ISL21400IU8Z-TK [INTERSIL]

Programmable Temperature Slope Voltage Reference; 可编程温度斜率电压基准
ISL21400IU8Z-TK
型号: ISL21400IU8Z-TK
厂家: Intersil    Intersil
描述:

Programmable Temperature Slope Voltage Reference
可编程温度斜率电压基准

光电二极管
文件: 总17页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL21400  
®
Data Sheet  
December 14, 2006  
FN8091.0  
Programmable Temperature Slope  
Voltage Reference  
Features  
• Programmable reference voltage  
• Programmable temperature slope  
• Programmable Gain Amplifier  
The ISL21400 features a precision voltage reference  
combined with a temperature sensor whose output voltage  
varies linearly with temperature. The precision 1.20V  
reference has a very low temperature coefficient (tempco),  
and its output voltage is scaled by an internal DAC (V  
produce a temperature stable output voltage that is  
• Non-volatile storage of programming registers  
) to  
REF  
2
• I C serial interface  
programmable from 0V to 1.20V. The output voltage from the  
• 2% total accuracy over temperature and V  
• 200µA typical active supply current  
range  
CC  
temperature sensor (V ) is summed with V  
to produce  
TS  
REF  
a temperature dependent output voltage.  
• Operating temperature range = -40°C to +85°C  
• 8 Ld MSOP package  
The slope of the V portion of the output voltage can be  
TS  
programmed to be positive or negative in the range  
-2.1mV/°C to +2.1mV/°C. A programmable gain amplifier  
Applications  
(PGA) sums the V and the V  
voltages and provides  
TS  
REF  
gains of 1x, 2x, and 4x to scale the output up to 4.8V and the  
slope to ±8.4mV/°C.  
• RF power amplifier bias compensation  
• LCD bias compensation  
• Laser diode bias compensation  
• Sensor bias and linearization  
• Data acquisition systems  
• Variable DAC reference  
• Amplifier biasing  
The V  
REF  
and V terms are programmable with 8 bits of  
TS  
2
resolution via an I C bus and the values are stored in non-  
volatile registers. The PGA gain is also set via the I C bus  
2
and the value is stored in a non-volatile register. Non-volatile  
memory storage assures the programmed settings are  
retained on power-down, eliminating the need for software  
initialization at device power-up.  
Temperature Characteristics Curve  
Pinout  
3.0  
ISL21400  
(8 LD MSOP)  
TOP VIEW  
A
= 2  
V
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TS = 127  
= 1  
TS = 255  
TS = 255  
V
V
A2  
1
8
CC  
TS = 0  
TS = 0  
A
V
A1  
A0  
2
3
7
6
OUT  
SDA  
SCL  
TS = 127  
V
SS  
4
5
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Ordering Information  
V
RANGE  
(V)  
TEMP RANGE  
(°C)  
DD  
PART NUMBER (Note)  
ISL21400IU8Z  
PART MARKING  
DEW  
PACKAGE  
PKG. DWG. #  
M8.118  
M8.118  
2.7 to 5.5  
2.7 to 5.5  
-40 to +85  
-40 to +85  
8 Ld MSOP (Pb-free)  
8 Ld MSOP (Pb-free)  
ISL21400IU8Z-TK  
DEW  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination  
finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL21400  
Pin Description  
MSOP  
SYMBOL  
DESCRIPTION  
2
1
2
3
4
5
6
7
8
A2  
A1  
A0  
Hardwire slave address pin for I C serial bus  
2
Hardwire slave address pin for I C serial bus  
2
Hardwire slave address pin for I C serial bus  
V
Ground pin  
SS  
SCL  
SDA  
Serial bus clock input  
Serial bus data input/output  
Output voltage  
VOUT  
V
Device power supply  
CC  
Block Diagram  
VCC  
TEMP  
SENSE  
V
(n)  
TS  
DAC  
V
A
Σ
OUT  
V
(m)  
REF  
DAC  
V
GAIN  
REF  
SELECT  
AV = 1,2,4  
BIAS  
SCL  
SDA  
EEPROM  
8x8  
COMMUNICATIONS  
AND  
REGISTERS  
n = 0 to 255  
m = 0 to 255  
VSS  
A0  
A1  
A2  
FN8091.0  
December 14, 2006  
2
ISL21400  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to 6.5V  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Thermal Resistance (Typical, Note 15)  
θ
JA (°C/ W)  
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . .  
Moisture Sensitivity for MSOP Package  
(See Technical Brief TB363) . . . . . . . . . . . . . . . . . . . . . . . Level 2  
Maximum Junction Temperature (Plastic Package). . . . . . . . +150°C  
130  
Voltage on V  
Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to V  
OUT  
CC  
Voltage on All Other Pins . . . . . . . . . . . . . . . . . .-0.3V to V +0.3V  
CC  
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . .+300°C  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200V  
Recommended Operating Conditions  
Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Analog Specifications  
V
= 5.5V, T = 25°C to +85°C, unless otherwise noted  
CC A  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
(Note 2)  
MAX  
UNITS  
POWER SUPPLY  
V
Supply Voltage Range  
Supply  
2.7  
3.0  
5.5  
V
CC  
I
Q
V
V
= 2.7V  
= 5.5V  
Standby, SDA = SCL = V  
200  
235  
400  
500  
µA  
µA  
CC  
CC  
CC  
Standby, SDA = SCL = V  
CC  
I
Non-Volatile Supply  
Q(NV)  
Vpor  
V
V
= 2.7V  
= 5.5V  
Nonvolatile write  
Nonvolatile write  
500  
1.3  
750  
1.6  
2.6  
µA  
mA  
V
CC  
CC  
Power-on Recall Voltage  
2.0  
0.2  
Minimum V  
occurs  
at which memory recall  
CC  
V
V
Ramp Rate  
CC  
V/ms  
ms  
CC  
Ramp  
t
Power-Up Delay  
