ISL28127FUZ [INTERSIL]

Precision Single and Dual Low Noise Operational Amplifiers; 单精度和双低噪声运算放大器
ISL28127FUZ
型号: ISL28127FUZ
厂家: Intersil    Intersil
描述:

Precision Single and Dual Low Noise Operational Amplifiers
单精度和双低噪声运算放大器

运算放大器 光电二极管
文件: 总23页 (文件大小:1800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Single and Dual Low Noise Operational  
Amplifiers  
ISL28127, ISL28227  
Features  
• Very Low Voltage Noise. . . . . . . . . . . . .2.5nV/Hz  
• Low Input Offset . . . . . . . . . . . . . . . 70µV, Max.  
• Superb Offset Drift . . . . . . . . . . . 0.5µV/°C, Max.  
• Input Bias Current . . . . . . . . . . . . . . 10nA, Max.  
• Wide Supply Range. . . . . . . . . . . . . . 4.5V to 40V  
• Gain-bandwidth Product .10MHz Unity Gain Stable  
• No Phase Reversal  
The ISL28127 and ISL28227 are very high precision  
amplifiers featuring very low noise, low offset voltage,  
low input bias current and low temperature drift making  
them the ideal choice for applications requiring both high  
DC accuracy and AC performance. The combination of  
precision, low noise, and small footprint provides the  
user with outstanding value and flexibility relative to  
similar competitive parts.  
Applications for these amplifiers include precision active  
filters, medical and analytical instrumentation, precision  
power supply controls, and industrial controls.  
Applications*(see page 20)  
• Precision Instruments  
• Medical Instrumentation  
• Industrial Controls  
• Active Filter Blocks  
• Data Acquisition  
The ISL28127 single and ISL28227 dual are available in  
an 8 Ld SOIC, TDFN and MSOP packages. All devices are  
offered in standard pin configurations and operate over  
the extended temperature range to -40°C to +125°C.  
• Power Supply Control  
Related Literature*(see page 20)  
AN1508: ISL281X7SOICEVAL1Z Evaluation Board  
User’s Guide  
Typical Application  
Input Noise Voltage Spectral  
Density  
C
1
100  
VS = ±19V  
AV = 1  
1.5nF  
V
+
-
10  
OUTPUT  
R
R
V
2
1
IN  
+
95.3  
232  
68.3nF  
C
2
V
-
1
0.1  
Sallen-Key Low Pass Filter (1MHz)  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
March 18, 2010  
FN6633.3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL28127, ISL28227  
.
Ordering Information  
PART NUMBER  
(Notes 3, 4)  
PART  
MARKING  
VOS (MAX)  
(µV)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL28127FBZ (Note 1)  
28127 FBZ  
70  
8 Ld SOIC  
M8.15E  
Coming Soon  
TBD (B Grade)  
ISL28127FRTBZ (Note 2)  
127Z  
8 Ld TDFN  
L8.3x3A  
L8.3x3A  
Coming Soon  
ISL28127FRTZ (Note 2)  
150 (C Grade)  
TBD (B Grade)  
-C 127Z  
8 Ld TDFN  
Coming Soon  
ISL28127FUBZ (Note 2)  
8127Z  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOIC  
M8.118  
M8.118  
M8.15E  
ISL28127FUZ (Note 2)  
ISL28227FBZ (Note 2)  
8127Z -C  
28227 FBZ  
150 (C Grade)  
75  
Coming Soon  
TBD (B Grade)  
ISL28227FRTBZ (Note 2)  
227Z  
8 Ld TDFN  
8 Ld TDFN  
8 Ld MSOP  
8 Ld MSOP  
L8.3x3A  
L8.3x3A  
M8.118  
M8.118  
Coming Soon  
ISL28227FRTZ (Note 2)  
150 (C Grade)  
TBD (B Grade)  
150 (C Grade)  
-C 227Z  
8227Z  
Coming Soon  
ISL28227FUBZ (Note 2)  
Coming Soon  
ISL28227FUZ (Note 2)  
8227Z -C  
ISL28127SOICEVAL1Z  
Evaluation Board  
1. Add “-T7” or “-T13” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. Add “-T13” suffix for tape and reel.Please refer to TB347 for details on reel specifications.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL28127, ISL28227. For more information on  
MSL please see techbrief TB363.  
FN6633.3  
March 18, 2010  
2
ISL28127, ISL28227  
Pin Configurations  
ISL28127  
(8 LD SOIC, MSOP)  
TOP VIEW  
ISL28227  
(8 LD SOIC, MSOP)  
TOP VIEW  
NC  
-IN_A  
+IN_A  
V -  
1
2
3
4
8
7
6
5
NC  
V+  
V
A
1
2
3
4
8
7
6
5
V+  
OUT  
-IN_A  
+IN_A  
V -  
V
B
- +  
OUT  
- +  
V
A
-IN_B  
OUT  
+ -  
NC  
+IN_B  
ISL28127  
(8 LD TDFN)  
TOP VIEW  
ISL28227  
(8 LD TDFN)  
TOP VIEW  
V _A  
OUT  
V+  
8
NC  
NC  
V+  
1
1
8
-IN_A  
V
_B  
OUT  
-IN  
2
3
7
6
2
3
7
6
- +  
- +  
+IN_A  
-IN_B  
+IN  
VOUT  
+ -  
PD  
PD  
V- 4  
5 +IN_B  
V- 4  
5 NC  
Pin Descriptions  
ISL28127  
ISL28227  
(8 LD SOIC,  
ISL28127 (8 LD SOIC, ISL28227  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
8 LD MSOP) (8 LD TDFN) 8 LD MSOP) (8 LD TDFN)  
DESCRIPTION  
Amplifier non-inverting input  
Amplifier A non-inverting input  
Negative power supply  
Amplifier B non-inverting input  
Amplifier inverting input  
Amplifier B inverting input  
Amplifier output  
3
+IN  
+IN_A  
V-  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 2  
Circuit 3  
Circuit 2  
Circuit 1  
-
3
4
3
4
5
3
4
5
4
2
6
7
+IN_B  
-IN  
6
6
-IN_B  
VOUT  
7
8
1
2
7
8
1
2
V
OUTB  
V+  
Amplifier B output  
7
Positive power supply  
6
2
V
OUTA  
Amplifier A output  
-IN_A  
NC  
Amplifier A inverting input  
1, 5, 8  
1, 5, 8  
PD  
Not Connected – This pin is not  
