to monitor the reference output voltage to verify  
excessive shift has not occurred.  
Electrical Specifications (ISL21080-09, V  
= 0.9V) V = 3.0V, T = -40°C to +85°C, I = 0, unless otherwise  
IN OUT  
OUT  
A
specified. Boldface limits apply over the operating temperature range, -40°C to  
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12) UNIT  
V
V
0.9  
V
%
OUT  
OA  
V
-0.7  
+0.7  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.0  
5.5  
1.5  
V
µA  
IN  
I
0.35  
30  
6
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
IN  
IN  
/ΔI  
OUT OUT  
Sourcing: 0mA I  
10mA  
0mA  
OUT  
Sinking: -10mA I  
OUT  
23  
30  
1
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
= ±0.1% with no load  
OUT  
SC  
A
OUT  
t
V
ms  
R
f = 120Hz  
-40  
40  
10  
1.1  
100  
60  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +125°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
FN6934.4  
May 25, 2010  
3
ISL21080  
Electrical Specifications (ISL21080-10, V  
= 1.024V) V = 3.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range,  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
-40°C to +85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
1.024  
OUT  
OA  
V
-0.7  
+0.7  
50  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
25  
OUT  
OUT  
Sinking: -7mA I  
T = +25°C, V  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
2.2  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-12, V  
= 1.25V) V = 3.0V, T = -40°C to +85°C, I = 0, unless otherwise  
IN OUT  
OUT  
A
specified. Boldface limits apply over the operating temperature range, -40°C to  
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
1.25  
OUT  
OA  
V
-0.6  
+0.6  
50  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
25  
OUT  
OUT  
Sinking: -7mA I  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
FN6934.4  
May 25, 2010  
4
ISL21080  
Electrical Specifications (ISL21080-15, V  
= 1.5V) V = 3.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range, -40°C to  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
1.5  
OUT  
OA  
V
-0.5  
+0.5  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
10  
OUT  
OUT  
Sinking: -7mA I  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-20, V  
= 2.048V) V = 3.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range,  
= 0, unless otherwise  
OUT  
OUT  
IN  
A
-40°C to +85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
2.048  
OUT  
OA  
V
-0.3  
+0.3  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
25  
OUT  
OUT  
Sinking: -7mA I  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
FN6934.4  
May 25, 2010  
5
ISL21080  
Electrical Specifications (ISL21080-25, V  
= 2.5V) V = 3.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range, -40°C to  
= 0, unless otherwise  
OUT  
OUT  
IN  
A
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
2.5  
OUT  
OA  
V
-0.3  
+0.3  
50  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
25  
OUT  
OUT  
Sinking: -7mA I  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-30, V  
= 3.0V) V = 5.0V, T = -40°C to +85°C, I  
IN  
= 0, unless otherwise  
OUT  
OUT  
A
specified. Boldface limits apply over the operating temperature range, -40°C to  
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
3.0  
OUT  
OA  
V
-0.2  
+0.2  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
3.2  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
3.2V < V < 5.5V  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
25  
OUT  
OUT  
Sinking: -7mA I  
T = +25°C, V  
50  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
tied to GND  
50  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
FN6934.4  
May 25, 2010  
6
ISL21080  
Electrical Specifications (ISL21080-33, V  
= 3.3V) V = 5.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range, -40°C to  
= 0, unless otherwise  
OUT  
OUT  
IN  
A
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
3.3  
OUT  
OA  
V
-0.2  
+0.2  
50  
%
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
3.5  
5.5  
