ISL28127FUZ-T7 [RENESAS]

IC OPAMP GP 10MHZ LN 8MSOP;
ISL28127FUZ-T7
型号: ISL28127FUZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC OPAMP GP 10MHZ LN 8MSOP

放大器
文件: 总26页 (文件大小:2007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Single and Dual Low Noise Operational  
Amplifiers  
ISL28127, ISL28227  
Features  
The ISL28127 and ISL28227 are very high precision amplifiers  
featuring very low noise, low offset voltage, low input bias  
current and low temperature drift making them the ideal  
choice for applications requiring both high DC accuracy and AC  
performance. The combination of precision, low noise, and  
small footprint provides the user with outstanding value and  
flexibility relative to similar competitive parts.  
• Very Low Voltage Noise . . . . . . . . . . . . . . . . . . . . . . . .2.5nV/Hz  
• Low Input Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70µV, Max.  
• Superb Offset Drift. . . . . . . . . . . . . . . . . . . . . . 0.5µV/°C, Max.  
• Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . . . . 10nA, Max.  
• Wide Supply Range . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 40V  
• Gain-bandwidth Product . . . . . . . . . 10MHz Unity Gain Stable  
• No Phase Reversal  
Applications for these amplifiers include precision active  
filters, medical and analytical instrumentation, precision  
power supply controls, and industrial controls.  
Applications  
The ISL28127 single and ISL28227 dual are available in an 8  
Ld SOIC, TDFN and MSOP packages. All devices are offered in  
standard pin configurations and operate over the extended  
temperature range to -40°C to +125°C.  
• Precision Instruments  
• Medical Instrumentation  
• Industrial Controls  
• Active Filter Blocks  
• Data Acquisition  
• Power Supply Control  
Related Literature  
AN1508: ISL281x7SOICEVAL1Z Evaluation Board User’s  
Guide  
AN1509: ISL282x7SOICEVAL1Z Evaluation Board User’s  
Guide  
C
100  
1
VS = ±19V  
AV = 1  
1.5nF  
V
+
-
10  
OUTPUT  
R
R
V
2
1
IN  
+
95.3  
232  
68.3nF  
C
2
V
-
1
0.1  
1
10  
100  
1k  
10k  
100k  
Sallen-Key Low Pass Filter (1MHz)  
FREQUENCY (Hz)  
FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
FIGURE 1. TYPICAL APPLICATION  
December 16, 2010  
FN6633.6  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
 
ISL28127, ISL28227  
.
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
VOS (MAX)  
(µV)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL28127FBZ  
28127 FBZ  
70  
8 Ld SOIC  
M8.15E  
L8.3x3A  
L8.3x3A  
M8.118  
M8.118  
M8.15E  
L8.3x3A  
L8.3x3A  
M8.118  
M8.118  
ISL28127FRTBZ  
ISL28127FRTZ  
8127  
75 (B Grade)  
150 (C Grade)  
70 (B Grade)  
150 (C Grade)  
75  
8 Ld TDFN  
8 Ld TDFN  
-C 8127  
ISL28127FUBZ  
8127Z  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOIC  
8 Ld TDFN  
8 Ld TDFN  
8 Ld MSOP  
8 Ld MSOP  
ISL28127FUZ  
8127Z -C  
28227 FBZ  
8227  
ISL28227FBZ  
ISL28227FRTBZ  
ISL28227FRTZ  
75 (B Grade)  
150 (C Grade)  
75 (B Grade)  
150 (C Grade)  
-C 8227  
ISL28227FUBZ  
8227Z  
ISL28227FUZ  
8227Z -C  
Evaluation Board  
Evaluation Board  
Evaluation Board  
ISL28127SOICEVAL1Z  
ISL28127MSOPEVAL1Z  
ISL28227SOICEVAL2Z  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-  
free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28127, ISL28227. For more information on MSL please see techbrief  
TB363.  
FN6633.6  
December 16, 2010  
2
 
 
ISL28127, ISL28227  
Pin Configurations  
ISL28127  
(8 LD SOIC, MSOP)  
TOP VIEW  
ISL28227  
(8 LD SOIC, MSOP)  
TOP VIEW  
NC  
-IN_A  
+IN_A  
V -  
1
2
3
4
8
7
6
5
NC  
V+  
V
A
1
2
3
4
8
7
6
5
V+  
OUT  
-IN_A  
+IN_A  
V -  
V
B
-
+
OUT  
- +  
V
A
-IN_B  
OUT  
+
-
NC  
+IN_B  
ISL28127  
(8 LD TDFN)  
TOP VIEW  
ISL28227  
(8 LD TDFN)  
TOP VIEW  
V A  
OUT  
V+  
8
NC  
NC  
1
1
8
-IN_A  
+IN_A  
V-  
V
B
-IN  
+IN  
V-  
V+  
V
2
3
4
7
6
2
3
4
7
6
5
OUT  
- +  
- +  
-IN_B  
OUT  
+ -  
PD  
PD  
5 +IN_B  
NC  
Pin Descriptions  
ISL28127  
(8 LD SOIC,  
8 LD MSOP)  
ISL28227  
(8 LD SOIC,  
8 LD MSOP)  
ISL28127  
(8 LD TDFN)  
ISL28227  
(8 LD TDFN)  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
DESCRIPTION  
3
4
2
6
7
+IN  
+IN_A  
V-  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 2  
Circuit 3  
Circuit 2  
Circuit 1  
-
Amplifier non-inverting input  
Amplifier A non-inverting input  
Negative power supply  
Amplifier B non-inverting input  
Amplifier inverting input  
Amplifier B inverting input  
Amplifier output  
3
4
3
4
5
3
4
5
+IN_B  
-IN  
6
6
-IN_B  
VOUT  
7
8
1
2
7
8
1
2
VOUTB  
Amplifier B output  
7
6
V+  
Positive power supply  
VOUTA  
Amplifier A output  
2
-IN_A  
NC  
Amplifier A inverting input  
1, 5, 8  
1, 5, 8  
PD  
Not Connected – This pin is not  
electrically connected internally.  
PD  
-
Thermal Pad. Pad should be connected to  
lowest potential source in the circuit.  
V+  
V-  
V+  
V+  
OUT  
V-  
CAPACITIVELY TRI  
GGERED ESD  
CLAMP  
IN-  
IN+  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6633.6  
December 16, 2010  
3
 