electrically connected internally.  
PD  
-
Thermal Pad. Pad should be  
connecte to lowest potential source  
in the circuit.  
V+  
V-  
V+  
V+  
OUT  
V-  
CAPACITIVELY  
TRIGGERED  
ESD CLAMP  
IN-  
IN+  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6633.3  
March 18, 2010  
3
ISL28127, ISL28227  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Differential Input Current . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . .0.5V  
Min/Max Input Voltage . . . . . . . . . . .V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for  
Input Voltage >V+ or <V- . . . . . . . . . . . . . . . . . .±20mA  
Output Short-Circuit Duration  
(1 Output at a Time) . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Tolerance  
Human Body Model (Tested per JESD22-A114F)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0kV  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0kV  
Machine Model (Tested per EIA/JESD22-A115-A). . . . 500V  
Charged Device Model (Tested per JESD22-C101D) . . 1.5kV  
Di-electrically Isolated PR40 process. . . . . . . . Latch-up free  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
θ
JC (°C/W)  
8 Ld SOIC (Note 5, 7)  
ISL28127 . . . . . . . . . . . . . . . . .  
ISL28227 . . . . . . . . . . . . . . . . .  
8 Ld TDFN (Notes 5, 6)  
ISL28127 . . . . . . . . . . . . . . . . .  
ISL28227 . . . . . . . . . . . . . . . . .  
8 Ld MSOP (Note 5, 7)  
ISL28127 . . . . . . . . . . . . . . . . .  
ISL28227 . . . . . . . . . . . . . . . . .  
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
120  
110  
60  
55  
48  
47  
7
6
155  
150  
50  
45  
Operating Conditions  
Ambient Operating Temperature Range . . . -40°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . +150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
7. For θJC, the “case temp” location is taken at the package top center.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless  
otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits  
apply over the operating temperature range, -40°C to +125°C. Temperature data  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
ISL28127  
(Note 8)  
TYP  
10  
-
(Note 8)  
UNIT  
µV  
VOS  
Offset Voltage; SOIC Package  
-70  
-120  
-75  
70  
120  
75  
µV  
ISL28227  
10  
-
µV  
-150  
-150  
-250  
150  
150  
250  
µV  
Offset Voltage;  
MSOP, TDFN Grade C Package  
ISL28127  
ISL28227  
10  
-
µV  
µV  
TCVOS  
Offset Voltage Drift;  
SOIC Pacakge  
ISL28127  
ISL28227  
-0.5  
-0.75  
-1  
0.1  
0.1  
0.1  
0.5  
0.75  
1
µV/°C  
µV/°C  
µV/°C  
Offset Voltage Drift;  
MSOP, TDFN, Grade C  
ISL28127  
ISL28227  
IOS  
Input Offset Current  
-10  
-12  
-10  
-12  
-13  
-12  
115  
115  
1
10  
12  
10  
12  
13  
12  
-
nA  
nA  
nA  
nA  
V
-
1
IB  
Input Bias Current  
-
VCM  
CMRR  
Input Voltage Range  
Guaranteed by CMRR  
-
-
V
Common-Mode Rejection Ratio  
VCM = -13V to +13V  
120  
-
dB  
dB  
VCM = -12V to +12V  
-
FN6633.3  
March 18, 2010  
4
ISL28127, ISL28227  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits  
apply over the operating temperature range, -40°C to +125°C. Temperature data  
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
(Note 8)  
TYP  
125  
-
(Note 8)  
UNIT  
dB  
PSRR  
Power Supply Rejection Ratio  
ISL28127  
115  
115  
110  
-
-
-
-
-
dB  
Power Supply Rejection Ratio  
ISL28227  
117  
-
dB  
110  
1000  
dB  
AVOL  
VOH  
Open-Loop Gain  
VO = -13V to +13V  
RL = 10kΩ to ground  
1500  
V/mV  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
13.5  
13.65  
-
-
V
V
13.2  
-
13.4  
13.5  
-
V
13.1  
-
-
V
VOL  
Output Voltage Low  
-
-13.65  
-13.5  
-13.2  
-13.4  
-13.1  
2.8  
3.7  
-
V
-
-
-13.5  
-
V
-
V
-
V
IS  
Supply Current/Amplifier  
-
2.2  
-
mA  
mA  
mA  
V
-
-
ISC  
Short-Circuit  
RL = 0Ω to ground  
±45  
-
VSUPPLY  
Supply Voltage Range  
Guaranteed by PSRR  
±2.25  
±20  
AC SPECIFICATIONS  
GBW  
enp-p  
en  
Gain Bandwidth Product  
10  
85  
MHz  
nVP-P  
Voltage Noise  
0.1Hz to 10Hz  
f = 10Hz  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
3
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
%
en  
f = 100Hz  
f = 1kHz  
2.8  
en  
2.5  
en  
f = 10kHz  
f = 10kHz  
2.5  
in  
0.4  
THD + N  
Total Harmonic Distortion +  
Noise  
1kHz, G = 1, VO = 3.5VRMS  
RL = 2kΩ  
,
0.00022  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩ, VO = 4VP-P  
AV = -1, VOUT = 100mVP-P  
±3.6  
36  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
AV = -1 VOUT = 10VP-P  
Rg = Rf =10k, RL = 2kΩ to VCM  
AV = -1, VOUT = 10VP-P  
L = 2kΩ to VCM  
Fall Time  
90% to 10% of VOUT  
,
38  
3.4  
3.8  
1.7  
ns  
µs  
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
,
Settling Time to 0.01%  
10V Step; 10% to VOUT  
,
R
tOL  
Output Overload Recovery Time AV = 100, VIN = 0.2V  
RL = 2kΩ to VCM  
FN6633.3  
March 18, 2010  
5