1.5  
V
µA  
IN  
I
0.31  
80  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
3.5 V < V < 5.5V  
IN  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
OUT  
10mA  
0mA  
25  
OUT  
Sinking: -10mA I  
OUT  
50  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
= ±0.1% with no load  
OUT  
50  
SC  
A
OUT  
t
V
4
ms  
R
f = 120Hz  
-40  
30  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
52  
µV  
RMS  
N
1.1  
100  
50  
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-41 V  
= 4.096V) V = 5.0V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range,  
= 0, unless otherwise  
OUT  
OUT  
IN  
A
-40°C to +85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C(Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12)  
UNIT  
V
V
V
4.096  
OUT  
OA  
V
-0.2  
+0.2  
%
OUT  
A
TC V  
Output Voltage Temperature  
Coefficient (Note 9)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
4.5  
8.0  
1.5  
V
µA  
IN  
I
0.5  
80  
10  
20  
80  
4
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
4.5 V < V < 8.0V  
IN  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
OUT  
10mA  
0mA  
OUT  
Sinking: -10mA I  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
SC  
A
OUT  
= ±0.1% with no load  
OUT  
t
V
ms  
R
f = 120Hz  
-40  
30  
52  
1.1  
100  
50  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
FN6934.4  
May 25, 2010  
7
ISL21080  
Electrical Specifications (ISL21080-50 V  
= 5.0V) V = 6.5V, T = -40°C to +85°C, I  
specified. Boldface limits apply over the operating temperature range, -40°C to  
= 0, unless otherwise  
OUT  
OUT  
IN  
A
+85°C.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage  
Accuracy @ T = +25°C (Notes 7, 8)  
CONDITIONS  
(Note 12) TYP (Note 12) UNIT  
V
V
5.0  
V
%
OUT  
OA  
V
-0.2  
+0.2  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 9)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
8.0  
1.5  
V
µA  
IN  
I
0.5  
80  
10  
20  
80  
4
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
5.5 V < V < 8.0V  
IN  
350  
100  
350  
µV/V  
µV/mA  
µV/mA  
mA  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
OUT  
10mA  
0mA  
OUT  
Sinking: -10mA I  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
= ±0.1% with no load  
OUT  
SC  
A
OUT  
t
V
ms  
R
f = 120Hz  
-40  
30  
52  
1.1  
100  
50  
dB  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 10)  
Long Term Stability (Note 11)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
NOTES:  
9. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V  
divided by the temperature range; in this case, -40°C to +85°C = +125°C.  
is  
OUT  
10. Thermal Hysteresis is the change of V  
measured @ T = +25°C after temperature cycling over a specified range, ΔT . V  
OUT  
OUT  
A
A
is read initially at T = +25°C for the device under test. The device is temperature cycled and a second V  
measurement is  
A
OUT  
reading is then expressed in ppm. For Δ  
taken at +25°C. The difference between the initial V  
reading and the second V  
OUT  
OUT  
T = +125°C, the device under test is cycled from +25°C to +85°C to -40°C to +25°C.  
A
11. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately  
10ppm/1khrs.  
12. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
Typical Performance Characteristics Curves  
V
= 0.9V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
HIGH  
+85°C  
TYP  
+25°C  
-40°C  
LOW  
2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
(V)  
2.0 2.4 2.8 3.2 3.6  
4.0 4.4 4.8 5.2  
(V)  
V
V
IN  
IN  
FIGURE 3. I  
vs V OVER-TEMPERATURE  
IN  
FIGURE 2. I  
vs V , 3 UNITS  
IN  
IN  
IN  
FN6934.4  
May 25, 2010  
8
ISL21080  
Typical Performance Characteristics Curves  
V
= 0.9V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
0.90020  
0.90015  
0.90010  
0.90005  
0.90000  
0.89995  
0.89990  
0.89985  
0.89980  
200  
150  
100  
50  
LOW  
+85°C  
HIGH  
0
TYP  
-50  
-100  
-150  
+25°C  
-40°C  
2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
(V)  
2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