ISL28127, ISL28227  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for  
Thermal Resistance (Typical)  
8 Ld SOIC (Note 5, 7)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld TDFN (Notes 4, 6)  
θ
JA (°C/W)  
θ
JC (°C/W)  
120  
110  
60  
55  
Input Voltage >V+ or <V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration  
(1 Output at a Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Tolerance  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP (Note 5, 7)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
48  
47  
7
6
155  
150  
50  
45  
Human Body Model (Tested per JESD22-A114F)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.0kV  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.0kV  
Machine Model (Tested per EIA/JESD22-A115-A) . . . . . . . . . . . . . . 500V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . .1.5kV  
Di-electrically Isolated PR40 process . . . . . . . . . . . . . . . . . . . Latch-up free  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Operating Conditions  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
7. For θJC, the “case temp” location is taken at the package top center.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise  
noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA  
Electrical Specifications V ±15V, V = 0, V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply over  
S
CM  
O
L
A
the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
(Note 8)  
UNIT  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
Offset Voltage; SOIC Package  
ISL28127  
ISL28227  
-70  
10  
70  
120  
75  
-120  
-75  
-
10  
-150  
-70  
-
150  
70  
Offset Voltage;  
MSOP Grade B Package  
ISL28127  
ISL28127  
ISL28227  
-10  
-150  
-75  
-
150  
75  
Offset Voltage;  
TDFN Grade B Package  
-10  
-160  
-75  
-
-10  
-
160  
75  
Offset Voltage;  
MSOP, TDFN Grade B Package  
-150  
-150  
-250  
150  
150  
250  
Offset Voltage;  
MSOP, TDFN Grade C Package  
ISL28127  
ISL28227  
-10  
-
FN6633.6  
December 16, 2010  
4
 
 
 
 
 
 
 
 
 
ISL28127, ISL28227  
Electrical Specifications V ±15V, V = 0, V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply over  
S
CM  
O
L
A
the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
TCVOS  
DESCRIPTION  
Offset Voltage Drift;  
CONDITIONS  
(Note 8)  
TYP  
0.1  
0.1  
0.1  
(Note 8)  
UNIT  
ISL28127  
ISL28227  
ISL28127  
-0.5  
0.5  
µV/°C  
µV/°C  
µV/°C  
SOIC Package  
-0.75  
-0.80  
0.75  
0.80  
Offset Voltage Drift;  
MSOP, Grade B  
Offset Voltage Drift;  
TDFN, Grade B  
ISL28127  
ISL28227  
-0.90  
-0.75  
-1  
0.1  
0.1  
0.1  
0.90  
0.75  
1
µV/°C  
µV/°C  
µV/°C  
Offset Voltage Drift;  
MSOP, TDFN, Grade B  
Offset Voltage Drift;  
MSOP, TDFN, Grade C  
ISL28127  
ISL28227  
IOS  
Input Offset Current  
-10  
-12  
1
10  
nA  
nA  
nA  
nA  
V
-
12  
IB  
Input Bias Current  
-10  
1
10  
-12  
-
12  
VCM  
Input Voltage Range  
Guaranteed by CMRR  
-13  
-
13  
-12  
-
12  
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
V
CM = -13V to +13V  
115  
115  
115  
115  
110  
110  
1000  
120  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
V/mV  
VCM = -12V to +12V  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
-
125  
-
Power Supply Rejection Ratio  
ISL28127  
Power Supply Rejection Ratio  
ISL28227  
117  
-
AVOL  
VOH  
Open-Loop Gain  
VO = -13V to +13V  
RL = 10kΩ to ground  
1500  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
13.5  
13.65  
-
-
V
V
13.2  
-
13.4  
13.5  
-
V
13.1  
-
-
V
VOL  
Output Voltage Low  
-
-13.65  
-13.5  
-13.2  
-13.4  
-13.1  
2.8  
3.7  
-
V
-
-
V
-
-13.5  
V
-
-
V
IS  
Supply Current/Amplifier  
-
2.2  
mA  
mA  
mA  
V
-
-
±45  
-
ISC  
Short-Circuit  
RL = 0Ω to ground  
-
VSUPPLY  
Supply Voltage Range  
Guaranteed by PSRR  
±2.25  
±20  
AC SPECIFICATIONS  
GBW  
enp-p  
en  
Gain Bandwidth Product  
-
-
-
-
10  
85  
3
-
-
-
-
MHz  
Voltage Noise  
0.1Hz to 10Hz  
f = 10Hz  
nVP-P  
Voltage Noise Density  
Voltage Noise Density  
nV/Hz  
nV/Hz  
en  
f = 100Hz  
2.8  
FN6633.6  
December 16, 2010  
5
 
 
ISL28127, ISL28227  
Electrical Specifications V ±15V, V = 0, V = 0V, R = Open, T = +25°C, unless otherwise noted. Boldface limits apply over  
S
CM  
O
L
A
the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Voltage Noise Density  
CONDITIONS  
(Note 8)  
TYP  
2.5  
(Note 8)  
UNIT  
nV/Hz  
nV/Hz  
pA/Hz  
%
en  
en  
f = 1kHz  
-
-
-
-
-
-
-
-
Voltage Noise Density  
f = 10kHz  
f = 10kHz  
2.5  
in  
Current Noise Density  
0.4  
THD + N  
Total Harmonic Distortion + Noise  
1kHz, G = 1, VO = 3.5VRMS  
,
0.00022  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩ, VO = 4VP-P  
AV = -1, VOUT = 100mVP-P  
-
-
±3.6  
36  
-
-
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
AV = -1 VOUT = 10VP-P  
Rg = Rf =10k, RL = 2kΩ to VCM  
AV = -1, VOUT = 10VP-P  
L = 2kΩ to VCM  
Fall Time  
90% to 10% of VOUT  
,
-
-
-
-
38  
3.4  
3.8  
1.7  
-
-
-
-
ns  
µs  
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
,
Settling Time to 0.01%  
10V Step; 10% to VOUT  
,
R
tOL  
Output Overload Recovery Time  
AV = 100, VIN = 0.2V  
RL = 2kΩ to VCM  
Electrical Specifications V ±5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the  
S
CM  
O
A
operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
10  
-
(Note 8)  
UNIT  
µV  
Offset Voltage; SOIC Package  
ISL28127  
ISL28227  
-70  
70  
-120  
120  
µV  
-75  
10  
-
75  
µV  
µV  
-150  
150  
Offset Voltage;  
MSOP Grade B Package  
ISL28127  
ISL28127  
ISL28227  
-70  
-150  
-75  
-10  
70  
150  
75  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
-
Offset Voltage;  
TDFN Grade B Package  
-10  
-160  
-75  
-
-10  
-
160  
75  
Offset Voltage;  
MSOP, TDFN Grade B Package  
-150  
-150  
-250  
150  
150  
250  
Offset Voltage;  
MSOP, TDFN Grade C Package  
ISL28127  
ISL28227  
-10  
-
TCVOS  
Offset Voltage Drift;  
SOIC Package  
ISL28127  
ISL28227  
ISL28127  
-0.5  
-0.75  
-0.80  
0.1  
0.1  
0.1  
0.5  
µV/°C  
µV/°C  
µV/°C  
0.75  
0.80  
Offset Voltage Drift;  
MSOP, Grade B  
Offset Voltage Drift;  
TDFN, Grade B  
ISL28127  
ISL28227  
-0.90  
-0.75  
-1  
0.1  
0.1  
0.1  
0.90  
0.75  
1
µV/°C  
µV/°C  
µV/°C  
Offset Voltage Drift;  
MSOP, TDFN, Grade B  
Offset Voltage Drift;  
MSOP, TDFN, Grade C  
ISL28127  
ISL28227  
FN6633.6  
December 16, 2010  
6
 