ISL28127, ISL28227  
Electrical Specifications VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over  
the operating temperature range, -40°C to +125°C. Temperature data established  
by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
(Note 8)  
TYP  
10  
-
(Note 8)  
UNIT  
µV  
VOS  
-70  
70  
-120  
120  
µV  
V
OS/T  
Offset Voltage Drift  
Input Offset Current  
-0.5  
-10  
-12  
10  
0.1  
1
-
0.5  
10  
12  
10  
12  
3
µV/°C  
nA  
nA  
nA  
nA  
V
IOS  
IB  
1
-
Input Bias Current  
-12  
-3  
VCM  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR  
-
-2  
-
2
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
CM = -3V to +3V  
115  
120  
-
-
dB  
dB  
VCM = -2V to +2V  
115  
-
VS = ±2.25V to ±5V  
115  
125  
-
-
-
dB  
dB  
VS = ±3V to ±5V  
115  
AVOL  
VOH  
Open-Loop Gain  
VO = -3V to +3V  
RL = 10kΩ to ground  
1000  
1500  
-
V/mV  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
3.5  
3.65  
-
-
V
V
3.2  
-
3.5  
-
3.4  
-
3.1  
-
V
V
V
VOL  
Output Voltage Low  
-
-
-
-
-
-
-
-3.65  
-
-3.5  
-3.2  
-3.4  
-3.1  
2.8  
3.7  
-
-3.5  
-
V
IS  
Supply Current/Amplifier  
Short-Circuit  
2.2  
-
mA  
mA  
mA  
ISC  
± 45  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
10  
MHz  
%
THD + N  
Total Harmonic Distortion +  
Noise  
1kHz, G = 1, Vo = 2.5VRMS  
RL = 2kΩ  
,
0.0034  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩOH  
±3.6  
36  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
Fall Time  
90% to 10% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
38  
1.6  
4.2  
ns  
µs  
µs  
ts  
Settling Time to 0.1%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Settling Time to 0.01%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
NOTE:  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
FN6633.3  
March 18, 2010  
6
ISL28127, ISL28227  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise  
specified.  
100  
100  
80  
VS = ±19V  
60  
40  
AV = 1  
20  
0
10  
-20  
-40  
-60  
-80  
-100  
V
= 38V  
+
L
R = 10k  
C = 3.5pF  
L
R = 10, R = 100k  
g
V
f
A
= 10,000  
1
0.1  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
10k  
100k  
TIME (s)  
FREQUENCY (Hz)  
FIGURE 1. INPUT NOISE VOLTAGE 0.1Hz to 10Hz  
FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL  
DENSITY  
130  
120  
110  
100  
90  
100  
PSRR+ and PSRR- V = ±5V  
VS = ±19V  
AV = 1  
S
R = INF  
L
10  
1
80  
70  
60  
50  
C = 5.25pF  
L
A
= +1  
V
S
V
= 1V  
P-P  
40 PSRR+ and PSRR- V = ±15V  
S
30  
20  
10  
0
-10  
0.1  
10M  
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. PSRR vs FREQUENCY, VS = ±5V, ±15V  
FIGURE 3. INPUT NOISE CURRENT SPECTRAL  
DENSITY  
25  
20  
130  
120  
110  
100  
90  
80  
70  
60  
50  
VS = ±5V  
MEDIAN  
VS = ±2.25V  
15  
VS = ±21V  
10  
5
VS = ±15V  
VS = ±15V  
0
40  
30  
20  
10  
-5  
RL = INF  
VS = ±3V  
CL = 5.25pF  
-10  
VS = ±5V  
AV = +1  
-15  
VCM = 1VP-P  
0
36 UNITS  
-20  
-10  
-40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 5. CMRR vs FREQUENCY, VS = ±2.25, ±5V,  
±15V  
FIGURE 6. VOS vs TEMPERATURE vs VSUPPLY  
FN6633.3  
March 18, 2010  
7
ISL28127, ISL28227  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise  
specified. (Continued)  
3.0  
4.5  
50 UNITS  
50 UNITS  
MEDIAN  
IBIAS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MEDIAN  
-
IBIAS+  
IBIAS  
+
IBIAS  
-
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. IIB vs TEMPERATURE, VS = ±15V  
FIGURE 8. IIB vs TEMPERATURE, VS = ±5V  
60  
0.5  
29 UNITS  
vs = ±5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
AVERAGE  
40  
50 UNITS  
20  
+25°C  
vs = ±15  
0
+125°C  
MEDIAN  
-20  
-40°C  
-40  
-60  
-15  
-10  
-5  
0
5
10  
15  
-40  
-20  
0
20  
40  
60  
80  
100 120  
INPUT COMMON MODE VOLTAGE  
TEMPERATURE (°C)  
FIGURE 10. INPUT OFFSET VOLTAGE vs INPUT  
COMMON MODE VOLTAGE, VS = ±15V  
FIGURE 9. IOS vs TEMPERATURE vs SUPPLY  
-13.1  
14.2  
50 UNITS  
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
-14.2  
MEDIAN  
RL = 2k  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
50 UNITS  
MEDIAN  
RL = 100k  
RL = 100k  
RL = 2k  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 12. VOL vs TEMPERATURE, VS = ±15V  
FIGURE 11. VOH vs TEMPERATURE, VS = ±15V  
FN6633.3  
March 18, 2010  
8
ISL28127, ISL28227  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise  
specified. (Continued)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
20  
40  
20  
GAIN  
GAIN  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
RL = 10k  
RL = 10k  
CL = 100pF  
SIMULATION  
CL = 10pF  
SIMULATION  
0.1m1m 10m100m 1 10 100 1k 10k100k1M10M100M  
FREQUENCY (Hz)  
0.1m1m 10m100m 1 10 100 1k 10k100k1M10M100M  
FREQUENCY (Hz)  
FIGURE 14. OPEN-LOOP GAIN, PHASE vs  
FIGURE 13. OPEN-LOOP GAIN, PHASE vs  
FREQUENCY, RL = 10kΩ, CL = 100pF  
FREQUENCY, RL = 10kΩ, CL = 10pF  