(V)  
V
V
IN  
IN  
FIGURE 5. LINE REGULATION OVER-TEMPERATURE  
FIGURE 4. LINE REGULATION, 3 UNITS  
200  
150  
100  
0.9010  
LOW  
0.9005  
0.9000  
ΔV  
= +0.3V  
IN  
TYP  
50  
0
HIGH  
-50  
-100  
ΔV  
IN  
= -0.3V  
0.8995  
0.8990  
-150  
-200  
0
0.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME (µs)  
1.0  
-40 -30-20 -10 0 10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
FIGURE 7. LINE TRANSIENT RESPONSE, WITH  
CAPACITIVE LOAD  
FIGURE 6. V  
vs TEMPERATURE NORMALIZED to  
OUT  
+25°C  
200  
150  
100  
50  
500  
ΔV  
IN  
= +0.3V  
+85°C  
0
0
-40°C  
-50  
ΔV  
IN  
= -0.3V  
-100  
+25°C  
-150  
-200  
-500  
-10-9-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME (µs)  
SINKING  
SOURCING  
LOAD (mA)  
FIGURE 8. LINE TRANSIENT RESPONSE  
FIGURE 9. LOAD REGULATION OVER-TEMPERATURE  
FN6934.4  
May 25, 2010  
9
ISL21080  
Typical Performance Characteristics Curves  
V
= 0.9V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
500  
400  
300  
200  
100  
0
1000  
800  
I
= +7mA  
LOAD  
I
= +50µA  
LOAD  
600  
400  
200  
0
-100  
-200  
-300  
-400  
-500  
-200  
-400  
-600  
-800  
-1000  
I
= -50µA  
LOAD  
3
I
= -7mA  
LOAD  
3
0
1
2
4
5
6
7
8
9
10  
0
1
2
4
5
6
7
8
9
10  
TIME (ms)  
TIME (ms)  
FIGURE 10. LOAD TRANSIENT RESPONSE  
FIGURE 11. LOAD TRANSIENT RESPONSE  
3.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NO LOAD  
7mA  
LOW  
HIGH  
VDD  
TYP  
0
0.3  
0.6  
0.9  
TIME (ms)  
1.2  
1.5  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
(V)  
V
IN  
FIGURE 13. TURN-ON TIME  
FIGURE 12. DROPOUT  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I  
IN OUT  
= 0mA,  
OUT  
T = +25°C unless otherwise specified.  
A
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
UNIT 1  
+85°C  
UNIT 2  
UNIT 3  
-40°C  
+25°C  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
V
IN  
IN  
FIGURE 15. I  
vs V  
OVER-TEMPERATURE  
IN  
FIGURE 14. I  
vs V , 3 UNITS  
IN  
IN  
IN  
FN6934.4  
May 25, 2010  
10  
ISL21080  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
150  
125  
100  
75  
1.50020  
1.50015  
1.50010  
1.50005  
50  
+25°C  
+85°C  
UNIT 2  
UNIT 1  
25  
0
1.50000  
1.49995  
-25  
-50  
-75  
-100  
-125  
-150  
UNIT 3  
1.49990  
1.49985  
1.49980  
-40°C  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
IN  
IN  
FIGURE 17. LINE REGULATION OVER-TEMPERATURE  
FIGURE 16. LINE REGULATION, 3 UNITS  
1.5005  
1.5004  
1.5003  
1.5002  
1.5001  
1.5000  
1.4999  
1.4998  
1.4997  
1.4996  
1.4995  
CL = 500pF  
UNIT 2  
ΔVIN = 0.3V  
UNIT 1  
UNIT 3  
ΔVIN = -0.3V  
-40 -30 -20-10 0 10 20 30 40  
60 70 80  
50  
V
(V)  
IN  
1ms/DIV  
FIGURE 19. LINE TRANSIENT RESPONSE, WITH  
CAPACITIVE LOAD  
FIGURE 18. V  
vs TEMPERATURE NORMALIZED to  
OUT  
+25°C  
900  
700  
CL = 0pF  
ΔVIN = 0.3V  
+25°C  
500  
300  
100  
0
-40°C  
-100  
-300  
-500  
ΔVIN = -0.3V  
+85°C  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
1ms/DIV  
SINKING OUTPUT CURRENT  
SOURCING  
FIGURE 20. LINE TRANSIENT RESPONSE  
FIGURE 21. LOAD REGULATION OVER-TEMPERATURE  
FN6934.4  
May 25, 2010  
11  
ISL21080  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
IL = 7mA  
IL = 50μA  
IL = -50μA  
IL = -7mA  
2ms/DIV  
1ms/DIV  
FIGURE 22. LOAD TRANSIENT RESPONSE  
FIGURE 23. LOAD TRANSIENT RESPONSE  
3.5  
1.52  
NO LOAD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
1.38  
VIN  
7mA LOAD  
UNIT 1  
UNIT 3  
UNIT 2  
1.5  
2.0 2.5  
3.0 3.5  
(V)  
4.0 4.5  
5.0 5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME (ms)  
V
IN  
FIGURE 25. TURN-ON TIME  
FIGURE 24. DROPOUT  
160  
140  
120  
100  
80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
NO LOAD  
NO LOAD  
1nF  
1nF  
10nF  
10nF  
60  
40  
100nF  
20  
100nF  
10k  
0
10  
100  
1k  
100k  
1M  
1M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 27. PSRR vs FREQUENCY  
FIGURE 26. Z  
vs FREQUENCY  
OUT  
FN6934.4  
May 25, 2010  
12  
ISL21080  
Typical Performance Characteristics Curves T = +25°C unless otherwise specified.  