ISL28127, ISL28227  
Electrical Specifications V ±5V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over the  
S
CM  
O
A
operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
IOS  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
1
(Note 8)  
UNIT  
nA  
Input Offset Current  
-10  
-12  
10  
-12  
-3  
10  
12  
10  
12  
3
-
1
-
nA  
nA  
nA  
V
IB  
Input Bias Current  
VCM  
Common Mode Input Voltage Range  
Guaranteed by CMRR  
-
-2  
-
2
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
CM = -3V to +3V  
115  
115  
120  
-
-
-
dB  
dB  
VCM = -2V to +2V  
VS = ±2.25V to ±5V  
VS = ±3V to ±5V  
115  
115  
125  
-
-
-
dB  
dB  
AVOL  
VOH  
Open-Loop Gain  
VO = -3V to +3V  
RL = 10kΩ to ground  
1000  
1500  
-
V/mV  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
3.5  
3.65  
-
-
V
V
3.2  
-
3.4  
3.5  
-
3.1  
-
-
V
V
V
VOL  
Output Voltage Low  
-
-
-
-
-
-
-
-3.65  
-3.5  
-3.2  
-3.4  
-3.1  
2.8  
3.7  
-
-
-3.5  
-
V
IS  
Supply Current/Amplifier  
Short-Circuit  
2.2  
-
mA  
mA  
mA  
ISC  
±45  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
Total Harmonic Distortion + Noise  
-
-
10  
-
-
MHz  
%
THD + N  
1kHz, G = 1, Vo = 2.5VRMS  
,
0.0034  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩOH  
-
-
±3.6  
36  
-
-
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
Fall Time  
90% to 10% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
-
-
-
38  
1.6  
4.2  
-
-
-
ns  
µs  
µs  
ts  
Settling Time to 0.1%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Settling Time to 0.01%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
NOTE:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6633.6  
December 16, 2010  
7
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified.  
S
L
100  
100  
80  
VS = ±19V  
V = 1  
60  
A
40  
20  
0
10  
-20  
-40  
-60  
-80  
-100  
V
R
L
R
A
= 38V  
= 10k  
+
L
C
= 3.5pF  
= 10, R = 100k  
= 10,000  
g
V
f
1
0.1  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1k  
10k  
100k  
TIME (s)  
FREQUENCY (Hz)  
FIGURE 3. INPUT NOISE VOLTAGE 0.1Hz to 10Hz  
FIGURE 4. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
130  
120  
110  
100  
90  
80  
70  
60  
50  
100  
10  
1
PSRR+ and PSRR- V = ±5V  
S
VS = ±19V  
AV = 1  
R
C
= INF  
= 5.25pF  
= +1  
L
L
A
V
V
S
= 1V  
P-P  
40 PSRR+ and PSRR- V = ±15V  
S
30  
20  
10  
0
-10  
0.1  
10M  
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. PSRR vs FREQUENCY, VS = ±5V, ±15V  
FIGURE 5. INPUT NOISE CURRENT SPECTRAL DENSITY  
100  
50  
130  
V
= ±5V  
S
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.25V  
S
V = ±5  
S
V
= ±15V  
S
0
V
= ±15  
S
R
C
= INF  
L
= 5.25pF  
= +1  
-50  
-100  
L
A
V
V
= 1V  
CM  
P-P  
-10  
10M  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 8. VOS vs TEMPERATURE vs VSUPPLY  
FIGURE 7. CMRR vs FREQUENCY, VS = ±2.25, ±5V, ±15V  
FN6633.6  
December 16, 2010  
8
 
 
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified. (Continued)  
S
L
5000  
4000  
3000  
2000  
1000  
0
5000  
4000  
3000  
2000  
1000  
0
V
= ±15  
S
V
= ±15  
S
-1000  
-2000  
-3000  
-4000  
-5000  
-1000  
-2000  
-3000  
-4000  
-5000  
V = ±5  
S
V = ±5  
S
-50  
0
50  
100  
150  
-50  
-25  
0
25  
50  
75  
100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. IB+ vs TEMPERATURE vs SUPPLY VOLTAGE  
FIGURE 10. IB- vs TEMPERATURE vs SUPPLY VOLTAGE  
60  
5000  
29 UNITS  
4000  
3000  
2000  
1000  
0
AVERAGE  
40  
20  
+25°C  
V
= ±15  
S
0
+125°C  
V = ±5  
S
-1000  
-2000  
-3000  
-4000  
-5000  
-20  
-40°C  
-40  
-60  
-15  
-10  
-5  
0
5
10  
15  
-50 -25  
0
25  
50  
75  
100 125 150  
INPUT COMMON MODE VOLTAGE  
TEMPERATURE (°C)  
FIGURE 12. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
FIGURE 11.  
IOS vs TEMPERATURE vs SUPPLY VOLTAGE  
600  
500  
400  
300  
200  
100  
0
600  
V
= ±15V  
V = ±5V  
S
S
500  
400  
300  
200  
100  
0
-70 -55 -40 -25 -10  
5
20 35  
50 65  
-70 -55 -40 -25 -10  
5
20 35  
50  
65  
V
(µV)  
V
(µV)  
OS  
OS  
FIGURE 13. INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V  
FIGURE 14. INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V  
FN6633.6  
December 16, 2010  
9
 
 
 
 
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified. (Continued)  
S
L
30  
25  
20  
15  
30  
Vs = ±5V  
Vs = ±15V  
25  
20  
15  
10  
5
10  
5
0
0
-0.7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0.7  
-0.7 -0.5 -0.3 -0.1  
0.1  
0.3  
0.5  
0.7  
V
TC (µV/°C)  
V
TC (µV/°C)  
OS  
OS  
FIGURE 15. OFFSET VOLTAGE DRIFT DISTRIBUTION, VS = ±15V  
FIGURE 16. OFFSET VOLTAGE DRIFT DISTRIBUTION, VS = ±5V  
35  
40  
V = ±5V  
s
V = ±15V  
s
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-22.5  
-15  
-7.5  
I
0
7.5  
15  
22.5  
-25 -20 -15 -10 -5  
0
5
10 15 20 25  
I
TC (pA/°C)  
TC (pA/°C)  
B+  
B+  
FIGURE 18. IB+ INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
S = ±5V  
FIGURE 17. IB+ INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
V
V
S = ±15V  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V = ±15V  
V
= ±5V  
s
s
0
0
-27  
-18  
-9  
0
9
18  
27  
-30 -24 -18 -12 -6  
0
6
12 18 24 30  
I
TC (pA/°C)  
B-  
I
B-  
TC (pA/°C)  
FIGURE 19. IB- INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
S = ±15V  
FIGURE 20. IB- INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
S = ±5V  
V
V
FN6633.6  
December 16, 2010  
10  
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified. (Continued)  
S
L
70  
60  
50  
40  
30  
20  
10  
0
50  
V
= ±15V  
V = ±5V  
S
S
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-27  
-18  
-9  
0
9
18  
27  
-30 -24 -18 -12 -6  
0
6
12 18 24 30  
I
TC (pA/°C)  
I
OS  
TC (pA/°C)  
OS  
FIGURE 22. INPUT OFFSET CURRENT DISTRIBUTION, VS = ±5V  
FIGURE 21. INPUT OFFSET CURRENT DISTRIBUTION, VS = ±15V  
14.2  
-13.1  
50 UNITS  
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
-14.2  
MEDIAN  
RL = 2k  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
50 UNITS  
MEDIAN  
RL = 100k  
R
= 100k  
L
RL = 2k  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 24. VOL vs TEMPERATURE, VS = ±15V  
FIGURE 23. VOH vs TEMPERATURE, VS = ±15V  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
20  
40  
20  
GAIN  
GAIN  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
RL = 10k  
RL = 10k  
CL = 10pF  
CL = 100pF  
SIMULATION  
SIMULATION  
0.1m1m 10m100m 1 10 100 1k 10k100k1M10M100M  
FREQUENCY (Hz)  
0.1m1m 10m100m 1 10 100 1k 10k100k1M10M100M  
FREQUENCY (Hz)  
FIGURE 25. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
FIGURE 26. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
RL = 10kΩ, CL = 10pF  
RL = 10kΩ, CL = 100pF  
FN6633.6  
December 16, 2010  
11  
 