70  
15  
Rf = Rg = 100k  
AV = 1000  
AV = 100  
Rg = 100, Rf = 100k  
Rg = 1k, Rf = 100k  
13  
60  
50  
40  
30  
20  
10  
0
Rf = Rg = 10k  
11  
Rf = Rg = 1k  
9
VS = ±15V  
CL = 3.5pF  
RL = INF  
7
5
VOUT = 100mVP-P  
AV = 10  
3
1
VS = ±15V  
L = 10k  
Rf = Rg = 100  
R
Rg = 10k, Rf = 100k  
AV = 1  
CL = 3.5pF  
-1  
-3  
-5  
AV = +2  
VOUT = 100mVP-P  
Rg = OPEN, Rf = 0  
1k  
10k  
-10  
100  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. FREQUENCY RESPONSE vs CLOSED LOOP  
GAIN  
FIGURE 16. FREQUENCY RESPONSE vs FEEDBACK  
RESISTANCE Rf/Rg  
2
7
RL = 10k  
VS = ±15V  
6
1
RL = 10k  
5
RL = 1k  
AV = +1  
CL = 1000pF  
CL = 220pF  
0
VOUT = 100mVP-P  
4
3
-1  
RL = 499  
CL = 100pF  
CL = 25.5pF  
2
-2  
-3  
-4  
-5  
RL = 100  
RL = 49.9  
1
VS = ±15V  
CL = 3.5pF  
0
-1  
-2  
-3  
AV = +1  
CL = 3.5pF  
VOUT = 100mVP-P  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. GAIN vs FREQUENCY vs CL  
FIGURE 17. GAIN vs FREQUENCY vs RL  
FN6633.3  
March 18, 2010  
9
ISL28127, ISL28227  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise  
specified. (Continued)  
1
6
5
VS = ±2.25V  
4
VS = ±15V  
CL = 3.5pF  
AV = 1  
0
-1  
-2  
-3  
3
2
Rf = 0 Rg = inf  
1
VS = ±5V  
VS = ±15V  
VOUT = 10VP-P  
0
1
CL = 3.5pF  
-2  
-3  
-4  
-5  
-6  
RL = 2k  
RL = 10k  
RL = 10k  
AV = +1  
VOUT = 100mVP-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
0
5
10  
15  
20  
25  
30  
TIME (µs)  
FIGURE 20. LARGE SIGNAL 10V STEP RESPONSE,  
VS = ±15V  
FIGURE 19. GAIN vs FREQUENCY vs SUPPLY  
VOLTAGE  
2.4  
2.0  
1.6  
80  
60  
40  
1.2  
VS = ±15V, RL = 2k, 10k  
0.8  
0.4  
0
20  
0
VS = ±5V, ±15V  
-0.4  
VS = ±5V, RL = 2k, 10k  
20  
40  
60  
80  
-0.8  
RL = 2k  
CL = 3.5pF  
AV = 1  
-1.2  
CL = 3.5pF  
AV = 1  
VOUT = 4VP-P  
-1.6  
VOUT = 100mVP-P  
-2.0  
-2.4  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (ms)  
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (µs)  
FIGURE 21. LARGE SIGNAL TRANSIENT RESPONSE vs  
RL VS = ±5V, ±15V  
FIGURE 22. SMALL SIGNAL TRANSIENT RESPONSE,  
VS = ±5V, ±15V  
0.26  
0.22  
0.08  
0.04  
0.10  
0.06  
0.02  
-0.02  
-0.06  
2
0.06  
0.02  
15  
13  
11  
9
OUTPUT  
0
-2  
INPUT  
-0.02  
-0.06  
-0.10  
-0.14  
-0.18  
-0.20  
-0.26  
VS = ±15V  
RL = 10k  
CL = 3.5pF  
V = 100  
Rf = 100k, Rg = 1k  
VIN = 200mVP-P  
-4  
VS = ±15V  
L = 10k  
L = 3.5pF  
V = 100  
Rf = 100k, Rg = 1k  
IN = 200mVP-P  
R
C
A
A
-6  
7
-8  
5
V
-10  
-12  
INPUT  
3
1
OUTPUT  
25  
-14  
40  
-1  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
30  
35  
40  
TIME (µs)  
TIME (µs)  
FIGURE 24. NEGATIVE OUTPUT OVERLOAD  
RESPONSE TIME, VS = ±15V  
FIGURE 23. POSITIVE OUTPUT OVERLOAD  
RESPONSE TIME, VS = ±15V  
FN6633.3  
March 18, 2010  
10  
ISL28127, ISL28227  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise  
specified. (Continued)  
90  
80  
VS = ±15V  
RL = 10k  
70  
60  
50  
40  
30  
20  
10  
0
AV = 1  
VOUT = 100mVP-P  
10  
100  
1000  
10000  
CAPACITANCE (pF)  
FIGURE 25. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±15V  
For unity gain applications (see Figure 26) where the  
Applications Information  
Functional Description  
output is connected directly to the non-inverting input a  
current limiting resistor (RIN) will be needed under the  
following conditions to protect the anti-parallel  
differential input protection diodes.  
The ISL28127 and ISL28227 are single and dual, low  
noise 10MHz BW precision op amps. Both devices are  
fabricated in a new precision 40V complementary bipolar  
DI process. A super-beta NPN input stage with input bias  
current cancellation provides low input bias current (1nA  
typical), low input offset voltage (10µV typ), low input  
noise voltage (3nV/Hz), and low 1/f noise corner  
frequency (5Hz). These amplifiers also feature high open  
loop gain (1500V/mV) for excellent CMRR (120dB) and  
THD+N performance (0.0002% @ 3.5VRMS, 1kHz into  
2kΩ). A complimentary bipolar output stage enables high  
capacitive load drive without external compensation.  
• The amplifier input is supplied from a low impedance  
source.  
• The input voltage rate-of-rise (dV/dt) exceeds the  
maximum slew rate of the amplifier (±3.6V/µs).  
If the output lags far enough behind the input, the  
anti-parallel input diodes can conduct. For example, if  
an input pulse ramps from 0V to +10V in 1µs, then the  
output of the ISL28x27 will reach only +3.6V (slew  
rate = 3.6V/µs) while the input is at 10V, The input  
differential voltage of 6.4V will force input ESD diodes to  
conduct, dumping the input current directly into the  
output stage and the load. The resulting current flow  
can cause permanent damage to the ESD diodes. The  
ESD diodes are rated to 20mA, and in the previous  
example, setting RIN to 1k resistor (see Figure 26)  