A
1.6  
1.6  
NO LOAD  
7mA  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
7mA  
NO LOAD  
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
(V)  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
(V)  
V
V
IN  
IN  
FIGURE 28. DROPOUT, ISL21080-10  
FIGURE 29. DROPOUT, ISL21080-12  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
NO LOAD  
7mA  
NO LOAD  
7mA  
3.0  
3.2  
3.4  
3.6  
(V)  
3.8  
4.0  
2.5  
2.7  
2.9  
3.1  
(V)  
3.3  
3.5  
V
V
IN  
IN  
FIGURE 31. DROPOUT, ISL21080-30  
FIGURE 30. DROPOUT, ISL21080-25  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
NO LOAD  
7mA  
NO LOAD  
7mA  
3.3  
3.5  
3.7  
3.9  
(V)  
4.1  
4.3  
4.5  
4.1  
4.3  
4.5  
V
4.7  
(V)  
4.9  
5.1  
V
IN  
IN  
FIGURE 33. DROPOUT, ISL21080-41  
FIGURE 32. DROPOUT, ISL21080-33  
FN6934.4  
May 25, 2010  
13  
ISL21080  
Typical Performance Characteristics Curves T = +25°C unless otherwise specified.  
A
5.3  
NO LOAD  
7mA  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
5.0  
5.2  
5.4  
5.6  
(V)  
5.8  
6.0  
V
IN  
FIGURE 34. DROPOUT, ISL21080-50  
High Current Application  
1.502  
1.500  
1.498  
1.496  
1.494  
1.492  
1.502  
V
= 5V  
IN  
V
= 5V  
IN  
1.500  
1.498  
1.496  
1.494  
1.492  
V
= 3.5V  
IN  
V
= 3.5V  
IN  
V
= 3.3V  
IN  
V
= 3.3V  
25  
IN  
35  
0
5
10  
15  
20  
(mA)  
30  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
LOAD  
LOAD  
FIGURE 35. DIFFERENT V  
AT ROOM TEMPERATURE  
FIGURE 36. DIFFERENT V  
AT HIGH TEMPERATURE  
IN  
IN  
(+85°C)  
output noise level and load regulation due to the MOS  
device characteristics. These limitations are addressed with  
circuit techniques discussed in other sections.  
Applications Information  
FGA Technology  
Board Assembly Considerations  
The ISL21080 series of voltage references use the  
floating gate technology to create references with very  
low drift and supply current. Essentially, the charge  
stored on a floating gate cell is set precisely in  
manufacturing. The reference voltage output itself is a  
buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics  
which are unique in the industry: very low temperature  
drift, high initial accuracy, and almost zero supply  
current. Also, the reference voltage itself is not limited by  
voltage bandgaps or zener settings, so a wide range of  
reference voltages can be programmed (standard  
voltage settings are provided, but customer-specific  
voltages are available).  
FGA references provide high accuracy and low  
temperature drift but some PC board assembly  
precautions are necessary. Normal Output voltage shifts  
of 100µV to 1mV can be expected with Pb-free reflow  
profiles or wave solder on multi-layer FR4 PC boards.  
Precautions should be taken to avoid excessive heat or  
extended exposure to high reflow or wave solder  
temperatures, this may reduce device initial accuracy.  
Post-assembly x-ray inspection may also lead to permanent  
changes in device output voltage and should be minimized  
or avoided. If x-ray inspection is required, it is advisable to  
monitor the reference output voltage to verify excessive  
shift has not occurred. If large amounts of shift are  
observed, it is best to add an X-ray shield consisting of thin  
zinc (300µm) sheeting to allow clear imaging, yet block  
x-ray energy that affects the FGA reference.  