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified. (Continued)  
S
L
70  
60  
50  
40  
30  
20  
10  
0
15  
13  
11  
9
Rf = Rg = 100k  
A
V = 1000  
Rg = 100, Rf = 100k  
Rg = 1k, Rf = 100k  
Rf = Rg = 10k  
Rf = Rg = 1k  
A
V = 100  
VS = ±15V  
CL = 3.5pF  
RL = INF  
7
5
VOUT = 100mVP-P  
AV = 10  
3
VS = ±15V  
L = 10k  
Rf = Rg = 100  
R
Rg = 10k, Rf = 100k  
AV = 1  
1
CL = 3.5pF  
AV = +2  
-1  
-3  
-5  
V
OUT = 100mVP-P  
Rg = OPEN, Rf = 0  
1k  
10k  
FREQUENCY (Hz)  
-10  
100  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 27. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
FIGURE 28. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE  
Rf/Rg  
2
7
RL = 10k  
VS = ±15V  
6
1
RL = 10k  
RL = 1k  
5
4
AV = +1  
VOUT = 100mVP-P  
CL = 1000pF  
CL = 220pF  
0
3
-1  
RL = 499  
CL = 100pF  
2
-2  
-3  
-4  
-5  
RL = 100  
RL = 49.9  
CL = 25.5pF  
1
VS = ±15V  
CL = 3.5pF  
0
AV = +1  
-1  
-2  
-3  
CL = 3.5pF  
VOUT = 100mVP-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FIGURE 29. GAIN vs FREQUENCY vs RL  
FIGURE 30. GAIN vs FREQUENCY vs CL  
1
0
6
VS = ±2.25V  
5
4
VS = ±15V  
3
C
L = 3.5pF  
2
AV = 1  
Rf = 0 Rg = inf  
VS = ±5V  
1
-1  
-2  
-3  
VOUT = 10VP-P  
0
VS = ±15V  
1
CL = 3.5pF  
L = 10k  
AV = +1  
-2  
-3  
-4  
-5  
-6  
RL = 2k  
R
RL = 10k  
VOUT = 100mVP-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
0
5
10  
15  
20  
25  
30  
TIME (µs)  
FIGURE 31. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FIGURE 32. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V  
FN6633.6  
December 16, 2010  
12  
ISL28127, ISL28227  
Typical Performance Curves V = ±15V, VCM = 0V, R = Open, unless otherwise specified. (Continued)  
S
L
80  
60  
40  
20  
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
VS = ±15V, RL = 2k, 10k  
VS = ±5V, RL = 2k, 10k  
VS = ±5V, ±15V  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
20  
40  
60  
80  
RL = 2k  
CL = 3.5pF  
V = 1  
VOUT = 100mVP-P  
CL = 3.5pF  
AV = 1  
A
V
OUT = 4VP-P  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (ms)  
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (µs)  
FIGURE 34. SMALL SIGNAL TRANSIENT RESPONSE, VS = ±5V,  
±15V  
FIGURE 33. LARGE SIGNAL TRANSIENT RESPONSE vs RL VS =  
±5V, ±15V  
0.26  
0.22  
0.08  
0.04  
0.10  
0.06  
0.02  
-0.02  
-0.06  
2
0
0.06  
0.02  
15  
13  
11  
9
OUTPUT  
INPUT  
-2  
-0.02  
-0.06  
-0.10  
-0.14  
-0.18  
-0.20  
-0.26  
VS = ±15V  
L = 10k  
CL = 3.5pF  
V = 100  
Rf = 100k, Rg = 1k  
VIN = 200mVP-P  
R
-4  
VS = ±15V  
L = 10k  
CL = 3.5pF  
AV = 100  
Rf = 100k, Rg = 1k  
IN = 200mVP-P  
R
A
-6  
7
-8  
5
V
-10  
-12  
INPUT  
3
1
OUTPUT  
25  
-14  
40  
-1  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
30  
35  
40  
TIME (µs)  
TIME (µs)  
FIGURE 36. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, VS  
= ±15V  
FIGURE 35. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, VS =  
±15V  
90  
80  
VS = ±15V  
R
L = 10k  
V = 1  
70  
60  
50  
40  
30  
20  
10  
0
A
VOUT = 100mVP-P  
10  
100  
1000  
10000  
CAPACITANCE (pF)  
FIGURE 37. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±15V  
FN6633.6  
December 16, 2010  
13  
ISL28127, ISL28227  
Applications Information  
Functional Description  
V+  
The ISL28127 and ISL28227 are single and dual, low noise  
10MHz BW precision op amps. Both devices are fabricated in a  
new precision 40V complementary bipolar DI process. A super-  
beta NPN input stage with input bias current cancellation  
provides low input bias current (1nA typical), low input offset  
voltage (10µV typ), low input noise voltage (3nV/Hz), and low  
1/f noise corner frequency (5Hz). These amplifiers also feature  
high open loop gain (1500V/mV) for excellent CMRR (120dB)  
and THD+N performance (0.0002% @ 3.5VRMS, 1kHz into 2kΩ).  
A complimentary bipolar output stage enables high capacitive  
load drive without external compensation.  
R
-
IN  
-
V
-
V
IN  
OUT  
R
+
IN  
+
V
+
R
IN  
L
V-  
FIGURE 39. INPUT ESD DIODE CURRENT LIMITING -  
DIFFERENTIAL INPUT  
Output Current Limiting  
The output current is internally limited to approximately ±45mA  
at +25°C and can withstand an short circuit to either rail as long  
as the power dissipation limits are not exceeded. This applies to  
only 1 amplifier at a time for the dual op amp. Continuous  
operation under these conditions may degrade long term  
reliability.  
Operating Voltage Range  
The devices are designed to operate over the 4.5V (±2.25V) to  
40V (±20V) range and are fully characterized at 10V (±5V) and  
30V (±15V). Parameter variation with operating voltage is shown  
in the “Typical Performance Curves” beginning on page 8.  
Input ESD Diode Protection  
The input terminals (IN+ and IN-) have internal ESD protection  
diodes to the positive and negative supply rails, and an additional  
anti-parallel diode pair across the inputs (see Figures 38 and 39).  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28127 and ISL28227 are immune to output  
phase reversal, even when the input voltage is 1V beyond the  
supplies.  
V+  
Power Dissipation  
-
V
OUT  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
R
IN  
+
V
R
IN  
L
V-  
FIGURE 38. INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN  
For unity gain applications (see Figure 38) where the output is  
connected directly to the non-inverting input a current limiting  
resistor (RIN) will be needed under the following conditions to  
protect the anti-parallel differential input protection diodes.  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
where:  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
• The amplifier input is supplied from a low impedance source.  
each amplifier in the package (PDMAX  
)
• The input voltage rate-of-rise (dV/dt) exceeds the maximum  
slew rate of the amplifier (±3.6V/µs).  
• PDMAX for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
If the output lags far enough behind the input, the anti-parallel  
input diodes can conduct. For example, if an input pulse ramps  
from 0V to +10V in 1µs, then the output of the ISL28x27 will reach  
only +3.6V (slew rate = 3.6V/µs) while the input is at 10V, The  
input differential voltage of 6.4V will force input ESD diodes to  
conduct, dumping the input current directly into the output stage  
and the load. The resulting current flow can cause permanent  
damage to the ESD diodes. The ESD diodes are rated to 20mA,  
and in the previous example, setting RIN to 1k resistor (see Figure  
38) would limit the current to < 6.4mA, and provide additional  
protection up to ±20V at the input.  
------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
qMAX  
S
(EQ. 2)  
R
L
where:  
• TMAX = Maximum ambient temperature  
θJA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
• IqMAX = Maximum quiescent supply current of 1 amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
RL = Load resistance  
In applications where one or both amplifier input terminals are at  
risk of exposure to high voltage, current limiting resistors may be  
needed at each input terminal (see Figure 39 RIN+, RIN-) to limit  
current through the power supply ESD diodes to 20mA.  
FN6633.6  
December 16, 2010  
14  
 
 
 
 
 
ISL28127, ISL28227  
LICENSE STATEMENT  
ISL28127 and ISL28227 SPICE Model  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable licence to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
Figure 40 shows the SPICE model schematic and Figure 41 shows  
the net list for the ISL28127 and ISL28227 SPICE model. The  
model is a simplified version of the actual device and simulates  
important AC and DC parameters. AC parameters incorporated  
into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain  
and Phase. The DC parameters are VOS, IOS, total supply current  
and output voltage swing. The model does not model input bias  
current. The model uses typical parameters given in the “Electrical  
Specifications” Table beginning on page 4. The AVOL is adjusted  
for 128dB with the dominate pole at 5Hz. The CMRR is set higher  
than the “Electrical Specifications” Table to better match design  
simulations (150dB, f = 50Hz). The input stage models the actual  
device to present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
The Licensee may not sell, loan, rent, or license the macro-  
model, in whole, in part, or in modified form, to anyone outside  
the Licensee’s company. The Licensee may modify the  
macro-model to suit his/her specific applications, and the  
Licensee may make copies of this macro-model for use within  
their company only.  
Figures 42 through 57 show the characterization vs simulation  
results for the Noise Voltage, Closed Loop Gain vs Frequency,  
Closed Loop Gain vs Rf/Rg, Closed Loop Gain vs RL, Closed Loop  
Gain vs CL, Large Signal 10V Step Response, Open Loop Gain  
Phase and Simulated CMRR vs Frequency.  
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
FN6633.6  
December 16, 2010  
15  
ISL28127, ISL28227  
.
V++  
V++  
R3  
R4  
IEE1  
4
5
96E-6  
4.45k  
4.45k  
4
5
CASCODE  
CASCODE  
6
7
Q4  
Q5  
3
D1  
DX  
C4  
2
2.5pF  
SUPERB  
SUPERB  
Vin-  
V5  
V
-
Q1 Q2  
IN  
C5  
2.5pF  
R1  
8
5E11  
24  
25  
EOS  
C6  
2pF  
1
IOS  
Mirror  
Vc  
D12  
DN  
0.1V  
R17  
VCM  
+
-
+
Vmid  
Q3  
-
1E-9  
9
IEE  
R2  
200E-6  
377.4  
In+  
+
VOS  
5E11  
En  
10E-6  
-
V
+
IN  
V--  
VCM  
Voltage Noise  
Input Stage  
V++  
V++  
D2  
DX  
D4  
DX  
G1  
G3  
G5  
L1  
13  
10  
4
3.18E-3  
+
+
+
-
+
-
+
-
R5  
1
R7  
C2  
R9  
1
V1  
V3  
17  
55.55pF  
R11  
1
1.86V  
1.86V  
572.9E6  
-
-
5
11  
Vc  
Vg  
Vmid  
Vg  
Vc  
R12  
1
R6  
1
R8  
R10  
1
C3  
Vmid  
G4  
G6  
G2  
572.9E6  
55.55pF  
18  
+
-
+
-
-
+
-
+
-
+
V4  
V2  
L2  
1.86V  
1.86V  
12  
14  
VCM  
3.18E-3  
D5  
DX  
D3  
DX  
V--  
V--  
VCM  
ST Gain Stage  
2nd Gain Stage  
Mid Supply Ref  
Common Mode Gain Stage  
1
V++  
D8  
DX  
D9  
DX  
G7  
V+  
V+  
+
-
+
E2  
R15  
90  
-
-
+
22  
23  
V5  
DX  
DX  
D6  
D7  
20  
21  
ISY  
V
OUT  
VOUT  
1.12V  
2.2mA  
Vg  
V6  
1.12V  
R16  
90  
V-  
G8  
-
+
+
-
+
-
-
+
D10  
DY  
D11  
DY  
-
E3  
V-  
+
V--  
G9  
G10  
Supply Isolation Stage  
Output Stage  
FIGURE 40. SPICE SCHEMATIC  
FN6633.6  
December 16, 2010  
16  
ISL28127, ISL28227  
* source ISL28127_SPICEmodel  
R_R7  
VG V++ 572.958E6 TC=0,0  
V-- VG 572.958E6 TC=0,0  
VG V++ 55.55e-12 TC=0,0  
V-- VG 55.55e-12 TC=0,0  
13 V++ DX  
* Revision C, August 8th 2009 LaFontaine  
* Model for Noise, supply currents, 150dB f=50Hz  
CMRR, *128dB f=5Hz AOL  
R_R8  
C_C2  
C_C3  
D_D4  
D_D5  
V_V3  
V_V4  
*
*Copyright 2009 by Intersil Corporation  
*Refer to data sheet “LICENSE STATEMENT” Use of  
*this model indicates your acceptance with the  
*terms and provisions in the License Statement.  
* Connections: +input  
V-- 14 DX  
13 VG 1.86  
VG 14 1.86  
*
*
*
*
*
|
|
|
|
|
-input  
*Mid supply Ref  
|
|
|
|
+Vsupply  
R_R9  
R_R10  
I_ISY  
E_E2  
E_E3  
*
VMID V++ 1 TC=0,0  
V-- VMID 1 TC=0,0  
V+ V- DC 2.2E-3  
|
|
|
-Vsupply  
|
|
output  
|
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
.subckt ISL28127subckt Vin+ Vin-V+ V- VOUT  
* source ISL28127_SPICEMODEL_0_0  
*
*Common Mode Gain Stage with Zero  
*Voltage Noise  
G_G5  
G_G6  
R_R11  
R_R12  
L_L1  
L_L2  
*
V++ VC VCM VMID 31.6228e-9  
V-- VC VCM VMID 31.6228e-9  
VC 17 1 TC=0,0  
E_En  
IN+ VIN+ 25 0 1  
25 0 377.4 TC=0,0  
24 25 DN  
R_R17  
D_D12  
V_V7  
18 VC 1 TC=0,0  
24 0 0.1  
17 V++ 3.183e-3  
*
18 V-- 3.183e-3  
*Input Stage  
I_IOS  
C_C6  
IN+ VIN- DC 1e-9  
IN+ VIN- 2E-12  
*Output Stage with Correction Current Sources  
G_G7  
G_G8  
G_G9  
G_G10  
D_D6  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
V_V5  
V_V6  
R_R15  
R_R16  
*
VOUT V++ V++ VG 1.11e-2  
V-- VOUT VG V-- 1.11e-2  
22 V-- VOUT VG 1.11e-2  
23 V-- VG VOUT 1.11e-2  
VG 20 DX  
R_R1  
VCM VIN- 5e11 TC=0,0  
IN+ VCM 5e11 TC=0,0  
2 VIN- 1 SuperB  
3 8 1 SuperB  
R_R2  
Q_Q1  
Q_Q2  
Q_Q3  
V-- 1 7 Mirror  
21 VG DX  
Q_Q4  
4 6 2 Cascode  
V++ 22 DX  
Q_Q5  
5 6 3 Cascode  
V++ 23 DX  
R_R3  
4 V++ 4.45e3 TC=0,0  
5 V++ 4.45e3 TC=0,0  
V-- 22 DY  
R_R4  
V-- 23 DY  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
20 VOUT 1.12  
VOUT 21 1.12  
D_D1  
I_IEE  