would limit the current to < 6.4mA, and provide  
additional protection up to ±20V at the input.  
Operating Voltage Range  
The devices are designed to operate over the 4.5V  
(±2.25V) to 40V (±20V) range and are fully  
characterized at 10V (±5V) and 30V (±15V). Parameter  
variation with operating voltage is shown in the “Typical  
Performance Curves” beginning on page 7.  
Input ESD Diode Protection  
In applications where one or both amplifier input  
terminals are at risk of exposure to high voltage, current  
limiting resistors may be needed at each input terminal  
(see Figure 27 RIN+, RIN-) to limit current through the  
power supply ESD diodes to 20mA.  
The input terminals (IN+ and IN-) have internal ESD  
protection diodes to the positive and negative supply  
rails, and an additional anti-parallel diode pair across  
the inputs (see Figures 26 and 27).  
V+  
V+  
R
-
IN  
-
-
V
V
-
IN  
V
OUT  
OUT  
R
R
IN  
+
IN  
+
V
R
V
+
IN  
R
L
IN  
L
V-  
V-  
FIGURE 26. INPUT ESD DIODE CURRENT LIMITING-  
UNITY GAIN  
FIGURE 27. INPUT ESD DIODE CURRENT LIMITING -  
DIFFERENTIAL INPUT  
FN6633.3  
March 18, 2010  
11  
ISL28127, ISL28227  
Output Current Limiting  
ISL28127 and ISL28227 SPICE Model  
The output current is internally limited to approximately  
±45mA at +25°C and can withstand an short circuit to  
either rail as long as the power dissipation limits are not  
exceeded. This applies to only 1 amplifier at a time for  
the dual op amp. Continuous operation under these  
conditions may degrade long term reliability.  
Figure 28 shows the SPICE model schematic and  
Figure 29 shows the net list for the ISL28127 and  
ISL28227 SPICE model. The model is a simplified  
version of the actual device and simulates important AC  
and DC parameters. AC parameters incorporated into  
the model are: 1/f and flatband noise, Slew Rate,  
CMRR, Gain and Phase. The DC parameters are VOS,  
IOS, total supply current and output voltage swing. The  
model does not model input bias current. The model  
uses typical parameters given in the “Electrical  
Specifications” Table beginning on page 4. The AVOL is  
adjusted for 128dB with the dominate pole at 5Hz. The  
CMRR is set higher than the “Electrical Specifications”  
Table to better match design simulations (150dB,  
f = 50Hz). The input stage models the actual device to  
present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the  
amplifier transfer function when the input voltage  
exceeds the supply voltage. The ISL28127 and ISL28227  
are immune to output phase reversal, even when the  
input voltage is 1V beyond the supplies.  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply  
conditions. It is therefore important to calculate the  
maximum junction temperature (TJMAX) for all  
applications to determine if power supply voltages, load  
conditions, or package type need to be modified to  
remain in the safe operating area. These parameters are  
related using Equation 1:  
Figures 30 through 45 show the characterization vs  
simulation results for the Noise Voltage, Closed Loop  
Gain vs Frequency, Closed Loop Gain vs Rf/Rg, Closed  
Loop Gain vs RL, Closed Loop Gain vs CL, Large Signal  
10V Step Response, Open Loop Gain Phase and  
Simulated CMRR vs Frequency.  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
LICENSE STATEMENT  
The information in this SPICE model is protected under  
the United States copyright laws. Intersil Corporation  
hereby grants users of this macro-model hereto referred  
to as “Licensee, a nonexclusive, nontransferable licence  
to use this model as long as the Licensee abides by the  
terms of this agreement. Before using this macro-model,  
the Licensee should read this license. If the Licensee  
does not accept these terms, permission to use the  
model is not granted.  
where:  
• PDMAXTOTAL is the sum of the maximum power  
dissipation of each amplifier in the package (PDMAX  
)
• PDMAX for each amplifier can be calculated using  
Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
qMAX  
S
(EQ.2)  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to  
anyone outside the Licensee’s company. The Licensee  
may modify the macro-model to suit his/her specific  
applications, and the Licensee may make copies of this  
macro-model for use within their company only.  
where:  
• TMAX = Maximum ambient temperature  
θJA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
This macro-model is provided “AS IS, WHERE IS, AND  
WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED  
OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR A PARTICULAR PURPOSE.”  
• IqMAX = Maximum quiescent supply current of 1  
amplifier  
• VOUTMAX = Maximum output voltage swing of the  
application  
In no event will Intersil be liable for special, collateral,  
incidental, or consequential damages in connection with  