The process used for these reference devices is a floating  
gate CMOS process, and the amplifier circuitry uses CMOS  
transistors for amplifier and output transistor circuitry.  
While providing excellent accuracy, there are limitations in  
FN6934.4  
May 25, 2010  
14  
ISL21080  
Special Applications Considerations  
TABLE 1. EXAMPLE OF BATTERY LIFE IN YEARS FOR  
ISL21080 IN VARIOUS POWER ON  
In addition to post-assembly examination, there are also  
other X-ray sources that may affect the FGA reference  
long term accuracy. Airport screening machines contain  
X-rays and will have a cumulative effect on the voltage  
reference output accuracy. Carry-on luggage screening  
uses low level X-rays and is not a major source of output  
voltage shift, however, if a product is expected to pass  
through that type of screening over 100 times, it may  
need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can  
cause output voltage shift in much fewer passes, thus  
devices expected to go through those machines should  
definitely consider shielding. Note that just two layers of  
1/2 ounce copper planes will reduce the received dose by  
over 90%. The leadframe for the device which is on the  
bottom also provides similar shielding.  
CONDITIONS WITH 1.5µA MAX CURRENT  
BATTERY RATING  
50%DUTY 10% DUTY  
(mAH)  
CONTINUOUS  
CYCLE  
CYCLE  
40  
3
6
30*  
225  
16.3*  
32.6*  
163*  
NOTE: *Typical Li-ion battery has a shelf life of up to 10 years.  
V
= +3.0V  
IN  
10µF  
0.01µF  
V
IN  
V
OUT  
ISL21080  
GND  
0.001µF TO 0.01µF  
If a device is expected to pass through luggage X-ray  
machines numerous times, it is advised to mount a  
2-layer (minimum) PC board on the top, and along with a  
ground plane underneath will effectively shield it from  
from 50 to 100 passes through the machine. Since these  
machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
REF IN  
ENABLE  
SCK  
SDAT  
SERIAL  
BUS  
12 TO 24-BIT  
A/D CONVERTER  
Nanopower Operation  
Reference devices achieve their highest accuracy when  
powered up continuously, and after initial stabilization  
has taken place. This drift can be eliminated by leaving  
the power on continuously.  
FIGURE 37. REFERENCE INPUT FOR ADC CONVERTER  
ISL21080 Used as a Low Cost Precision  
Current Source  
The ISL21080 is the first high precision voltage reference  
with ultra low power consumption that makes it possible to  
leave power on continuously in battery operated circuits.  
The ISL21080 consumes extremely low supply current due  
to the proprietary FGA technology. Supply current at room  
temperature is typically 350nA, which is 1 to 2 orders of  
magnitude lower than competitive devices. Application  
circuits using battery power will benefit greatly from having  
an accurate, stable reference, which essentially presents no  
load to the battery.  
Using an N-JET and a Nanopower voltage reference,  
ISL21080, a precision, low cost, high impedance current  
source can be created. The precision of the current  
source is largely dependent on the tempco and accuracy  
of the reference. The current setting resistor contributes  
less than 20% of the error.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board  
mounting location should be reviewed. Placing the device  
in areas subject to slight twisting can cause degradation  
of the accuracy of the reference voltage due to die  
stresses. It is normally best to place the device near the  
edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously,  
mounting the device on flexprint or extremely thin PC  
material will likewise cause loss of reference accuracy.  
In particular, battery powered data converter circuits that  
would normally require the entire circuit to be disabled  
when not in use can remain powered up between  
conversions as shown in Figure 37. Data acquisition  
circuits providing 12 bits to 24 bits of accuracy can  
operate with the reference device continuously biased  
with no power penalty, providing the highest accuracy  
and lowest possible long term drift.  
Other reference devices consuming higher supply currents  
will need to be disabled in between conversions to conserve  
battery capacity. Absolute accuracy will suffer as the device  
is biased and requires time to settle to its final value, or,  
may not actually settle to a final value as power on time  
may be short. Table 1 shows an example of battery life in  
years for ISL21080 in various power on condition with  
1.5µA maximum current consumption.  