I_IEE1  
V_VOS  
E_EOS  
*
6 7 DX  
VOUT V++ 9E1 TC=0,0  
V-- VOUT 9E1 TC=0,0  
1 V-- DC 200e-6  
V++ 6 DC 96e-6  
9 IN+ 10e-6  
8 9 VC VMID 1  
.model SuperB npn  
+ is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50  
+ re=0.065 rc=35 cje=1.5E-12 cjc=2E-12  
+ kf=0 af=0  
*1st Gain Stage  
G_G1  
G_G2  
R_R5  
R_R6  
D_D2  
D_D3  
V_V1  
V_V2  
*
V++ 11 4 5 0.0487707  
.model Cascode npn  
V-- 11 4 5 0.0487707  
11 V++ 1 TC=0,0  
V-- 11 1 TC=0,0  
10 V++ DX  
+ is=502E-18 bf=150 va=300 ik=17E-3 rb=140  
+ re=0.011 rc=900 cje=0.2E-12 cjc=0.16E-12f  
+ kf=0 af=0  
.model Mirror pnp  
V-- 12 DX  
+ is=4E-15 bf=150 va=50 ik=138E-3 rb=185  
+ re=0.101 rc=180 cje=1.34E-12 cjc=0.44E-12  
+ kf=0 af=0  
10 11 1.86  
11 12 1.86  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
*2nd Gain Stage  
G_G3  
G_G4  
V++ VG 11 VMID 4.60767E-3  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28127subckt  
V-- VG 11 VMID 4.60767E-3  
FIGURE 41. SPICE NET LIST  
FN6633.6  
December 16, 2010  
17  
ISL28127, ISL28227  
Characterization vs Simulation Results  
100  
10  
1
100  
10  
1
V
= ±19V  
= 1  
S
A
V
V(INOISE)  
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 43. SIMULATED INPUT NOISE VOLTAGE  
FIGURE 42. CHARACTERIZED INPUT NOISE VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
A
= 1000  
= 100  
= 10  
R
= 100, R = 100k  
f
A
= 1000  
= 100  
= 10  
R
= 100, R = 100k  
f
V
g
V
g
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
R
= 1k, R = 100k  
f
g
g
A
A
V
V
V
= ±15V  
= 3.5pF  
= INF  
S
L
C
R
L
V
= 100mV  
OUT  
P-P  
A
A
V
V
R
= 10k, R = 100k  
f
R
= 10k, R = 100k  
f
g
g
A
= 1  
A
= 1  
V
V
R
= OPEN, R = 0  
f
R
= OPEN, R = 0  
f
g
g
-10  
-10  
10k  
FREQUENCY (Hz)  
100  
1k  
100k  
1M  
10M  
100M  
10k  
FREQUENCY (Hz)  
100  
1k  
100k  
1M  
10M  
100M  
FIGURE 44. CHARACTERIZED CLOSED LOOP GAIN vs  
FREQUENCY  
FIGURE 45. SIMULATED CLOSED LOOP GAIN vs FREQUENCY  
15  
15  
R = R = 100k  
R = R = 100k  
f
g
f
g
13  
11  
9
13  
11  
9
R = R = 10k  
f
g
R = R = 10k  
f
g
7
R = R = 1k  
7
f
g
R = R = 1k  
f
g
5
5
3
V
= ±15V  
= 10k  
3
V
= ±15V  
= 10k  
S
R = R = 100  
S
R = R = 100  
f
g
f
g
R
C
A
R
C
A
L
L
L
L
1
1
= 3.5pF  
= +2  
= 3.5pF  
= +2  
-1  
-3  
-5  
-1  
-3  
-5  
V
V
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 47. SIMULATED CLOSED LOOP GAIN vs Rf/Rg  
FIGURE 46. CHARACTERIZED CLOSED LOOP GAIN vs Rf/Rg  
FN6633.6  
December 16, 2010  
18  
ISL28127, ISL28227  
Characterization vs Simulation Results(Continued)  
2
2
R
R
= 10k  
= 1k  
L
L
1
1
R
= 10k  
L
0
0
R
= 1k  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
R
R
= 499  
= 100  
L
R
= 499  
L
L
R
= 100  
L
V
= ±15V  
= 3.5pF  
= +1  
V
= ±15V  
= 3.5pF  
= +1  
S
S
R
= 49.9  
L
C
A
C
A
L
L
V
V
R
= 49.9  
L
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FIGURE 48. CHARACTERIZED CLOSED LOOP GAIN vs RL  
FIGURE 49. SIMULATED CLOSED LOOP GAIN vs RL  
7
7
6
V
R
A
= ±15V  
= 10k  
= +1  
V
R
= ±15V  
= 10k  
= +1  
S
6
5
S
C
= 1000pF  
L
L
L
5
C
= 1000pF  
A
V
L
V
V
= 100mV  
P-P  
4
OUT  
V
= 100mV  
4
OUT P-P  
C
= 220pF  
L
3
3
C
= 100pF  
L
2
2
C
= 220pF  
= 100pF  
L
C
= 25.5pF  
1
L
1
0
C
0
L
C
= 25.5pF  
L
-1  
-2  
-3  
-1  
-2  
-3  
C
= 3.5pF  
L
C
= 3.5pF  
1M  
L
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
10k  
1k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 50. CHARACTERIZED CLOSED LOOP GAIN vs CL  
FIGURE 51. SIMULATED CLOSED LOOP GAIN vs CL  
6
5
4
6
5
4
V
C
= ±15V  
= 3.5pF  
= 1  
S
L
3
V
C
= ±15V  
= 3.5pF  
= 1  
S
L
3
2
2
1
A
V
A
V
R = 0, R = INF  
f
g
R = 0, R = INF  
1
f
g
V
= 10V  
OUT  
P-P  
V
= 10V  
0
OUT  
P-P  
0
1
1
-2  
-3  
-4  
-5  
-6  
R
= 10k  
L
-2  
-3  
-4  
-5  
-6  
R
= 2k  
L
R
= 10k  
L
0
5
10  
15  
TIME (µs)  
20  
25  
30  
0
5
10  
15  
TIME (µs)  
20  
25  
30  
FIGURE 53. SIMULATED LARGE SIGNAL 10V STEP RESPONSE  
FIGURE 52. CHARACTERIZED LARGE SIGNAL 10V STEP  
RESPONSE  
FN6633.6  
December 16, 2010  
19  
ISL28127, ISL28227  
Characterization vs Simulation Results(Continued)  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
PHASE  
PHASE  
GAIN  
GAIN  
0
R
C
= 10k  
= 10pF  
-20  
-40  
-60  
-80  
-100  
L
L
R
C
= 10k  
L
L
-50  
-100  
= 10pF  
MODEL V SET TO ZERO  
OS  
SIMULATION  
FOR THIS TEST  
0.1Hz  
10Hz  
1.0k  
100k  
10M  
0.1m 1m 10m100m  
1
10 100 1k 10k 100k 1M 10M100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 55. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 54. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
150  
100  
50  
130  
V
= ±5V  
S
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.25V  
S
V
= ±15V  
S
R
C
A
= INF  
L
L
GENERATED USING FULL  
MODEL. CMRR DELTA INPUT  
0
= 5.25pF  
= +1  
BASE VOLTAGE/V  
V
CM  
V
= 1V  
INPUT VOLTAGE  
-50  
10m  
CM  
P-P  
-10  
10M  
1.0Hz 100Hz 10k  
1.0M  
100M 10G 1.0T  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 56. CHARACTERIZED CMRR vs FREQUENCY  
FIGURE 57. SIMULATED CMRR vs FREQUENCY  
FN6633.6  
December 16, 2010  
20  
ISL28127, ISL28227  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
REVISION  
FN6633.6  
DATE  
CHANGE  
12/13/10 page 3: The ISL28227 8 LD TDFN Pin configuration: Vout_A and Vout_B labels on pins 1 and 7 changed to VoutA and VoutB  
Figure 8: labeled red curve Vs = ±5V and blue curve Vs = ±15V.  
12/10/10 -Converted to New Intersil Template  
-Added AN1509 in Related Literature on page 1  
-Removed Titles from Graphics on page 1 and replaced with Figure names  
-Changed copyright to legal's suggested verbiage on page 1  
-Updated Ordering Information table on page 2. Removed Coming Soon for ISL28127FRTBZ and ISL28127FUBZ parts.  
Added in the Vos (MAX) numbers in those rows (75 and 70 respectively).  
-Changed Tape and Reel Note in ordering information to "Add T*…" to include all Tape and Reel additions  
-Updated Electrical Spec Table page 4 and page 5 for Vos and TCVos  
oAdded data row for Offset Voltage; MSOP Grade B Package; ISL28127  
oAdded data row for Offset Voltage; TDFN Grade B Package; ISL28127  
oAdded data row for Offset Voltage Drift; MSOP Grade B Package; ISL28127  
oAdded data row for Offset Voltage Drift; TDFN Grade B Package; ISL28127  
oRemoved - Temperature data established by characterization from conditions (New standard note covers this verbiage)  
oChanged Note: "Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.  
Temperature limits established by characterization and are not production tested". TO: Compliance to datasheet limits is  
assured by one or more methods: production test, characterization and/or design.  
-Updated Typical Performance Curves  
oUpdated typical plot of Vos vs Temp for Figure 8.  
oAdded: IB+ vs Temp vs Vsupply plot; IB- vs Temp vs Vsupply plot; Ios vs Temp vs Vsupply plot; Figures 9, 10, 11  
oAdded: Vos distribution Vs=15V plot; Vos distribution Vs=5V plot; TCVos distribution Vs=15V plot; TCVos distribution Vs=5V  
plot; TCIB+ distribution Vs=15V plot; TCIB+ distribution Vs=5V plot; TCIB- distribution Vs=15V plot; TCIB- distribution Vs=5V  
plot; TCIos distribution Vs=15V plot; TCIos distribution Vs=5V plot (Figures 13 thru 22)  
FN6633.5  
FN6633.4  
9/10/10 - Updated ordering information by removing Note 2, which referenced “-T13” tape and reel option and revised Note 1 to  
include ”-T7A” tape and reel option. Removed Note reference next to part numbers and placed under part number in table  
head indicating that it references all parts. Change shows that all parts now have -T7, -T7A, and -T13 tape and reel options.  
7/2/10 In “Ordering Information” on page 2:  
Removed “Coming Soon” from ISL28127FRTZ, ISL28227FRTBZ, ISL28227FRTZ, ISL28227FUBZ & ISL28227FUZ.  
Updated the part marking for ISL28127FRTBZ from “127Z” to “8127”  
Updated the part marking for ISL28127FRTZ from “-C 127Z” to “-C 8127”  
Updated the part marking for ISL28227FRTBZ from “227Z” to “8227”  
Updated the part marking for ISL28227FRTZ from “-C 227Z” to “-C 8227”  
Added VOS of 75µV for ISL28227FRTBZ  
Added VOS of 75µV for ISL28227FUBZ  
Added Evaluation Boards ISL28127MSOPEVAL1Z and ISL28227SOICEVAL2Z  
In “Thermal Information” on page 4, for 8 Ld TDFN, corrected Theta JA note from Note 5 to Note 4.  
In VS ±15V “Electrical Specifications” table on page 4, added VOS specs for ISL28227 MSOP, TDFN Grade B Packages. Added  
TCVOS specs for ISL28227 MSOP, TDFN Grade B Packages  
Changed TYP for “Offset Voltage; MSOP, TDFN Grade C Package” from 10µV to -10µV  
In VS ±5V “Electrical Specifications” table on page 6, added VOS specs for SOIC ISL28227. Added VOS specs for MSOP, TDFN  
Grade B and C Packages. Added TCVOS specs for SOIC ISL28227. Added TCVOS specs for MSOP, TDFN Grade B and C  
Packages  
FN6633.3  
3/11/10 PODs M8.118 and L8.3x3A - Updated to new intersil format by adding land pattern and moving dimensions from table onto  
drawing.  
3/3/10 On page 2:  
Under "Ordering Information”  
ISL28227FBZ: Changed Vos max from 80µV to 75µV  
On page 4:  
Changed:  
1. ISL28227 SOIC Room Temp limit for Vos from 80µV (MAX) and -80µV (MIN) to 75µV (MAX) and -75µV (MIN).  
2. ISL28227 SOIC Full Temp limit for Vos from 160µV (MAX) and -160µV (MIN) to 150µV (MAX) and -150µV (MIN)  
3. ISL28227 SOIC limit for TCVos from 0.8µV (MAX) and -0.8µV (MIN) to 0.75µV (MAX) and -0.75µV (MIN)  
FN6633.6  
December 16, 2010  
21  
ISL28127, ISL28227  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev. (Continued)  
REVISION  
DATE  
CHANGE  
FN6633.3  
(Continued)  
3/2/10 In “Absolute Maximum Ratings” on page 4, HBM for ISL28227 changed from “4kV” to “6kV”  
In “Thermal Information” on page 4, Tjc values for ISL28227 changed:  
For MSOP from “50” to “45”  
For SOIC from “60” to “55”  
2/25/10 In the “Ordering Information” (page 2):  
Part Number  
Part Marking  
Vos (Max) (uV)  
ISL28127FRTBZ  
ISL28127FRTZ  
ISL28127FUBZ  
ISL28127FUZ  
TBD instead of 70  
-C 127Z instead of 127Z C  
TBD instead of 70  
150 instead of 70  
8127Z -C instead of 8127Z  
Removed “Coming Soon) for ISL28127FUZ package  
ISL28227FBZ  
Removed “Coming Soon) for ISL28227FBZ package  
ISL28227FRTBZ  
80 instead of 70  
TBD instead of 70  
150 instead of 70  
ISL28227FRTZ  
ISL28227FUZ  
-C 227Z instead of 227Z C  
8227Z -C instead of 8227Z  
Added the following row of data  
ISL28227FUBZ 8227Z  
TBD  
In the “Electrical specifications” on page 4 and page 6 the following changes were made. The change applies to the same  
spec found on page 4 and page 6.  
VOS Offset Voltage; SOIC Package, ISL28127: Added -70 to MIN across room temp and -120 MIN across full temp  
VOS Offset Voltage; SOIC Package, ISL28227: Added -80 to MIN across room temp and -160 MIN across full temp  
VOS Offset Voltage; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -150 to MIN across room temp and -  
250 MIN across full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28127: Added -0.5 to MIN across full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28227: Added -0.8 to MIN across full temp  
TCVOS Offset Voltage Drift; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -1 to MIN across full temp  
IOS Input Offset Current: Added -10 to MIN across room temp and -12 to MIN across full temp  
IB Input Bias Current:Added -10 to MIN across room temp and -12 to MIN across full temp  
2/19/10 In the “Ordering Information” (page 2), added differentiated part numbers for B-grade and C-grade for TDFN and MSOP.  
In “Absolute Maximum Ratings” on page 4, added ESD and latch-up information.  
In “Thermal Information” on page 4, broke out Theta JA to list the single and dual and added Theta JC.  
FN6633.2  
1/29/10 Added license statement for P-Spice Model.  
Updated Spice Schematic by adding capacitors  
C4, C5 and C6  
Updated Spice Net List as follows:  
From:  
Revision B, July 23 2009  
To:  
Revision C, August 8th 2009 LaFontaine  
From:  
source ISL28127_SPICEMODEL_7_9  
To:  
source ISL28127_SPICEMODEL_0_0  
Added after I_IOS:  
C_C6  
IN+ VIN- 2E-12  
Added after R_R4:  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
From:  
.ends ISL28127  
To:  
.ends ISL28127subckt  
Replaced POD MDP0027 with M8.15E to match ASYD in Intrepid (no dimension changes; the PODs are the same. The  
change was to update to the Intersil format, moving dimensions from table onto drawing and adding land pattern)  
FN6633.6  
December 16, 2010  
22  
ISL28127, ISL28227  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev. (Continued)  
REVISION  
FN6633.1  
DATE  
CHANGE  
9/14/09 “Functional Description” on page 14. Corrected low 1/f noise corner frequency from 3Hz to 5Hz to match Figure 2 on page 1.  
Corrected high open loop gain from 1400V/mV to 1500V/mV to match “Open-Loop Gain” on page 5 spec table.  
“Operating Voltage Range” on page 14. Removed following 2 sentences since there are no graphs illustrating common  
mode voltage sensitivity vs temperature or VOS as a function of supply voltage and temperature:  
“The input common mode voltage sensitivity to temperature is shown in Figure 3 (±15V). Figure 20 shows VOS as a function  
of supply voltage and temperature with the common mode voltage at 0V for split supply operation.”  
9/2/09 Added Theta JC in “Thermal Information” on page 4 for TDFN package  
7/21/09 Updated Features to show only key features and updated applications section. Added Typical Application Circuit and  
performance graph, Updated Ordering Information to match Intrepid and added POD's L8.3x3A and M8.118, also added  
MSL level as part of new format. Added TDFN pinouts, updated pin descriptions to include TDFN pinouts, Added Theta Ja in  
Thermal information for TDFN and MSOP packages. Added Revision History and Products Text with device info links. Added  
SPICE Model with referencing text and Net List.  
FN6633.0  
5/28/09 Techdocs Issued File Number FN6633. Initial release of Datasheet with file number FN6633 making this a Rev 0.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL28127, ISL28227  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6633.6  
December 16, 2010  
23  
ISL28127, ISL28227  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633.6  
December 16, 2010  
24  
ISL28127, ISL28227  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN6633.6  
December 16, 2010  
25  
ISL28127, ISL28227  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.036  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633.6  
December 16, 2010  
26  

相关型号:

ISL28127FUZ-T7A

IC OPAMP GP 10MHZ LN 8MSOP
RENESAS

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127_10

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127_1012

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127_12

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL28130

Single, Dual, and Quad Micropower, Low Drift, RRIO Operational Amplifiers
INTERSIL

ISL28130

Single, Dual, and Quad Micropower, Low Drift, RRIO Operational Amplifiers
RENESAS

ISL28130CBZ

Single, Dual, and Quad Micropower, Low Drift, RRIO Operational Amplifiers
INTERSIL

ISL28130CBZ-T

IC OP-AMP, 46.8 uV OFFSET-MAX, 0.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012, SOIC-8, Operational Amplifier
RENESAS