above Vpor, time delay to Register  
3
D
V
CC  
recall, and I C Interface in standby state  
2
OUTPUT VOLTAGE PERFORMANCE SPECIFICATIONS  
G
G
Gain Error  
A
= 2 (Notes 1, 3, 12)  
A = 4 (Notes 1, 3, 12)  
V
-1  
-1  
+1  
+1  
%
%
E1  
E2  
V
Gain Error  
K
Temperature Sensor Coefficient  
(Notes 1, 8)  
-2.2  
-2.1  
-2.0  
mV/°C  
V
Absolute Output Voltage (Swing) Range Unloaded, T = +25°C (Note 3)  
V
-
GND +  
0.100  
A
CC  
0.100  
Absolute Output Voltage (Swing) Range Loaded, I  
= ±500µA (Note 3)  
V
0.250  
-
GND +  
0.250  
V
OUT  
CC  
TS1  
TS2  
TS3  
TS4  
Temperature Sensor Slope  
A
= 1, n = 255, m = 255 (Notes 1, 6)  
= 2, n = 255, m = 255 (Notes 1, 6)  
= 4, n = 255, m = 255 (Notes 1, 6)  
= 1, n = 255, m = 0 to 255 (Notes 1, 10)  
-2.1  
-4.2  
-8.4  
8.2  
mV/°C  
mV/°C  
mV/°C  
V
Temperature Sensor Slope  
A
V
Temperature Sensor Slope  
A
V
Incremental Temperature Sensor Slope  
A
μV/°C  
V
per Code  
TSNL Temperature Slope Non-Linearity  
n = 255, m = 0 to 255, T = -40°C to +85°C  
(Notes 1, 11)  
±0.5  
±1.0  
%
DNL  
INL  
DAC Relative Linearity (V  
CC  
=2.7 to 5.5V) V  
and Temp Sense; A = 1 (Note 13)  
-1.0  
-3.0  
+1.0  
+3.0  
LSB  
LSB  
REF  
V
DAC Absolute Linearity (V = 2.7 to 5.5V) V  
CC  
and Temp Sense; A = 1 (Note 13)  
V
REF  
FN8091.0  
December 14, 2006  
3
ISL21400  
Analog Specifications  
V
= 5.5V, T = 25°C to +85°C, unless otherwise noted  
A
CC  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Notes 1, 8, 9)  
= 1, n = 255, m = 128, T = +25°C,  
MIN  
(Note 2)  
MAX  
±2  
UNITS  
V
Total Error for V  
±1  
%
V
OUT(TE)  
OUT  
V
V
V
Output Voltage V  
, Gain = 1  
REF  
A
1.189  
2.378  
4.756  
1.2  
1.211  
OUT1  
OUT2  
OUT3  
V
A
V
= 5.5V  
CC  
Output Voltage V  
Output Voltage V  
, Gain = 2  
REF  
A
= 2, n = 255, m = 128, T = +25°C,  
2.40  
4.80  
2.422  
4.844  
V
V
V
A
V
= 5.5V  
CC  
A = 4, n = 255, m = 128, T = +25°C,  
V
, Gain = 4  
REF  
A
V
= 5.5V  
CC  
V
V
Output Voltage V  
Output Voltage V  
+ TS  
+ TS  
A
= 1, n = 255, m = 0, T = +85°C (Note 3)  
1.315  
1.188  
1.326  
1.199  
1.337  
1.210  
V
V
OUT4  
OUT5  
REF  
REF  
V
A
A
= 1, n = 255, m = 128, T = +85°C  
A
V
(Note 3)  
V
Output Voltage V  
+ TS  
A
= 1, n = 255, m = 255, T = +85°C  
1.063  
1.074  
1.085  
V
OUT6  
REF  
V
A
(Note 3)  
V
V
Output Voltage V  
Output Voltage V  
+ TS  
+ TS  
A = 1, n = 255, m = 0, T = -40°C, (Note 3)  
1.052  
1.189  
1.063  
1.200  
1.074  
1.211  
V
V
OUT7  
OUT8  
REF  
REF  
V
A
A
= 1, n = 255, m = 128, T = -40°C,  
A
V
(Note 3)  
V
Output Voltage V  
+ TS  
A
= 1, n = 255, m = 255, T = -40°C,  
1.336  
50  
1.325  
1.347  
V
OUT9  
REF  
V
A
(Note 3)  
OUTPUT VOLTAGE DC SPECIFICATIONS  
PSRR Power Supply Rejection Ratio  
A
= 1, n = 255, m = 128, (Note 7)  
60  
2
dB  
V
R
Output Impedance (load regulation)  
Given by R  
= (ΔV  
/ΔI  
OUT OUT  
) ,  
5
Ω
OUT  
OUT  
= +25°C, I  
T
= ±500µA  
A
OUT  
I
Short Circuit, Sourcing  
Short Circuit, Sinking  
Load Capacitance  
V
= 5.5V, V  
= 5.5V, V  
= 0V  
5
6
5
9
9
mA  
mA  
nF  
SC  
CC  
CC  
OUT  
OUT  
V
= 5.5V  
C
Reference output stable for all C up to  
L
L
specifications  
OUTPUT VOLTAGE AC SPECIFICATIONS  
V
Output Voltage Noise  
0.1Hz to 10Hz, A =1  
90  
TBD  
500  
60  
µV  
p-p  
N
V
10Hz to 10kHz, C = 0, A = 1  
mV  
RMS  
L
V
Power On Response  
Line Ripple Rejection  
1% Settling  
= 5V ±100mV, f = 120Hz  
µs  
V
dB  
CC  
Serial Interface Specification (for SCL, SDA, A0, A1, A2 unless specified otherwise)  
TYP  
SYMBOL  
PARAMETER  
Input Leakage  
TEST CONDITIONS  
= GND to V  
MIN  
(Note 2)  
MAX  
UNITS  
I
V
1
V
V
V
V
LI  
IN  
CC  
V
Input LOW Voltage  
Input HIGH Voltage  
-0.3  
0.3 x V  
IL  
CC  
V
0.7 x V  
V
+ 0.3  
CC  
IH  
CC  
Hysteresis SDA and SCL Input Buffer  
Hysteresis  
0.05 x V  
CC  
V
C
SDA Output Buffer LOW Voltage  
Pin Capacitance  
I
= 3mA  
0
0.4  
V
OL  
OL  
(Note 3)  
(Note 3)  
10  
pF  
pin  
f
SCL Frequency  
400  
kHz  
SCL  
FN8091.0  
December 14, 2006  
4
ISL21400  
Serial Interface Specification (for SCL, SDA, A0, A1, A2 unless specified otherwise) (Continued)  
TYP  
(Note 2)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNITS  
t
Pulse Width Suppression Time at  
SDA and SCL Inputs  
Any pulse narrower than the  
max spec is suppressed  
(Note 3)  
50  
ns  
sp  
t
SCL Falling Edge to SDA Output  
Data Valid  
SCL falling edge crossing  
900  
ns  
ns  
AA  
30% of V , until SDA exits  
CC  
the 30% to 70% of V  
window (Note 3)  
CC  
t
Time the Bus Must be Free Before SDA crossing 70% of V  
the Start of a New Transmission  
1300  
BUF  
CC  
during a STOP condition, to  
SDA crossing 70% of V  
CC  
during the following START  
condition (Note 3)  
t
Clock LOW Time  
Measured at the 30% of V  
crossing (Note 3)  
1300  
600  
ns  
ns  
ns  
LOW  
CC  
CC  
t
Clock HIGH Time  
Measured at the 70% of V  
crossing (Note 3)  
HIGH  
t
START Condition Setup Time  
SCL rising edge to SDA  
600  
SU:STA  
falling edge; both crossing  
70% of V (Note 3)  
CC  
From SDA falling edge  
crossing 30% of V to SCL  
t
t
START Condition Hold Time  
Input Data Setup Time  
600  
100  
0
ns  
ns  
ns  
ns  
HD:STA  
CC  
falling edge crossing 70% of  
(Note 3)  
V
CC  
From SDA exiting the 30% to  
70% of V window, to SCL  
SU:DAT  
HD:DAT  
SU:STO  
HD:STO  
CC  
rising edge crossing 30% of  
(Note 3)  
V
CC  
From SCL rising edge  
crossing 70% of V to SDA  
t
Input Data Hold Time  
CC  
entering the 30% to 70% of  
window (Note 3)  
V
CC  
t
STOP Condition Setup Time  
From SCL rising edge  
crossing 70% of V , to SDA  
CC  
rising edge crossing 30% of  
600  
V
(Note 3)  
CC  
t
STOP Condition Hold Time for  
Read, or Volatile Only Write  
From SDA rising edge to SCL  
falling edge; both crossing  
1300  
0
ns  
ns  
70% of V  
(Note 3)  
CC  
t
Output Data Hold Time  
From SCL falling edge  
DH  
crossing 30% of V , until  
CC  
SDA enters the 30% to 70%  
of V  
window (Note 3)  
CC  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
From 30% to 70% of V  
(Note 3)  
20 +  
0.1 x Cb  
250  
250  
400  
ns  
ns  
pF  
R
CC  
t
From 70% to 30% of V  
(Note 3)  
20 +  
0.1 x Cb  
F
CC  
Cb  
Capacitive Loading of SDA or SCL Total on-chip and off-chip  
(Note 4)  
10  
FN8091.0  
December 14, 2006  
5
ISL21400  
Serial Interface Specification (for SCL, SDA, A0, A1, A2 unless specified otherwise) (Continued)  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
(Note 2)  
MAX  
UNITS  
Rpu  
SDA and SCL Bus Pull-up Resistor Maximumisdetermined byt  
1
kΩ  
R
Off-chip  
and t  
F
For Cb = 400pF, max is about  
2~2.5kΩ  
For Cb = 40pF, max is about  
15~20kΩ  
I
Output Leakage Current (SDA only) V  
= GND to V  
CC  
1
µA  
V
LO  
OUT  
V
A1, A0, SHDN, SDA, and SCL Input  
Buffer LOW Voltage  
-0.3  
V
x 0.3  
CC  
IL  
V
A1, A0, SHDN, SDA, and SCL Input  
Buffer HIGH Voltage  
V
x 0.7  
V
V
V
IH  
CC  
CC  
V
SDA Output Buffer LOW Voltage  
I
= 100µA (Note 3), at 3mA  
0
0.4  
OL  
OL  
sink  
C
Capacitive Loading of SDA or SCL Total on-chip and off-chip  
(Note 3)  
10  
400  
pF  
L
EEPROM Endurance  
1,000,000  
50  
Cycles  
Years  
ms  
EEPROM Retention  
Temperature T +55°C  
t
Non-Volatile Write Cycle Time  
12  
20  
WC  
(Note 14)  
Timing Diagrams  
Bus Timing  
t
sp  
t
t
t
t
t
F
HIGH  
LOW  
R
HD:STO  
SCL  
t
SU:DAT  
t
t
t
SU:STO  
SU:STA  
HD:DAT  
t
HD:STA  
SDA  
(INPUT TIMING)  
t
t
t
BUF  
AA  
DH  
SDA  
(OUTPUT TIMING)  
Write Cycle Timing  
SCL  
8th BIT OF LAST BYTE  
ACK  
SDA  
t
WC  
STOP  
CONDITION  
START  
CONDITION  
NOTES:  
1. Equation 1 governs the output voltage and is stated as follows:  
n
255  
(2 m)255  
---------  
--------------------------------  
, n = 0 to 255, m = 0 to 255, K = -2.1mV/C(typ), T0 = +25°C  
V
= A  
V
+ K(T T )  
OUT  
V
REF  
0
255  
2. Typical values are for T = +25°C and V  
A
= 5.5V.  
CC  
FN8091.0  
December 14, 2006  
6
ISL21400  
3. This parameter is not 100% tested.  
4. Cb = total capacitance of one bus line in pF.  
5. t  
is the time from a valid stop condition at the end of a write sequence to the end of the self-timed internal nonvolatile write cycle. It is the  
WC  
minimum cycle time to be allowed for any nonvolatile write by the user.  
6. Over the specified temperature range. Temperature slope (TS) is measured by the box method whereby the change in V  
is divided by the  
OUT  
temperature range; in this case, -40°C to +85°C = +125°C. TS , TS , TS =.  
1
2
3
V
(Tmin) V  
(Tmax)  
OUT  
OUT  
-------------------------------------------------------------------------------  
TS =  
Tmin Tmax  
7. Given by PSRR (dB) = 20 * log (ΔVout/ΔV ) at DC.  
10 CC  
8. Test +25°C and +85°C only.  
9. Total error of Equation 1 @ A =1, K = -2.1mV/°C, V  
= 1.20V, m = 255, n = 255 to 0, V  
CC  
= 3.0V  
x100%  
V
REF  
V
(measured) V  
(Equation1)  
OUT  
OUT  
------------------------------------------------------------------------------------------------------------  
V
(TE) =  
OUT  
V
(Equation1)  
OUT  
10. Over the specified temperature range. Temperature slope (TS) is measured by the box method whereby the change in V  
is divided by the  
temperature range. Incremental TS is the temperature slope at m = 255 minus the temperature slope at m = 0 divided by 255 with A = 1, n = 255  
OUT  
V
V
(Tmin) V  
(Tmax)  
V
(Tmin) V  
(Tmax)  
OUT  
OUT  
OUT  
OUT  
-------------------------------------------------------------------------------  
(Tmin Tmax)  
-------------------------------------------------------------------------------  
TS4 =  
÷ 255  
(Tmin Tmax)  
m = 255  
m = 0  
11. Temperature Slope Non- linearity is measured over the specified temperature range. The actual change in output voltage is subtracted from the  
expected change in output voltage, and then divided by the expected change to normalize before converting to percent.  
(TS T)) ΔVOUT  
y
---------------------------------------------------------  
TSNL =  
x100%; y = 1, 2, 3  
TS × ΔT  
y
12. For codes n = 8 to 255  
13. Guaranteed monotonic  
2
14. t  
is the time from a valid STOP condition at the end of a Write sequence of I C serial interface, to the end of the self-timed internal nonvolatile  
WC  
write cycle.  
15. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Typical Performance Curves  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
A
= 2  
V
A
= 4  
V
TS = 127  
= 1  
TS = 255  
TS = 255  
TS = 0  
TS = 0  
A
V
TS = 127  
TS = 255  
TS = 0  
TS = 127  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 1. V  
vs TEMPERATURE (A = 1, 2)  
V
FIGURE 2. V  
vs TEMPERATURE (A = 4)  
OUT V  
OUT  
FN8091.0  
December 14, 2006  
7
ISL21400  
Typical Performance Curves (Continued)  
1.22  
0.4  
0.35  
0.3  
VREF REGISTER = 255d  
TS REGISTER = 127d  
VREF REGISTER = 255d  
TS REGISTER = 127d  
+85°C  
1.21  
+25°C  
0.25  
0.2  
1.20  
1.19  
1.18  
-4×C  
-40°C  
0.15  
0.1  
0.05  
0
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
2
3
4
5
6
7
V
V
(V)  
CC  
CC  
FIGURE 3. V  
vs V  
(V  
CC CC  
= +2.7V to +5.5V)  
FIGURE 4. SUPPLY VOLTAGE vs SUPPLY CURRENT  
OUT  
NO LOAD  
= 1  
NO LOAD  
= 4  
A
V
A
V
100µV/DIV (V  
x 1000)  
OUT  
50µV/DIV (V  
x 1000)  
OUT  
FIGURE 5. V  
VOLTAGE NOISE (A = 1, NO LOAD)  
V
FIGURE 6. V  
VOLTAGE NOISE (A = 4, NO LOAD)  
OUT V  
OUT  
1.22  
CH1 = V  
CC  
1.21  
1.20  
1.19  
CH2 = V  
OUT  
VREF REGISTER = 255d  
TS REGISTER = 127d  
1.18  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 7. ACCURACY vs TEMPERATURE (-40°C TO +85°C)  
FIGURE 8. POWER ON  
FN8091.0  
December 14, 2006  
8
ISL21400  
Typical Performance Curves (Continued)  
3
2
1
0
1.0  
0.8  
AT +25°C  
0.6  
0.4  
0.2  
0.0  
AT +25°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255  
0
15 30 45 60 75 90 105120135150165180195210225240255  
CODE  
CODE  
FIGURE 9. INL, V  
AND TEMP SLOPE DAC  
FIGURE 10. DNL, V  
AND TEMP SLOPE DAC  
REF  
REF  
1.4  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
At +25°C  
TS REGISTER = 127d  
VREF REGISTER = 255d  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
+85°C  
-40°C  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255  
REGISTER CODE (m)  
0
15 30 45 60 75 90 10512013515 0165180195210225240255  
TS REGISTER CODE (n)  
V
REF  
FIGURE 11. V  
vs V  
CODE (m)  
REF  
FIGURE 12. V  
OUT  
vs TEMP SENSE CODE (n), T = -40°C AND  
A
OUT  
+85°C  
1.209  
1.208  
1.207  
1.206  
1.205  
1.204  
1.203  
1.202  
1.201  
1.2  
VREF REGISTER = 255d  
TS REGISTER = 127d  
At +25°C  
-1  
-0.5  
0
0.5  
1
I
(mA)  
OUT  
FIGURE 13. V  
vs I  
(±1mA)  
OUT  
OUT  
FN8091.0  
December 14, 2006  
9
ISL21400  
Reference Sections  
Referring to the Block Diagram on page 2, the V  
Pin Descriptions  
and  
REF  
V
OUT  
Temperature Sense (V ) outputs are summed together (Σ)  
TS  
Programmable voltage output pin. Absolute voltage is  
determined by device temperature and Equation 1. Drive  
capability is limited to ±500μA output current and 5000pF  
output capacitance.  
and then passed through the output gain stage (A). The  
voltage output is programmable and is determined by the  
following equation:  
n
255  
(2 m)255  
(EQ. 1)  
---------  
--------------------------------  
+ V  
TS  
V
= A  
V
OUT  
V
REF  
A2, A1, A0  
255  
Hardware slave address pins that can be used to provide  
several ISL21400 with a unique physical address to allow for  
multiple devices off one I C bus.  
where  
• A = 1, 2, 4  
2
V
GND  
• V  
REF  
= 1.200 (not temperature dependent)  
This is the circuit ground pin. It is common for the V  
control signal inputs.  
and  
OUT  
• 0 n 255 (setting contained in Register 0, V  
REF  
)
• V = K(T-T )  
TS  
0
SDA  
• K = dV / dT = -2.1mV/C  
TS  
Serial Data Input/Output. Bidirectional pin used for serial  
data transfer. As an output, it is open drain and may be  
wire-ored with any number of open drain or open collector  
outputs. A pullup resistor is required and the value is  
dependent on the speed of the serial data bus and the  
number of outputs tied together.  
• T = device temperature  
• T = +25°C  
0
• 0 m 255 (setting contained in Register 1, TS)  
See the Applications Information for ways to use Equation 1  
and methods for output voltage calculations.  
SCL  
Serial Clock Input. Accepts a clock signal for clocking serial  
data into and out of the device. The SCL line requires a  
pullup resistor whose value is dependent on the speed of the  
serial clock bus and the number of inputs tied together.  
DACs Section  
The ISL21400 contains two 8-bit DACs whose registers can  
be programmed via the I C serial bus. The DAC registers  
are non-volatile such that the values are restored during the  
2
V
power-up cycle of the device. One DAC (V  
)is  
REF  
CC  
dedicated to scale the bandgap voltage reference  
(Temperature invariant) and the other DAC (V ) is  
V
CC  
Positive Power Supply. Connect to a voltage supply in the  
TS  
range of 2.7V<V <5.5V, with minimum noise and ripple. For  
best performance, bypass with a 0.1µF capacitor to ground.  
If the A gain is set to 4 and V  
CC  
dedicated to scale the Temperature Sensor. Both of these  
DACs can determine the output voltage as defined by  
Equation 1 (See Register Information).  
approaches 5.0V, then  
must be set to >5.2V for best output performance.  
V
OUT  
V
CC  
Output Gain Amplifier Section  
Functional Description  