FN6934.4  
May 25, 2010  
15  
ISL21080  
Turn-On Time  
V
OUT  
+8V TO 28V  
I
SET =  
The ISL21080 devices have ultra-low supply current and  
thus, the time to bias-up internal circuitry to final values  
will be longer than with higher power references. Normal  
turn-on time is typically 7ms. This is shown in Figure 38.  
Since devices can vary in supply current down to  
>300nA, turn-on time can last up to about 12ms. Care  
should be taken in system design to include this delay  
before measurements or conversions are started.  
R
SET  
I
= I  
SET +  
IR  
SET  
L
V
IN  
V
OUT  
R
SET  
0.01µF  
10kΩ  
0.1%  
10ppm/°C  
ISL21080-1.5  
Z
> 100MΩ  
OUT  
V
= 1.5V  
OUT  
Temperature Coefficient  
GND  
The limits stated for temperature coefficient (tempco)  
are governed by the method of measurement. The  
overwhelming standard for specifying the temperature  
drift of a reference, is to measure the reference voltage  
I
~ 0.31µA  
SY  
I
SET  
IL AT 0.1% ACCURACY  
~150.3µA  
at two temperatures, take the total variation, (V  
-
HIGH  
V
), and divide by the temperature extremes of  
FIGURE 38. ISL21080 USED AS A LOW COST  
PRECISION CURRENT SOURCE  
LOW  
measurement (T  
the nominal reference voltage (at T = +25°C) and  
multiplied by 10 to yield ppm/°C. This is the “Box”  
– T ). The result is divided by  
LOW  
HIGH  
6
Noise Performance and Reduction  
method for specifying temperature coefficient.  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
400  
typically 30µV . This is shown in the plot in the “Typical  
P-P  
CL = 0  
Performance Characteristics Curves” which begin on  
page 10. The noise measurement is made with a  
bandpass filter made of a 1 pole high-pass filter with a  
corner frequency at 0.1Hz and a 2-pole low-pass filter  
with a corner frequency at 12.6Hz to create a filter with a  
9.9Hz bandwidth. Noise in the 10kHz to 1MHz bandwidth  
CL = 0.001µF  
350  
300  
250  
200  
150  
100  
CL = 0.1µF  
CL = 0.01µF AND 10µF + 2kΩ  
is approximately 400µV  
output, as shown in Figure 39. These noise  
with no capacitance on the  
P-P  
measurements are made with a 2 decade bandpass filter  
made of a 1-pole high-pass filter with a corner frequency  
at 1/10 of the center frequency and 1-pole low-pass filter  
with a corner frequency at 10 times the center frequency.  
Figure 39 also shows the noise in the 10kHz to 1MHz  
50  
0
1
10  
100  
1k  
10k  
100k  
band can be reduced to about 50µV  
using a 0.001µF  
P-P  
capacitor on the output. Noise in the 1kHz to 100kHz  
band can be further reduced using a 0.1µF capacitor on  
the output, but noise in the 1Hz to 100Hz band increases  
due to instability of the very low power amplifier with a  
0.1µF capacitance load. For load capacitances above  
0.001µF, the noise reduction network shown in Figure 40  
is recommended. This network reduces noise  
FIGURE 39. NOISE REDUCTION  
V
= 3.0V  
0.1µF  
IN  
V
10µF  
IN  
V
O
ISL21080  
significantly over the full bandwidth. As shown in  
GND  
2kΩ  
Figure 39, noise is reduced to less than 40µV  
1Hz to 1MHz using this network with a 0.01µF capacitor  
from  
P-P  
0.01µF  
10µF  
and a 2kΩ resistor in series with a 10µF capacitor.  
FIGURE 40. NOISE REDUCTION NETWORK  
FN6934.4  
May 25, 2010  
16  
ISL21080  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
0.001µF  
OUT  
ISL21080  
GND  
FIGURE 41. PRECISION 2.5V 50mA REFERENCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21080  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
+
SDA  
SCL  
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 42. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL21080  
GND  
LOAD  
FIGURE 43. KELVIN SENSED LOAD  
FN6934.4  
May 25, 2010  
17  
ISL21080  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
5/12/10  
FN6934.4  
Changed Theta JA in the “Thermal Information” on page 3 from 170 to 275. Added Theta JC  
and applicable note.  