or arising out of the use of this macro-model. Intersil  
reserves the right to make changes to the product and  
the macro-model without prior notice.  
RL = Load resistance  
FN6633.3  
March 18, 2010  
12  
ISL28127, ISL28227  
.
V++  
V++  
R3  
R4  
IEE1  
4
5
96E-6  
4.45k  
4.45k  
4
5
CASCODE  
CASCODE  
6
7
Q4  
Q5  
3
D1  
DX  
C4  
2
2.5pF  
SUPERB  
SUPERB  
Vin-  
V5  
V
-
Q1 Q2  
IN  
C5  
2.5pF  
R1  
8
5E11  
24  
25  
EOS  
C6  
2pF  
1
IOS  
Mirror  
Vc  
D12  
DN  
0.1V  
R17  
VCM  
+
-
+
Vmid  
Q3  
-
1E-9  
9
IEE  
R2  
200E-6  
377.4  
In+  
+
VOS  
5E11  
En  
10E-6  
-
V
+
IN  
V--  
VCM  
Voltage Noise  
Input Stage  
V++  
V++  
D2  
DX  
D4  
DX  
G1  
G3  
G5  
L1  
13  
10  
4
3.18E-3  
+
+
+
-
+
-
+
-
R5  
1
R7  
C2  
R9  
1
V1  
V3  
17  
55.55pF  
R11  
1
1.86V  
1.86V  
572.9E6  
-
-
5
11  
Vc  
Vg  
Vmid  
Vg  
Vc  
R12  
1
R6  
1
R8  
R10  
1
C3  
Vmid  
G4  
G6  
G2  
572.9E6  
55.55pF  
18  
+
-
+
-
-
+
-
+
-
+
V4  
V2  
L2  
1.86V  
1.86V  
12  
14  
VCM  
3.18E-3  
D5  
DX  
D3  
DX  
V--  
V--  
VCM  
ST Gain Stage  
2nd Gain Stage  
Mid Supply Ref  
Common Mode Gain Stage  
1
V++  
D8  
DX  
D9  
DX  
G7  
V+  
V+  
+
-
+
E2  
R15  
90  
-
-
+
22  
23  
V5  
DX  
DX  
D6  
D7  
20  
21  
ISY  
V
OUT  
VOUT  
1.12V  
2.2mA  
Vg  
V6  
1.12V  
R16  
90  
V-  
G8  
-
+
+
-
+
-
-
+
D10  
DY  
D11  
DY  
-
E3  
V-  
+
V--  
G9  
G10  
Supply Isolation Stage  
Output Stage  
FIGURE 28. SPICE SCHEMATIC  
FN6633.3  
March 18, 2010  
13  
ISL28127, ISL28227  
* source ISL28127_SPICEmodel  
R_R7  
VG V++ 572.958E6 TC=0,0  
V-- VG 572.958E6 TC=0,0  
VG V++ 55.55e-12 TC=0,0  
V-- VG 55.55e-12 TC=0,0  
13 V++ DX  
* Revision C, August 8th 2009 LaFontaine  
* Model for Noise, supply currents, 150dB f=50Hz  
CMRR, *128dB f=5Hz AOL  
R_R8  
C_C2  
C_C3  
D_D4  
D_D5  
V_V3  
V_V4  
*
*Copyright 2009 by Intersil Corporation  
*Refer to data sheet “LICENSE STATEMENT” Use of  
*this model indicates your acceptance with the  
*terms and provisions in the License Statement.  
* Connections: +input  
V-- 14 DX  
13 VG 1.86  
VG 14 1.86  
*
*
*
*
*
|
|
|
|
|
-input  
*Mid supply Ref  
|
|
|
|
+Vsupply  
R_R9  
R_R10  
I_ISY  
E_E2  
E_E3  
*
VMID V++ 1 TC=0,0  
V-- VMID 1 TC=0,0  
V+ V- DC 2.2E-3  
|
|
|
-Vsupply  
|
|
output  
|
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
.subckt ISL28127subckt Vin+ Vin-V+ V- VOUT  
* source ISL28127_SPICEMODEL_0_0  
*
*Common Mode Gain Stage with Zero  
*Voltage Noise  
G_G5  
G_G6  
R_R11  
R_R12  
L_L1  
L_L2  
*
V++ VC VCM VMID 31.6228e-9  
V-- VC VCM VMID 31.6228e-9  
VC 17 1 TC=0,0  
E_En  
IN+ VIN+ 25 0 1  
25 0 377.4 TC=0,0  
24 25 DN  
R_R17  
D_D12  
V_V7  
18 VC 1 TC=0,0  
24 0 0.1  
17 V++ 3.183e-3  
*
18 V-- 3.183e-3  
*Input Stage  
I_IOS  
C_C6  
IN+ VIN- DC 1e-9  
IN+ VIN- 2E-12  
*Output Stage with Correction Current Sources  
G_G7  
G_G8  
G_G9  
G_G10  
D_D6  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
V_V5  
V_V6  
R_R15  
R_R16  
*
VOUT V++ V++ VG 1.11e-2  
V-- VOUT VG V-- 1.11e-2  
22 V-- VOUT VG 1.11e-2  
23 V-- VG VOUT 1.11e-2  
VG 20 DX  
R_R1  
VCM VIN- 5e11 TC=0,0  
IN+ VCM 5e11 TC=0,0  
2 VIN- 1 SuperB  
3 8 1 SuperB  
R_R2  
Q_Q1  
Q_Q2  
Q_Q3  
V-- 1 7 Mirror  
21 VG DX  
Q_Q4  
4 6 2 Cascode  
V++ 22 DX  
Q_Q5  
5 6 3 Cascode  
V++ 23 DX  
R_R3  
4 V++ 4.45e3 TC=0,0  
5 V++ 4.45e3 TC=0,0  
V-- 22 DY  
R_R4  
V-- 23 DY  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
20 VOUT 1.12  
VOUT 21 1.12  
D_D1  
I_IEE  
I_IEE1  
V_VOS  
E_EOS  
*
6 7 DX  
VOUT V++ 9E1 TC=0,0  
V-- VOUT 9E1 TC=0,0  
1 V-- DC 200e-6  
V++ 6 DC 96e-6  
9 IN+ 10e-6  
8 9 VC VMID 1  
.model SuperB npn  
+ is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50  
+ re=0.065 rc=35 cje=1.5E-12 cjc=2E-12  
+ kf=0 af=0  
*1st Gain Stage  
G_G1  
G_G2  
R_R5  
R_R6  
D_D2  
D_D3  
V_V1  
V_V2  
*
V++ 11 4 5 0.0487707  
.model Cascode npn  
V-- 11 4 5 0.0487707  
11 V++ 1 TC=0,0  
V-- 11 1 TC=0,0  
10 V++ DX  
+ is=502E-18 bf=150 va=300 ik=17E-3 rb=140  
+ re=0.011 rc=900 cje=0.2E-12 cjc=0.16E-12f  
+ kf=0 af=0  
.model Mirror pnp  
V-- 12 DX  
+ is=4E-15 bf=150 va=50 ik=138E-3 rb=185  
+ re=0.101 rc=180 cje=1.34E-12 cjc=0.44E-12  
+ kf=0 af=0  
10 11 1.86  
11 12 1.86  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
*2nd Gain Stage  
G_G3  
G_G4  
V++ VG 11 VMID 4.60767E-3  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28127subckt  
V-- VG 11 VMID 4.60767E-3  
FIGURE 29. SPICE NET LIST  
FN6633.3  
March 18, 2010  
14  
ISL28127, ISL28227  
Characterization vs Simulation Results  
100  
10  
1
100  
10  
1
V
= ±19V  
= 1  
S
A
V
V(INOISE)  
1
0.1  
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 31. SIMULATED INPUT NOISE VOLTAGE  
FIGURE 30. CHARACTERIZED INPUT NOISE VOLTAGE  
70  
70  
A
= 1000  
= 100  
= 10  
R
= 100, R = 100k  
f
A
= 1000  
= 100  
= 10  
R
= 100, R = 100k  
f
V
g
V
g
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
R
= 1k, R = 100k  
f
g
g
A
A
V
V
V
= ±15V  
= 3.5pF  
= INF  
S
L
C
R
L
V
= 100mV  
OUT  
P-P  
A
A
V
V
R
= 10k, R = 100k  
f
R
= 10k, R = 100k  
f
g
g
A
= 1  
A
= 1  
V
V
R
= OPEN, R = 0  
f
R
= OPEN, R = 0  
f
g
g
-10  
-10  
10k  
FREQUENCY (Hz)  
100  
1k  
100k  
1M  
10M  
100M  
10k  
FREQUENCY (Hz)  
100  
1k  
100k  
1M  
10M  
100M  
FIGURE 32. CHARACTERIZED CLOSED LOOP GAIN vs  
FREQUENCY  
FIGURE 33. SIMULATED CLOSED LOOP GAIN vs  
FREQUENCY  
15  
15  
R = R = 100k  
R = R = 100k  
f
g
f
g
13  
11  
9
13  
11  
9
R = R = 10k  
f
g
R = R = 10k  
f
g
7
R = R = 1k  
7
f
g
R = R = 1k  
f
g
5
5
3
V
= ±15V  
= 10k  
3
V
= ±15V  
= 10k  
S
R = R = 100  
S
R = R = 100  
f
g
f
g
R
C
A
R
C
A
L
L
L
L
1
1
= 3.5pF  
= +2  
= 3.5pF  
= +2  
-1  
-3  
-5  
-1  
-3  
-5  
V
V
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 35. SIMULATED CLOSED LOOP GAIN vs Rf/Rg  
FIGURE 34. CHARACTERIZED CLOSED LOOP GAIN vs  
Rf/Rg  
FN6633.3  
March 18, 2010  
15  
ISL28127, ISL28227  
Characterization vs Simulation Results (Continued)  
2
2
R
R
= 10k  
= 1k  
L
L
1
1
R
= 10k  
L
0
0
R
= 1k  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
R
R
= 499  
= 100  
L
R
= 499  
L
L
R
= 100  
L
V
= ±15V  
= 3.5pF  
= +1  
V
= ±15V  
= 3.5pF  
= +1  
S
S
R
= 49.9  
L
C
A
C
A
L
L
V
V
R
= 49.9  
L
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 36. CHARACTERIZED CLOSED LOOP GAIN vs  
RL  
FIGURE 37. SIMULATED CLOSED LOOP GAIN vs RL  
7
7
V
R
A
V
= ±15V  
= 10k  
= +1  
V
R
= ±15V  
= 10k  
= +1  
S
6
5
S
6
5
C
= 1000pF  
L
L
L
C
= 1000pF  
A
V
L
V
= 100mV  
P-P  
4
OUT  
V
= 100mV  
4
OUT P-P  
C
= 220pF  
L
3
3
C
= 100pF  
L
2
2
C
= 220pF  
= 100pF  
L
C
= 25.5pF  
1
L
1
0
C
0
L
C
= 25.5pF  
L
-1  
-2  
-3  
-1  
-2  
-3  
C
= 3.5pF  
L
C
= 3.5pF  
1M  
L
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 38. CHARACTERIZED CLOSED LOOP GAIN vs  
CL  
FIGURE 39. SIMULATED CLOSED LOOP GAIN vs CL  
6
5
4
6
5
4
V
= ±15V  
= 3.5pF  
= 1  
S
L
3
2
V
C
= ±15V  
= 3.5pF  
= 1  
S
3
2
C
A
L
V
A
V
R = 0, R = INF  
1
f
g
R = 0, R = INF  
1
f
g
V
= 10V  
OUT  
P-P  
V
= 10V  
0
OUT  
P-P  
0
1
1
-2  
-3  
-4  
-5  
-6  
R
= 10k  
L
-2  
-3  
-4  
-5  
-6  
R
= 2k  
L
R
= 10k  
L
0
5
10  
15  
TIME (µs)  
20  
25  
30  
0
5
10  
15  
TIME (µs)  
20  
25  
30  
FIGURE 41. SIMULATED LARGE SIGNAL 10V STEP  
RESPONSE  
FIGURE 40. CHARACTERIZED LARGE SIGNAL 10V  
STEP RESPONSE  
FN6633.3  
March 18, 2010  
16  
ISL28127, ISL28227  
Characterization vs Simulation Results (Continued)  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
PHASE  
PHASE  
GAIN  
GAIN  
0
R
C
= 10k  
= 10pF  
-20  
-40  
-60  
-80  
-100  
L
L
R
C
= 10k  
L
L
-50  
= 10pF  
Model V set to zero  
for this test  
OS  
SIMULATION  
-100  
0.1Hz  
10Hz  
1.0k  
100k  
10M  
0.1m 1m 10m100m  
1
10 100 1k 10k 100k 1M 10M100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 43. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 42. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
150  
100  
50  
130  
V
= ±5V  
S
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.25V  
S
V
= ±15V  
S
R
C
A
= INF  
L
L
Generated using full  
model. CMRR delta input  
0
= 5.25pF  
= +1  
base voltage/V  
V
CM  
V
= 1V  
input Voltage  
-50  
10m  
CM  
P-P  
-10  
10M  
1.0Hz 100Hz 10k  
1.0M  
100M 10G 1.0T  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 44. CHARACTERIZED CMRR vs FREQUENCY  
FIGURE 45. SIMULATED CMRR vs FREQUENCY  
FN6633.3  
March 18, 2010  
17  
ISL28127, ISL28227  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
REVISION  
DATE  
CHANGE  
FN6633.3  
3/11/10  
PODs M8.118 and L8.3x3A - Updated to new intersil format by adding land pattern  
and moving dimensions from table onto drawing.  
3/3/10  
Page 2:  
Under "Ordering Information"  
ISL28227FBZ: Changed Vos max from 80µV to 75µV  
Page 4:  
Changed:  
1. ISL28227 SOIC Room Temp limit for Vos from 80µV (MAX) and -80µV (MIN) to  
75µV (MAX) and -75µV (MIN).  
2. ISL28227 SOIC Full Temp limit for Vos from 160µV (MAX) and -160µV (MIN) to  
150µV (MAX) and -150µV (MIN)  
3. ISL28227 SOIC limit for TCVos from 0.8µV (MAX) and -0.8µV (MIN) to 0.75µV  
(MAX) and -0.75µV (MIN)  
3/2/10  
HBM for ISL28227 changed from “4kV” to “6kV”  
Tjc values for ISL28227 changed:  
For MSOP from “50” to “45”  
For SOIC from “60” to “55”  
2/25/10  
On the ordering info (page 2):  
Part Number  
Part Marking  
Vos (Max) (uV)  
ISL28127FRTBZ  
ISL28127FRTZ  
ISL28127FUBZ  
ISL28127FUZ  
TBD instead of 70  
-C 127Z instead of 127Z C  
8127Z -C instead of 8127Z  
TBD instead of 70  
150 instead of 70  
Removed "Coming Soon) for ISL28127FUZ package  
ISL28227FBZ  
Removed "Coming Soon) for ISL28227FBZ package  
ISL28227FRTBZ  
80 instead of 70  
TBD instead of 70  
150 instead of 70  
ISL28227FRTZ  