The ISL21400 contains an output gain amplifier (A) that is  
2
programmed via the I C serial bus. The gain amplifier is the  
Functional Overview  
last stage before the output and therefore controls the  
overall gain for the device. The gain can be programmed for  
1x, 2x, or 4x amplification. This gain factor is used to  
program the output voltage as determined by Equation 1  
(See Register Description).  
Refer to the Functional Block Diagram on page 2. The  
ISL21400 provides a programmable output voltage which  
combines both a temperature independent term and a  
temperature dependent term. The temperature independent  
term uses a bandgap voltage reference, and the  
temperature dependent term uses a Proportional To  
Absolute Temperature (PTAT) reference, or Temperature  
Sensor. Each voltage source is scalable using two DACs via  
There are 5 registers in the ISL21400 device, all nonvolatile  
(see Table 2). All registers are accessible for reading or  
writing through the I C serial bus.  
2
2
the I C serial bus. The resulting output voltage can vary from  
0V to over 5V and has a variable, programmable  
Temperature Slope (TS).  
FN8091.0  
December 14, 2006  
10  
ISL21400  
Register Descriptions  
TABLE 1. ISL21400 REGISTER BIT MAP  
D7  
D0  
Addr  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
(LSB)  
0
1
2
3
4
V
7
V
6
V
5
V
4
V
3
V
2
V
1
V
0
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
TS7  
D7  
TS6  
D6  
TS5  
D5  
TS4  
D4  
TS3  
D3  
TS2  
D2  
TS1  
TS0  
GAIN1  
D1  
GAIN0  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
and the resulting output gain. Note that two states produce  
the same gain (Gain 1:0 set to 01b and 10b) of x2.  
TABLE 2. REGISTER DESCRIPTIONS  
REG  
NONVOLATILE  
DESCRIPTION  
Reference setting  
The other 6 bits in the register can be used for general  
purpose memory (nonvolatile) or left alone.  
0
1
2
3
4
Y
Y
Y
Y
Y
Temperature Sensor setting  
Gain and storage  
Storage  
Registers 3 and 4: general purpose data  
(nonvolatile)  
These two registers are one byte each and can be used for  
general purpose nonvolatile memory.  
Storage  
2
Register 0: Bandgap Reference Gain (Nonvolatile)  
I C Serial Interface  
Register 0 sets the output voltage of the bandgap reference  
The ISL21400 supports a bidirectional bus oriented protocol.  
The protocol defines any device that sends data onto the  
bus as a transmitter and the receiving device as the receiver.  
The device controlling the transfer is the master and the  
device being controlled is the slave. The master always  
initiates data transfers and provides the clock for both  
transmit and receive operations. Therefore, the ISL21400  
operates as a slave device in all applications.  
(V  
). Referring to Equation 1, the number “n” is the setting  
REF  
from Register 0 as follows:  
n
---------  
, for n=0 to 255  
V
REF  
255  
This term of Equation 1 can vary from 0 to 1.20V.  
Register 1: Temperature Slope Gain (Nonvolatile)  
2
All communication over the I C interface is conducted by  
Register 1 sets the Temperature Slope (TS) of the  
temperature sensor. Referring to Equation 1, the number “m”  
is the setting from Register 1 as follows:  
sending the MSB of each byte of data first.  
Protocol Conventions  
Data states on the SDA line can change only during SCL  
LOW periods. SDA state changes during SCL HIGH are  
reserved for indicating START and STOP conditions (See  
Figure 10). On power-up of the ISL21400 the SDA pin is in  
the input mode.  
(2 m)255  
--------------------------------  
V
TS  
255  
V
is the temperature dependent term and varies from  
TS  
+136mV at -40°C to -126mV at +85°C. The other term varies  
from -1 to +1 and scales the temperature term before adding  
2
All I C interface operations must begin with a START  
to the V  
portion.  
REF  
condition, which is a HIGH to LOW transition of SDA while  
SCL is HIGH. The ISL21400 continuously monitors the SDA  
and SCL lines for the START condition and does not  
respond to any command until this condition is met (See  
Figure 10). A START condition is ignored during the power-  
up sequence and during non-volatile write cycles for the  
device.  
Register 2: Device Gain and Storage (nonvolatile)  
TABLE 3. REGISTER 2 OUTPUT GAIN (NONVOLATILE):  
OUTPUT GAIN  
GAIN1  
GAIN0  
OUTPUT GAIN, A  
V
0
0
1
1
0
1
0
1
x 1  
x 2  
x 2  
x 4  
2
All I C interface operations must be terminated by a STOP  
condition, which is a LOW to HIGH transition of SDA while  
SCL is HIGH (See Figure 10) A STOP condition at the end of  
a read operation, or at the end of a write operation places  
the device in its standby mode. A STOP condition at the end  
of a write operation to a non-volatile byte initiates an internal  
Register 2 contains 2 bits (2 LSB’s) which control the output  
gain of the device. Table 3 shows the state of these two bits  
FN8091.0  
December 14, 2006  
11  
ISL21400  
non-volatile write cycle. The device enters its standby state  
when the internal, non-volatile write cycle is completed.  
Read Operation  
A Current Address Read operation is shown in Figure 13. It  
consists of a minimum 2 bytes: a START followed by the ID  
byte from the master with the R/W bit set to 1, then an ACK  
followed by the data byte or bytes sent by the slave. The  
master terminates the Read operation by not responding  
with an ACK and then issuing a STOP condition. This  
operation is useful if the master knows the current address  
and desires to read one or more data bytes.  
An ACK, Acknowledge, is a software convention used to  
indicate a successful data transfer. The transmitting device,  
either master or slave, releases the SDA bus after  
transmitting eight bits. During the ninth clock cycle, the  
receiver pulls the SDA line LOW to acknowledge the  
reception of the eight bits of data (See Figure 11).  
The ISL21400 responds with an ACK after recognition of a  
START condition followed by a valid Identification Byte, and  
once again after successful receipt of an Address Byte. The  
ISL21400 also responds with an ACK after receiving a Data  
Byte of a write operation. The master must respond with an  
ACK after receiving a Data Byte of a read operation.  
A Random Address Read operation consists of a three byte  
“dummy write” instruction followed by a Current Address  
Read operation (See Figure 14). The master initiates the  
operation issuing the following sequence: a START, the  
identification byte with the R/W bit set to "0", an Address  
Byte, a second START, and a second Identification byte with  
the R/W bit set to "1". After each of the three bytes, the  
ISL21400 responds with an ACK. The ISL21400 then  
transmits Data Bytes as long as the master responds with an  
ACK during the SCL cycle following the eighth bit of each  
byte. The master terminates the Read operation (issuing a  
STOP condition) following the last bit of the last Data Byte  
(See Figure 13).  
A valid Identification Byte contains 0101 A2 A1 A0 as the  
seven MSBs. The A2 A1 A0 bits must correspond to the  
logic levels at those pins of the ISL21400 device. The LSB in  
the Read/Write bit. Its value is “1” for a Read operation, and  
“0” for a Write operation (See Table 4)  
Write Operation  
TABLE 4. IDENTIFICATION BYTE FORMAT  
The Data Bytes are from the registers indicated by an  
internal pointer. This pointer initial’s value is determined by  
the Address Byte in the Read operation instruction, and  
increments by one during transmission of each Data Byte.  
Address 04h is the last valid data byte, higher addresses are  
not available. Data from addresses higher than memory  
location 04h will be invalid.  
0
1
0
1
A2  
A1  
A0  
R/W  
(MSB)  
(LSB)  
A Write operation requires a START condition, followed by a  
valid Identification Byte, a valid Address Byte, a Data Byte,  
and a STOP condition. After each of the three bytes, the  
ISL21400 responds with an ACK. The master will then send  
a STOP and at this time the device begins its internal non-  
volatile write cycle. During this time, the device ignores  
transitions at the SDA and SCL pins, and the SDA output is  
at a high impedance state. When the internal non-volatile  
write cycle is completed, the ISL21400 enters its standby  
state (see Figure 12).  
STOP conditions that terminate write operations must be  
sent by the master after sending at least 1 full data byte and  
its associated ACK signal. If a STOP byte is issued in the  
middle of a data byte, or before 1 full data byte + ACK is  
sent, then the ISL21400 resets itself without performing the  
write. The contents of the array are not affected.  
Data Protection  
A valid Identification Byte, Address Byte, and total number of  
SCL pulses act as a protection for the registers. A STOP  
condition also acts as a protection for non-volatile memory.  
During a Write sequence, the Data Byte is loaded into an  
internal shift register as it is received. The presence of the  
STOP condition after the rest of the bits are received then  
triggers the non-volatile write.  
FN8091.0  
December 14, 2006  
12  
ISL21400  
SCL  
SDA  
START  
DATA  
STABLE  
DATA  
CHANGE STABLE  
DATA  
STOP  
FIGURE 14. VALID DATA CHANGES, START AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH  
HIGH  
SDA OUTPUT  
FROM RECEIVER  
START  
ACK  
FIGURE 15. ACKNOWLEDGE RESPONSE FROM RECEIVER  
WRITE  
S
T
A
SIGNALS FROM THE  
S
T
O
P
IDENTIFICATION  
BYTE WITH R/W = 0  
MASTER  
ADDRESS  
BYTE  
DATA  
BYTE  
R
T
SIGNAL AT SDA  
0 1 0 1  
A2 A1 A0  
0
0 0 0 0 0  
SIGNALS FROM THE  
ISL21400  
A
C
K
A
C
K
A
C
K
FIGURE 16. BYTE WRITE SEQUENCE  
READ  
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH R/W = 1  
SIGNAL AT SDA  
0 1 0 1 A2 A1 A0  
1
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ DATA  
BYTE  
LAST READ DATA  
BYTE  
FIGURE 17. ADDRESS READ SEQUENCE  
S
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
T
A
R
T
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH R/W = 0  
IDENTIFICATION  
BYTE WITH R/W = 1  
ADDRESS  
BYTE  
0 1 0 1  
A
A
A 0  
0 0 0 0 0  
0 1 0 1 A A A 1  
SIGNAL AT SDA  
A
C
K
A
C
K
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ  
DATA BYTE  
LAST READ  
DATA BYTE  
FIGURE 18. RANDOM ADDRESS READ SEQUENCE  
FN8091.0  
December 14, 2006  
13  
ISL21400  
with V  
= 5.5V). The Resolution of V  
(DC) control  
OUT  
Applications Information  
CC  
changes with A , so that with a 4.80V full scale output  
V
Power-Up Considerations  
(A = 4), the resolution is 4.80/255 or 18.8mV/bit. With  
V
The ISL21400 has on-chip EEPROM memory storage for  
the DAC and gain settings of the device. These settings  
must be recalled correctly on power-up for proper operation.  
Normally there are no issues with recall, although it is always  
best to provide a smooth, glitch-free power-up waveform on  
A = 1, the resolution is 4.7mV/bit.  
V
TEMP SENSE CONTROL DISCUSSION  
The equation above yields this expression, Equation 3, for  
Temp Slope:  
V
. Adding a small 0.1μF capacitor at the device V  
will  
CC  
CC  
V
(TS) = A V A  
V TS TS  
(EQ. 3)  
OUT  
help with power-up as well as V  
load changes.  
OUT  
Noise Performance  
Since V = K(T-T ), the slope term is dependent on the  
TS  
0
base temp slope of the device, K (-2.1mV/°C), and the gain  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
terms A and A . This gives a formula for the portion of  
typically 90µV . The noise measurement is made with a  
V
TS  
P-P  
V
at a specific temperature:  
bandpass filter made of a 1 pole high-pass filter with a corner  
frequency at 0.1Hz and a 2-pole low-pass filter with a corner  
frequency at 12.6Hz to create a filter with a 9.9Hz  
OUT  
V
(TS)= A K A • (T T )  
(EQ. 4)  
OUT  
V
TS  
0
bandwidth. Load capacitance up to 5000pF can be added  
but will result in only marginal improvements in output noise  
and transient response. The output stage of the ISL21400 is  
not designed to drive heavily capacitive loads. For high  
impedance loads, an R-C network can be added to filter high  
frequency noise and preserve DC control.  
The product A *A ranges from -4 to 4, so the Temperature  
TS  
V
Slope can range from -8.4 to +8.4mV/°C, which is  
independent of the output DC voltage. The resolution of  
Slope control is determined by this range (±8.4mV/°C) and  
the gain terms, and will vary from 65.8μV/°C/bit (A = 4)  
V
down to 16.2μV/°C/bit (A = 1).  
V
Output Voltage Programming Considerations  
At T = T = +25°C, V  
OUT  
(TS) = zero, no changes in A will  
TS  
0
Setting and controlling the output voltage of the ISL21400  
can be done easily by breaking down the components into  
temperature variant and invariant, and setting them  
separately. Let’s use Equation (1) above to derive separate  
Reference Output and Output Temp Slope equations:  
cause a change in V  
, and V will only vary with the  
OUT OUT  
V
(DC) control. As temperature increases or decreases,  
OUT  
from T = +25°C, V  
will then change according to the  
OUT  
programmed Temp Slope.  
In many cases a form of Equation 4 is needed which yields a  
n
255  
(2 m) 255  
---------  
----------------------------------  
V
change with respect to temperature. By rearranging,  
V
=
A
V  
+
A V  
V
OUT  
we get:  
OUT  
V
REF  
TS  
255  
= {A V  
A  
} + {A V A } ,Eq. 2  
REF V TS  
TS  
V
REF  
V
(TS)  
OUT  
----------------------------  
V
(T)=  
= A K A  
,(in mV/°C)  
TS  
(EQ. 5)  
Reference Term  
+ Temp Slope Term  
OUT  
V
(T T )  
0
The first term controls the output DC value, and the second  
term controls the Temp slope, where  
EXAMPLE 1: PROGRAMMED TEMPERATURE  
COMPENSATION EXAMPLE  
n
255  
---------  
(ranges from 0 to 1)  
A
A
=
The ISL21400 can easily compensate for known  
REF  
temperature drift by programming the device for the initial  
setting and Tempco using standard equations and  
(2 m) 255  
----------------------------------  
=
(ranges from -1 to +1)  
V
OUT  
TS  
255  
some simple steps. The accuracy of the final programmed  
output will be limited to the data sheet specs (typically 1%  
DC OUTPUT CONTROL DISCUSSION  
accuracy for V  
OUT  
and Slope).  
The equation above yields this expression, Equation 2, for  
Reference output:  
In this example, an N-channel MOSFET gate has a  
-2.8mV/°C Tempco from -10°C to +85°C. A constant bias  
drain current is desired, with a target Vgs range derived from  
the data sheet of 2.5V to 3.5V at +25°C.  
V
(DC) = A V  
A  
REF REF  
(EQ. 2)  
OUT  
V
Note that the DC term is dependent on the 1.20V reference  
voltage, which is constant, the overall gain, A , and the  
Offset Setting: Using Equation 2 and targeting  
V
V
= 3.0VDC,  
OUT  
Reference gain, A  
. Since the product A * A ranges  
REF  
V
REF  
V
(DC)= (A V  
A  
) = 3.00V  
REF  
from 0 to 4, the total reference DC output can range from  
OUT  
V
REF  
V
= 1.20V  
A = 2.50  
OS  
0.0V to 4.8V. In order to get the 4.8V output, V must be  
CC  
greater than 4.8V by the output dropout plus any overhead  
REF  
A
V
for output loading (the specification for V  
= 5.0V is listed  
OUT  
FN8091.0  
December 14, 2006  
14  
ISL21400  
Note that A  
REF  
varies from 0 to 1, so to get 2.40, A = 4.  
V
Also, to solve for overall temp slope of the output:  
2.50  
4
n
255  
6
0.8812mV ⁄ °C  
872.5mV  
-----------  
---------  
A(REF) =  
= 0.625 =  
---------------------------------------  
10 = 1010ppm ⁄ °C  
n = 159 decimal  
= 9F hex  
Note that Equation 1 can be used directly to solve for output  
voltage at a given temperature, in this case +85°C:  
Temperature Slope Setting: Using Equation 5, which can  
solve for Slope directly:  
n
255  
(2 m)255  
---------  
--------------------------------  
V
= A  
V
+ K(T T )  
OUT  
V
REF  
0
255  
V
A
(TS)= A K A  
= –2.8mV ⁄ °C  
PTAT  
OUT  
V
178  
255  
(2 74)255  
---------  
---------------------------------  
V
(85°C) = 1 1.20 •  
+ (0.0021)(85 25)  
OUT  
2.8  
4 2.1  
255  
--------------------  
=
PTAT  
= 0.8905V  
(2 m) 255  
----------------------------------  
= 0.333 =  
A
PTAT  
255  
Typical Applications Circuits  
m = 170 decimal  
= A9 hex  
LDMOS RF Power Amplifier (RFPA). The ISL21400 is used  
to set the gate bias for the LDMOS transistor in a single  
stage of an RFPA. Normally this is done with a DAC or digital  
potentiometer with some discrete temperature  
The ISL21400 device can be programmed with these  
calculated parameters and perform temperature  
compensation circuitry. The ISL21400 simplifies this control  
and allows a full range of DC bias and tempco control.  
compensation or direct control in the target circuit. If  
parameters change for some reason, then the device can be  
reprogrammed with new values and the circuit retested.  
A typical circuit can be calibrated for correct bias at room  
temperature (+25°C) on power-up using a microcontroller or  
EXAMPLE 2. CALCULATING THE V  
SLOPE  
TEMPERATURE  
OUT  
2
direct I C control. The temperature of the unit can then be  
increased to the highest operating range, and the  
Temperature Slope setting can then be adjusted to bring the  
amplifier back to correct bias. Since the Temp Slope setting  
has a negligible effect on the room temperature setting, the  
amplifier will be biased correctly over the operating  
temperature of the unit.  
In some applications, it may be desirable to calculate what  
the output voltage and temp slope are, given the  
programmed register settings. Such an application could be  
a closed loop system with internal calibration procedure. By  
reading the registers of the ISL21400, then calculating the  
V
parameters, the system characteristics can be  
OUT  
recorded.  
For the example below, let’s determine the voltage output,  
V
(DC) at +25°C, and also the change due to  
OUT  
temperature variation (ppm) from +25°C to +85°C.  
Equations 2 and 5 above will be used to calculate the  
answers.  
Given, the contents of the registers:  
A = 1  
V
n = 178 decimal  
m = 74 decimal  
Using Equation 2:  
V
(DC)= (A V  
A  
)
REF  
OUT  
V
REF  
178  
---------  
=
1 1.20 •  
255  
= 0.8376V  
Using Equation 5:  
V
(T) = (A K A ) mV ⁄ °C  
V TS  
OUT  
(2 74) 255  
------------------------------------  
= 1 2.1 •  
255  
= 0.8812mV ⁄ °C  
FN8091.0  
December 14, 2006  
15  
ISL21400  
+28V  
U2  
1
2
3
IN OUT  
GND  
+28V  
+5V REGULATOR  
8
7
4
5
6
1
2
2
VCC  
SCL  
SDA  
I C BUS  
R1  
1k  
R2  
A0  
A1  
A2  
VOUT  
GND  
L1  
100  
C1  
3
100pF  
ISL21400  
RF OUTPUT  
Q1  
LDMOS  
C2  
RF INPUT  
FIGURE 19. LDMOS RFPA BIAS CONTROL  
FN8091.0  
December 14, 2006  
16  
ISL21400  
Mini Small Outline Plastic Packages (MSOP)  
N
M8.118 (JEDEC MO-187AA)  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.25  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.36  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.010  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.014  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.026 BSC  
0.65 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
0.95 REF  
-
0.10 (0.004)  
-A-  
C
C
b
8
8
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
0
-
o
o
o
o
5
15  
5
15  
-
a
SIDE VIEW  
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 2 01/03  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (0.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
to be determined at Datum plane  
-A -  
10. Datums  
and  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8091.0  
December 14, 2006  
17  

相关型号:

ISL21440

Micropower Voltage Reference with Comparator
INTERSIL

ISL21440IRTZ

Micropower Voltage Reference with Comparator
INTERSIL

ISL21440IRTZ-T13

Micropower Voltage Reference with Comparator
INTERSIL

ISL21440IRTZ-T7

Analog Circuit
RENESAS

ISL21440IUZ

Micropower Voltage Reference with Comparator
INTERSIL

ISL21440IUZ-T13

Micropower Voltage Reference with Comparator
INTERSIL

ISL21440IUZ-T7

Analog Circuit
RENESAS

ISL21440_11

Micropower Voltage Reference with Comparator
INTERSIL

ISL22102

32 Tap, Push-button, Dual Audio Logarithmic Potentiometer with Buffer Amplifiers and Audio Detection
INTERSIL

ISL22102IR20Z

32 Tap, Push-button, Dual Audio Logarithmic Potentiometer with Buffer Amplifiers and Audio Detection
INTERSIL

ISL22102IV20Z

32 Tap, Push-button, Dual Audio Logarithmic Potentiometer with Buffer Amplifiers and Audio Detection
INTERSIL

ISL22313

Single Digitally Controlled Potentiometer XDCP
INTERSIL