4/29/10  
FN6934.3  
Incorrect Thermal information, needs to be re-evaluated and added at a later date when the  
final data is available. Removed Theta JC and applicable note from “Thermal Information” on  
page 3.  
4/14/10  
4/6/10  
Corrected y axis label on Figure 9 from “V  
OUT  
(V)” to “V  
(µV)”  
OUT  
Source/sink for 0.9V option changed from 7mA to 10mA  
Line regulation condition for 0.9V changed from 2.7V to 2V  
Line regulation typical for 0.9V option changed from 10 to 30µV/V  
ΔT in Thermal Hysterisis conditions of 0.9V option changed from 165°C to 125°C  
A
Moved “Board Assembly Considerations” and “Special Applications Considerations” to page 14.  
Deleted “Handling and Board Mounting” section since “Board Assembly Considerations” on  
page 14 contains same discussion.  
Added “Special Note: Post-assembly x-ray inspection may lead to permanent changes in  
device output voltage and should be minimized or avoided.to “ISL21080” on page 1  
Figures 2 and 3 revised to show line regulation and Iin down to 2V.  
Figures 4 and 5 revised to show Vin down to 2V.  
Added “Initial accuracy can change 10mV or more under extreme radiation.to Note 8 on  
page 3.  
4/1/10  
1. page 3: Change Vin Min from 2.7 to 2.0  
2. page 3: Change Iin Typ from 0.31 to 0.35  
3. page 3: Change Line Reg Typ from 80 to 10  
4. page 3: Change Load Reg Condition from 7mA to 10mA and -7mA to -10mA  
5. page 3: Change Load Reg Typ for Source from 25 to 6 and Sink from 50 to 23.  
6. page 3: Change Isc Typ from 50 to 30  
7. page 3: Change tR from 4 to 1  
8. Change Ripple Rejection typ for all options from -30 to -40  
9. page 3: Change eN typ from 30 to 40V  
10. page 3: Change VN typ from 50 to 10V  
11. page 3: Change Noise Density typ from 1.1 to 2.2  
12. page 3: Change Long Term Stability from 50 to 60  
13. Added Figure 2 to 13 on page 8 to page 10 for 0.9V curves.  
14. Added Figure 28 to 34 on page 13 to page 14 for other options Dropout curve.  
15. page 1: Change Input Voltage Range for 0.9V option from TBD to 2V to 5.5V  
16. Added latch up to “Absolute Maximum Ratings” on page 3  
17. Added Junction Temperature to “Thermal Information” on page 3  
18. Added JEDEC standards used at the time of testing for “ESD Ratings” on page 3  
19. HBM in “Absolute Maximum Ratings” on page 3 changed from 5.5kV to 5kV  
20. Added Theta JC and applicable note.  
3/25/10  
Throughout- Converted to new format. Changes made as follows:  
Moved “Pin Configuration” and “Pin Descriptions” to page 2  
Added “Related Literature*(see page 20)” to page 1  
Added key selling feature graphic Figure 1 to page 1  
Added "Boldface limits apply..." note to common conditions of Electrical Specifications tables  
on page 3 through page 8. Bolded applicable specs. Added Note 12 to MIN MAX columns of all  
Electrical Specifications tables.  
Added ““Environmental Operating Conditions” to page 3 and added Note 4  
Added “The process used for these reference devices is a floating gate CMOS process, and the  
amplifier circuitry uses CMOS transistors for amplifier and output transistor circuitry. While  
providing excellent accuracy, there are limitations in output noise level and load regulation due  
to the MOS device characteristics. These limitations are addressed with circuit techniques  
discussed in other sections.on page 14  
FN6934.4  
May 25, 2010  
18  
ISL21080  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev. (Continued)  
DATE  
REVISION  
CHANGE  
10/14/09  
FN6934.2  
1. Removed "Coming Soon" on page 1 and 2 for -10, -20, -41, and -50 options.  
2. Page 1. Moved "ISL21080-50  
5.5V to 8.0V" from bullet to sub-bullet.  