ISL28227FUZ  
-C 227Z instead of 227Z C  
8227Z -C instead of 8227Z  
Added the following row of data  
ISL28227FUBZ 8227Z  
TBD  
On the Electrical specifications on page 4 and page 6 the following changes were  
made. The change applies to the same spec found on page 4 and page 6.  
VOS Offset Voltage; SOIC Package, ISL28127: Added -70 to MIN across room  
temp and -120 MIN across full temp  
VOS Offset Voltage; SOIC Package, ISL28227: Added -80 to MIN across room  
temp and -160 MIN across full temp  
VOS Offset Voltage; MSOP and TDFN Package Grade C, ISL28127/ISL28227:  
Added -150 to MIN across room temp and -250 MIN across full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28127: Added -0.5 to MIN across  
full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28227: Added -0.8 to MIN across  
full temp  
TCVOS Offset Voltage Drift; MSOP and TDFN Package Grade C,  
ISL28127/ISL28227: Added -1 to MIN across full temp  
IOS Input Offset Current: Added -10 to MIN across room temp and -12 to MIN  
across full temp  
IB Input Bias Current :Added -10 to MIN across room temp and -12 to MIN across  
full temp  
2/19/10  
Added differentiated part numbers for B-grade and C-grade for TDFN and MSOP.  
Added ESD and latch-up information. Broke out Theta JA to list the single and dual  
and added Theta JC.  
FN6633.3  
March 18, 2010  
18  
ISL28127, ISL28227  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev. (Continued)  
REVISION  
DATE  
CHANGE  
FN6633.2  
1/29/10  
Added license statement for P-Spice Model.  
Updated Spice Schematic by adding capacitors  
C4, C5 and C6  
Updated Spice Net List as follows:  
From:  
Revision B, July 23 2009  
To:  
Revision C, August 8th 2009 LaFontaine  
From:  
source ISL28127_SPICEMODEL_7_9  
To:  
source ISL28127_SPICEMODEL_0_0  
Added after I_IOS:  
C_C6  
IN+ VIN- 2E-12  
Added after R_R4:  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
From:  
.ends ISL28127  
To:  
.ends ISL28127subckt  
Replaced POD MDP0027 with M8.15E to match ASYD in Intrepid (no dimension  
changes; the PODs are the same. The change was to update to the Intersil format,  
moving dimensions from table onto drawing and adding land pattern)  
FN6633.1  
9/14/09  
“Functional Description” on page 11. Corrected low 1/f noise corner frequency  
from 3Hz to 5Hz to match “Input Noise Voltage Spectral Density” on page 1.  
Corrected high open loop gain from 1400V/mV to 1500V/mV to match “Open-Loop  
Gain” on page 5 spec table.  
“Operating Voltage Range” on page 11. Removed following 2 sentences since  
there are no graphs illustrating common mode voltage sensitivity vs temperature  
or VOS as a function of supply voltage and temperature:  
"The input common mode voltage sensitivity to temperature is shown in Figure 3  
(±15V). Figure 20 shows VOS as a function of supply voltage and temperature  
with the common mode voltage at 0V for split supply operation."  
9/2/09  
Added Theta JC in Thermal Information for TDFN package  
7/21/09  
Updated Features to show only key features and updated applications section.  
Added Typical Application Circuit and performance graph, Updated Ordering  
Information to match Intrepid and added POD's L8.3x3A and M8.118, also added  
MSL level as part of new format. Added TDFN pinouts, updated pin descriptions to  
include TDFN pinouts, Added Theta Ja in Thermal information for TDFN and MSOP  
packages. Added Revision History and Products Text with device info links. Added  
SPICE Model with referencing text and Net List.  
FN6633.0  
5/28/09  
Techdocs Issued File Number FN6633. Initial release of Datasheet with file number  
FN6633 making this a Rev 0.  
FN6633.3  
March 18, 2010  
19  
ISL28127, ISL28227  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL28127, ISL28227  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6633.3  
March 18, 2010  
20  
ISL28127, ISL28227  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633.3  
March 18, 2010  
21  
ISL28127, ISL28227  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN6633.3  
March 18, 2010  
22  
ISL28127, ISL28227  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.25 - 0.036  
0.10 C  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633.3  
March 18, 2010  
23  

相关型号:

ISL28127FUZ-T13

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL28127FUZ-T7

IC OPAMP GP 10MHZ LN 8MSOP
RENESAS

ISL28127FUZ-T7A

IC OPAMP GP 10MHZ LN 8MSOP
RENESAS

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127_10

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127_1012

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127_12

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL28130

Single, Dual, and Quad Micropower, Low Drift, RRIO Operational Amplifiers
INTERSIL

ISL28130

Single, Dual, and Quad Micropower, Low Drift, RRIO Operational Amplifiers
RENESAS