3. Update package outline drawing P3.064 to most recent revision. Updates to package were  
to add land pattern and move dimensions from table onto drawing (no change to package  
dimensions)  
09/04/09  
FN6934.1  
Converted to new Intersil template. Added Revision History and Products Information.  
Updated Ordering Information to match Intrepid, numbered all notes and added Moisture  
Sensitivity Note with links. Moved Pin Descriptions to page 1 to follow pinout  
Changed in Features Section  
From: Reference Output Voltage  
To: Reference Output Voltage  
1.25V, 1.5V, 2.500V, 3.300V  
0.900V, 1.024V, 1.250V, 1.500V, 2.048V, 2.500V, 3.000V,  
3.300V, 4.096V, 5.000V  
From: Initial Accuracy: 1.5V  
To: Initial Accuracy:  
±0.5%  
ISL21080-09 and -10  
ISL21080-12  
ISL21080-15  
±0.7%  
±0.6%  
±0.5%  
±0.3%  
±0.2%  
ISL21080-20 and -25  
ISL21080-30, -33, -41, and -50  
FROM: Input Voltage Range  
ISL21080-12 (Coming Soon)  
ISL21080-15  
ISL21080-25 (Coming Soon)  
ISL21080-33 (Coming Soon)  
TO: Input Voltage Range:  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
3.5V to 5.5V  
ISL21080-09, -10, -12, -15, -20, and -25  
ISL21080-09, -10, and 20 (Coming Soon)  
ISL21080-30  
2.7V to 5.5V  
3.2V to 5.5V  
3.5V to 5.5V  
ISL21080-33  
ISL21080-41 (Coming Soon)  
Added: ISL21080-50 (Coming Soon)  
4.5V to 8.0V  
5.5V to 8.0V Output Voltage Noise  
30µVP-P (0.1Hz to 10Hz)  
Updated Electrical Spec Tables by Tables with Voltage References 9, 10, 12, 20, 25, 30, 33  
and 41.  
Added to Abs Max Ratings:  
VIN to GND (ISL21080-41 and 50 only  
VOUT to GND (10s)  
(ISL21080-41 and 50 only  
-0.5V to +10V  
-0.5V to +5.1V  
Changed Tja in Thermal information from "202.70" to "170" to match ASYD in Intrepid  
Added Note:  
Post-assembly x-ray inspection may also lead to permanent changes in device output voltage  
and should be minimized or avoided. Most inspection equipment will not affect the FGA  
reference voltage, but if x-ray inspection is required, it is advisable to monitor the reference  
output voltage to verify excessive shift has not occurred.  
Added Special Applications Considerations Section on page 12.  
07/28/09  
FN6934.0  
Initial Release.  
FN6934.4  
May 25, 2010  
19  
ISL21080  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL21080  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6934.4  
May 25, 2010  
20  
ISL21080  
Package Outline Drawing  
P3.064  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 2, 9/09  
4
2.92±0.12  
DETAIL "A"  
C
L
2.37±0.27  
1.30±0.10  
4
C
L
0.950  
0.435±0.065  
0.20 M C  
0 - 8 deg.  
TOP VIEW  
10° TYP  
(2 plcs)  
0.25  
0.91±0.03  
GAUGE PLANE  
1.00±0.12  
SEATING PLANE  
C
SEATING PLANE  
0.10 C  
0.31±0.10  
5
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Reference JEDEC TO-236.  
(1.25)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. Footlength is measured at reference to gauge plane.  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6934.4  
May 25, 2010  
21  

相关型号:

ISL21080DIH309Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080DIH310Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080DIH312Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080_09

300nA NanoPower Voltage References
INTERSIL

ISL21080_10

300nA NanoPower Voltage References
INTERSIL

ISL21090

Ultra Low Noise, Precision Voltage Reference Output Current Capability 20mA
INTERSIL

ISL21090AFB825Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090B

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL21090BFB812Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090BFB812Z-TK_13

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090BFB825Z-TK

Ultra Low Noise, Precision Voltage Reference Output Current Capability 20mA
INTERSIL

ISL21090BFB850Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL