ISL28274FAZ [INTERSIL]

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier; 微功耗,单电源,轨到轨输入 - 输出仪表放大器和高精度运算放大器
ISL28274FAZ
型号: ISL28274FAZ
厂家: Intersil    Intersil
描述:

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier
微功耗,单电源,轨到轨输入 - 输出仪表放大器和高精度运算放大器

运算放大器 仪表放大器
文件: 总19页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28274, ISL28474  
®
Data Sheet  
December 13, 2006  
FN6345.0  
Micropower, Single Supply, Rail-to-Rail  
Input-Output Instrumentation Amplifier  
and Precision Operational Amplifier  
Features  
• Combination of IN-AMP and OP-AMP in a single package  
• 120µA supply current for ISL28274  
• Input Offset Voltage IN-AMP 400µV max  
• Input Offset Voltage OP-AMP 225µV max  
• 30pA max input bias current  
The ISL28274 is a combination of a micropower  
instrumentation amplifier (Amp A) with a low power precision  
amplifier (Amp B) in a single package. The ISL28474 consist  
of two micropower instrumentation amplifiers (Amp A) and  
two low power precision amplifiers (Amp B) in a single  
package. The amplifiers are optimized for operation at 2.4V  
to 5V single supplies. Inputs and outputs can operate rail-to-  
rail. As with all instrumentation amplifiers, a pair of inputs  
provide a high common-mode rejection and are completely  
independent from a pair of feedback terminals. The  
feedback terminals allow zero input to be translated to any  
output offset, including ground. A feedback divider controls  
the overall gain of the amplifier. The additional precision  
amplifier can be used to generate higher gain, with smaller  
feedback resistors or used to generate a reference voltage.  
• 100dB CMRR and PSRR  
• Single supply operation of 2.4V to 5.0V  
• Ground Sensing  
• Input voltage range is rail-to-rail and output swings  
rail-to-rail  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• 4-20mA loops  
The instrumentation amp (Amp A) is compensated for a gain  
of 100 or more and the precision amp (Amp B) is unity gain  
stable. Both amplifiers have PMOS inputs that provide less  
than 30pA input bias currents.  
• Industrial Process Control  
• Medical Instrumentations  
The amplifiers can be operated from one lithium cell or two  
Ni-Cd batteries. The amplifiers input range goes from below  
ground to slightly above positive rail. The output stage  
swings completely to ground or positive supply - no pull-up  
or pull-down resistors are needed.  
Ordering Information  
PART NUMBER  
(Note)  
PART  
QTY. PER PACKAGE  
PKG.  
DWG. #  
MARKING TUBE/REEL (Pb-Free)  
ISL28274FAZ  
28274FAZ  
97/Tube 16 Ld QSOP MDP0040  
ISL28274FAZ-T7 28274FAZ  
7”  
16 Ld QSOP MDP0040  
(1000 pcs) Tape & Reel  
Coming Soon  
ISL28474FAZ 55 /Tube 24 Ld QSOP MDP0040  
ISL28474FAZ  
Coming Soon  
ISL28474FAZ  
7”  
24 Ld QSOP MDP0040  
ISL28474FAZ-T7  
(1000 pcs) Tape & Reel  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL28274, ISL28474  
ISL28474  
(16 LD QSOP)  
TOP VIEW  
Pinout  
ISL28274  
(16 LD QSOP)  
TOP VIEW  
IA OUT_1  
IA FB+_1  
IA FB-_1  
IA IN-_1  
IA IN+_1  
IA EN_1  
V+  
1
2
3
4
5
6
7
8
9
24 IA OUT_2  
23 IA FB+_2  
22 IA FB-_2  
21 IA IN-_2  
20 IA IN+_2  
19 IA EN_2  
18 V-  
NC  
IA OUT  
IA FB+  
IA FB-  
IA IN-  
IA IN+  
IA EN  
V-  
1
2
3
4
5
6
7
8
16 V+  
15 OUT  
14 NC  
13 NC  
12 IN-  
11 IN+  
10 EN  
A
-
+
A
-
+
A
-
+
B
-
+
EN_1  
17 EN_2  
9
NC  
IN+_1  
16 IN+_2  
IN-_1 10  
NC 11  
15 IN-_2  
IA = Instrumentation Amplifier  
= Instrumentation Amplifier  
-
+
-
+
A
-
+
+
14 NC  
B
B
13  
OUT_1 12  
OUT_2  
B
-
= Precision Amplifier  
IA = Instrumentation Amplifier  
= Instrumentation Amplifier  
A
-
+
+
B
-
= Precision Amplifier  
FN6345.0  
December 13, 2006  
2
ISL28274, ISL28474  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs  
Input Current (IN, FB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage (IN, FB) . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD tolerance, Human Body Model . . . . . . . . . . . . . . . . . . . . . .3kV  
ESD tolerance, Machine Model . . . . . . . . . . . . . . . . . . . . . . . . .300V  
Thermal Resistance  
θ
(°C/W)  
JA  
16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
24 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
112  
88  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications INSTRUMENTATION AMPLIFIER “A” V+ = +5V, V - = GND, VCM = 1/2V + T = +25°C, unless otherwise  
S
S
A
specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to  
+125°C.  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
400  
35  
400  
µV  
OS  
-750  
750  
TCV  
Input Offset Voltage Temperature  
Coefficient  
Temperature = -40°C to +125°C  
0.7  
±5  
µV/°C  
pA  
OS  
I
Input Offset Current between IN+ and (see Figure 44 for extended temperature range)  
IN-, and between FB+ and FB- -40°C to +85°C  
-30  
-80  
30  
80  
OS  
I
Input Bias Current (IN+, IN-, FB+, and (see Figure 36 and 37 for extended temperature  
-30  
±10  
30  
pA  
B
FB- terminals)  
range)  
-80  
80  
-40°C to +85°C  
e
Input Noise Voltage  
f = 0.1Hz to 10Hz  
0.75  
210  
0.65  
1
µV  
P-P  
N
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 1kHz  
nV/Hz  
pA/Hz  
GΩ  
o
i
f = 1kHz  
o
N
R
IN  
IN  
V
Input Voltage Range  
V
= 2.4V to 5.0V  
0
V
V
+
+
CMRR  
Common Mode Rejection Ratio  
V
= 0V to 5V  
80  
75  
100  
100  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
V
= 2.4V to 5V  
80  
dB  
+
75  
E
Gain Error  
Slew Rate  
R
R
= 100kΩ to 2.5V  
= 1kΩ to GND  
-0.2  
0.5  
%
G
L
SR  
0.40  
0.65  
V/µs  
L
0.35  
0.70  
GBWP  
Gain Bandwidth Product  
2.5  
MHz  
Electrical Specifications OPERATIONAL AMPLIFIER “B” V + = +5V, V - = GND, VCM = 1/2V + T = +25°C, unless otherwise  
S
S
S
A
specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to  
+125°C.  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
-225  
±20  
225  
µV  
OS  
-450  
450  
ΔV  
Long Term Input Offset Voltage  
Stability  
1.2  
2.2  
±5  
µV/Mo  
µV/°C  
pA  
OS  
------------------  
ΔTime  
ΔV  
Input Offset Drift vs Temperature  
OS  
---------------  
ΔT  
I
Input Offset Current  
(see Figure 46 for extended temperature range)  
-40°C to +85°C  
-30  
-80  
30  
80  
OS  
FN6345.0  
December 13, 2006  
3
ISL28274, ISL28474  
Electrical Specifications OPERATIONAL AMPLIFIER “B” V + = +5V, V - = GND, VCM = 1/2V + T = +25°C, unless otherwise  
S
S
S
A
specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to  
+125°C. (Continued)  
PARAMETER  
DESCRIPTION  
Input Bias Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
(see Figure 40 and 41for extended temperature  
-30  
±10  
30  
pA  
B
range)  
-80  
80  
-40°C to +85°C  
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
Input Noise Current Density  
Input Voltage Range  
f = 0.1Hz to 10Hz  
5.4  
50  
µV  
PP  
N
f
f
= 1kHz  
= 1kHz  
nV/Hz  
pA/Hz  
V
O
O
i
0.14  
N
CMIR  
Guaranteed by CMRR test  
= 0V to 5V  
0
5
CMRR  
Common-Mode Rejection Ratio  
V
80  
75  
100  
105  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Slew Rate  
V
= 2.4V to 5V  
85  
80  
dB  
V/mV  
V/µs  
kHz  
+
A
V
= 0.5V to 4.5V, R = 100kΩ  
200  
190  
300  
VOL  
O
L
SR  
0.12  
0.09  
±0.14  
300  
0.16  
0.21  
GBW  
Gain Bandwidth Product  
Electrical Specifications COMMON ELECTRICAL SPECIFICATIONS V+ = 5V, V- = GND, VCM = 1/2V + T = 25°C, unless otherwise  
S
A
specified.For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to  
+125°C.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
Output low, R = 100kΩ  
MIN  
TYP  
MAX  
UNIT  
V
Maximum Output Voltage Swing  
3
6
mV  
OUT  
L
30  
Output low, R = 1kΩ  
130  
4.996  
4.880  
120  
175  
225  
mV  
V
L
Output high, R = 100kΩ  
4.990  
4.97  
L
Output high, R = 1kΩ  
4.800  
4.750  
V
L
I
I
Supply Current, Enabled  
Supply Current, Disabled  
ISL28274 All channels enabled  
156  
µA  
S,ON  
175  
ISL28474 All channels enabled  
ISL28274 All channels enabled  
240  
4
µA  
µA  
7
S,OFF  
9
ISL28474 All channels enabled  
8
µA  
mA  
mA  
I
I
+
-
Short Circuit Sourcing Capability  
Short Circuit Sinking Capability  
R
R
= 10Ω  
= 10Ω  
28  
25  
31  
26  
SC  
L
L
24  
SC  
20  
V
V
V
Minimum Supply Voltage  
Enable Pin High Level  
Enable Pin Low Level  
Enable Pin Input Current  
2.4  
2
V
V
S
INH  
INL  
0.8  
V
I
V
V
= 5V  
= 0V  
0.8  
1
1.3  
µA  
ENH  
EN  
EN  
I
Enable Pin Input Current  
0
50  
µA  
ENL  
26  
100  
FN6345.0  
December 13, 2006  
4
ISL28274, ISL28474  
Typical Performance Curves  
90  
90  
80  
70  
60  
50  
40  
30  
COMMON-MODE INPUT = V+  
COMMON-MODE INPUT = 1/2V  
+
GAIN = 10,000  
GAIN = 5,000  
GAIN = 10,000  
GAIN = 5,000  
80  
70  
60  
50  
40  
30  
GAIN = 2,000  
GAIN = 1,000  
GAIN = 500  
GAIN = 2,000  
GAIN = 1,000  
GAIN = 500  
GAIN = 200  
GAIN = 100  
GAIN = 200  
GAIN = 100  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. AMPLIFIER “A”(INAMP) FREQUENCY  
RESPONSE vs CLOSED LOOP GAIN  
FIGURE 2. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE  
vs CLOSED LOOP GAIN. V = 1/2V+  
CM  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
COMMON-MODE INPUT = V +10mV  
GAIN = 10,000  
M
V
= 5V  
S
80  
70  
60  
50  
40  
30  
GAIN = 5,000  
GAIN = 2,000  
GAIN = 1,000  
GAIN = 500  
V = 2.4V  
S
A
R
C
= 100  
= 10kΩ  
= 10pF  
V
L
L
F
F
G
GAIN = 200  
GAIN = 100  
R /R = 100  
R
R
G
= 10kΩ  
= 100Ω  
0
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. AMPLIFIER “A”(INAMP) FREQUENCY  
RESPONSE vs SUPPLY VOLTAGE  
FIGURE 3. AMPLIFIER “A”(INAMP) FREQUENCY  
RESPONSE vs CLOSED LOOP GAIN  
120  
100  
80  
50  
45  
2200pF  
1200pF  
40  
35  
30  
25  
60  
820pF  
AV = 100  
40  
A
= 100  
V
R = 10kΩ  
C
R /R = 100  
R
R
56pF  
= 10pF  
L
20  
0
F
F
G
G
= 10kΩ  
= 100Ω  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. AMPLIFIER “A”(INAMP) CMRR vs FREQUENCY  
FIGURE 5. AMPLIFIER “A”(INAMP) FREQUENCY  
RESPONSE vs C  
LOAD  
FN6345.0  
December 13, 2006  
5
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
700  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
A
= 100  
V
A
= 100  
100  
V
1
10  
100  
1k  
10k  
100k  
10  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. AMPLIFIER “A”(INAMP) INPUT VOLTAGE NOISE  
SPECTRAL DENSITY  
FIGURE 7. AMPLIFIER “A”(INAMP) PSRR vs FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
A
= 100  
V
0.6  
0.4  
0.2  
0.0  
10k  
1
10  
100  
1k  
100k  
TIME (1s/DIV)  
FREQUENCY (Hz)  
FIGURE 9. AMPLIFIER “A”(INAMP) INPUT CURRENT NOISE  
SPECTRAL DENSITY  
FIGURE 10. AMPLIFIER “A”(INAMP) 0.1 Hz TO 10Hz INPUT  
VOLTAGE NOISE  
45  
40  
35  
30  
+1  
0
V
= ±1.2V  
RL = 1k  
S
V
= ±2.5V  
RL = 1k  
S
-1  
-2  
-3  
-4  
-5  
-6  
-7  
8
V
= ±1.2V  
RL = 10k  
S
V
= ±2.5V  
S
V
= ±2.5V  
RL = 10k  
25  
20  
15  
10  
5
S
V
= ±1.2V  
S
A
= 100  
= 10kΩ  
= 3pF  
= 100kΩ  
= 1kΩ  
V
R
C
R
R
V
= 50mVp-p  
L
L
F
G
OUT  
= 1  
A
V
C
= 3pF  
V
= ±1.0V  
10k  
L
F
S
R =0/R = INF  
G
0
100  
1k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
5M  
FREQUENCY (Hz)  
FIGURE 11. AMPLIFIER “B” (OP-AMP) FREQUENCY  
RESPONSE vs SUPPLY VOLTAGE  
FIGURE 12. AMPLIFIER “B” (OP-AMP) FREQUENCY  
RESPONSE vs SUPPLY VOLTAGE  
FN6345.0  
December 13, 2006  
6
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
100  
80  
0
-20  
V
= V /2  
DD  
CM  
60  
V
, µV  
OS  
40  
20  
-40  
V
= 5V  
DD  
0
-20  
-40  
-60  
-80  
-100  
-60  
V
= 2.5V  
DD  
-80  
-100  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
COMMON-MODE INPUT VOLTAGE (V)  
FIGURE 13. AMPLIFIER “B” (OP-AMP) INPUT OFFSET  
VOLTAGE vs OUTPUT VOLTAGE  
FIGURE 14. AMPLIFIER “B” (OP-AMP) INPUT OFFSET  
VOLTAGE vs COMMON-MODE INPUT VOLTAGE  
120  
80  
80  
200  
150  
100  
80  
60  
40  
20  
0
40  
PHASE  
100  
50  
40  
0
0
0
-40  
-80  
-120  
GAIN  
10k  
-50  
-100  
-150  
-40  
-80  
-20  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
100k  
VOL  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. AMPLIFIER “B” (OP-AMP) A  
vs FREQUENCY  
FIGURE 16. AMPLIFIER “B” (OP-AMP) A  
vs FREQUENCY  
VOL  
@ 100kΩ LOAD  
@ 1kΩ LOAD  
10  
0
10  
V
V
= 5VDC  
S
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= ±2.5VDC  
= 1Vp-p  
= 10kΩ  
= 1Vp-p  
S
SOURCE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
SOURCE  
R
= 10kΩ  
= +1  
L
R
L
A
V
PSRR -  
PSRR +  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. AMPLIFIER “B” (OP-AMP) PSRR vs FREQUENCY  
FIGURE 18. AMPLIFIER “B” (OP-AMP) CMRR vs FREQUENCY  
FN6345.0  
December 13, 2006  
7
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
5.0  
4.0  
3.0  
2.0  
1.0  
0
V
= 5VDC  
= 2Vp-p  
S
V
IN  
V
R
OUT  
= 1kΩ  
V
OUT  
L
A
= -2  
V
V
OUT  
V
= 5VDC  
V
S
IN  
V
= 0.1Vp-p  
OUT  
= 1kΩ  
R
L
A
= +1  
V
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
50  
100  
150  
200  
250  
TIME (µs)  
TIME (µs)  
FIGURE 19. AMPLIFIER “B” (OP-AMP) SMALL SIGNAL  
TRANSIENT RESPONSE  
FIGURE 20. AMPLIFIER “B” (OP-AMP) LARGE SIGNAL  
TRANSIENT RESPONSE  
1k  
100  
10  
10.00  
1.00  
0.10  
0.01  
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. AMPLIFIER “B” (OP-AMP) CURRENT NOISE vs  
FREQUENCY  
FIGURE 22. AMPLIFIER “B” (OP-AMP) VOLTAGE NOISE vs  
FREQUENCY  
6
V+ = 5V  
V
IN  
5
4
3
2
1
0
100K  
VS +  
100K  
-
DUT  
+
1K  
VS -  
V
OUT  
Function  
Generator  
33140A  
5.4µV  
P-P  
0
50  
100  
150  
200  
TIME (1s/DIV)  
TIME (ms)  
FIGURE 23. AMPLIFIER “B” (OP-AMP) 0.1Hz TO 10Hz INPUT  
VOLTAGE NOISE  
FIGURE 24. AMPLIFIER “B” (OP-AMP) INPUT VOLTAGE  
SWING ABOVE THE V+ SUPPLY  
FN6345.0  
December 13, 2006  
8
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
155  
135  
115  
95  
A
= -1  
= 200mVp-p  
V
EN  
INPUT  
V
IN  
V+ = 5V  
V- = 0V  
0
0
75  
V
OUT  
55  
35  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
10µs/DIV  
SUPPLY VOLTAGE (V)  
FIGURE 25. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 26. AMPLIFIER “B” (OP-AMP) ENABLE TO OUTPUT  
DELAY TIME  
5.0  
170  
n = 100  
MAX  
n = 100  
4.8  
160  
MAX  
4.6  
150  
4.4  
4.2  
4.0  
3.8  
140  
130  
120  
110  
100  
90  
MEDIAN  
3.6  
MEDIAN  
3.4  
MIN  
3.2  
MIN  
3.0  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. DISABLED POSITIVE SUPPLY CURRENT vs  
TEMPERATURE V = ±2.5V. R = INF  
FIGURE 27. TOTAL SUPPLY CURRENT vs TEMPERATURE  
V
= ±2.5V ENABLED. R = INF  
S
L
S
L
-4.0  
-4.5  
-5.0  
-5.5  
-6.0  
-6.5  
50  
0
n = 100  
MIN  
n = 100  
MAX  
-50  
MEDIAN  
-100  
-150  
-200  
-250  
-300  
MEDIAN  
MIN  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 30. I BIAS (IA FB+) vs TEMPERATURE V = ±2.5V.  
FIGURE 29. DISABLED NEGATIVE SUPPLY CURRENT vs  
TEMPERATURE V = ±2.5V. R = INF  
S
S
L
FN6345.0  
December 13, 2006  
9
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
25  
-25  
40  
20  
n = 100  
MIN  
n = 100  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
MIN  
-75  
-125  
-175  
-225  
-275  
MEDIAN  
MAX  
MEDIAN  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. I BIAS (IA FB-) vs TEMPERATURE V = ±2.5V.  
S
FIGURE 32. I BIAS (IA FB+) vs TEMPERATURE V = ±1.2V  
S
50  
50  
n = 100  
n = 100  
0
0
-50  
MEDIAN  
MIN  
-50  
MIN  
-100  
-100  
-150  
-200  
-250  
MEDIAN  
-150  
MAX  
-200  
-250  
MAX  
-300  
-350  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. I BIAS (IA FB-) vs TEMPERATURE V = ±1.2V  
S
FIGURE 34. I BIAS (IA IN+) vs TEMPERATURE V = ±2.5V  
S
50  
50  
n = 100  
n = 100  
0
0
-50  
-50  
MIN  
MIN  
-100  
-150  
-100  
-150  
MEDIAN  
MEDIAN  
-200  
-200  
MAX  
MAX  
-250  
-250  
-300  
-300  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 36. I BIAS (IA IN+) vs TEMPERATURE V = ±1.2V  
FIGURE 35. I BIAS (IA IN-) vs TEMPERATURE V = ±2.5V  
S
S
FN6345.0  
December 13, 2006  
10  
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
50  
0
50  
0
n = 100  
n = 100  
-50  
-50  
MIN  
MIN  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
MEDIAN  
MEDIAN  
MAX  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 38. I BIAS(IN+) vs TEMPERATURE V = ±2.5V  
S
FIGURE 37. I BIAS (IA IN-) vs TEMPERATURE V = ±1.2V  
S
40  
30  
n = 100  
n = 100  
10  
-10  
-10  
-30  
-60  
MIN  
-110  
-50  
MIN  
-70  
-160  
-210  
-260  
-310  
MEDIAN  
-90  
MEDIAN  
-110  
MAX  
MAX  
-130  
-150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 40. I BIAS(IN+) vs TEMPERATURE V = ±1.2V  
S
FIGURE 39. I BIAS(IN-) vs TEMPERATURE V = ±2.5V  
S
40  
40.0  
MAX  
n = 100  
n = 100  
20.0  
0.0  
-10  
-60  
MIN  
MIN  
-20.0  
-40.0  
-60.0  
-80.0  
-100.0  
-120.0  
-140.0  
MEDIAN  
-110  
-160  
-210  
-260  
-310  
MAX  
MEDIAN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
TEMPERATURE (°C)  
FIGURE 42. IA INPUT OFFSET CURRENT vs TEMPERATURE  
= ±2.5V  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
FIGURE 41. I BIAS(IN-) vs TEMPERATURE V = ±1.2V  
S
V
S
FN6345.0  
December 13, 2006  
11  
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
100  
50  
50  
40  
n = 100  
n = 100  
MAX  
30  
20  
0
10  
MAX  
-50  
0
-10  
-20  
-30  
-40  
-50  
MEDIAN  
-100  
-150  
-200  
MEDIAN  
80  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 43. IA INPUT OFFSET CURRENT vs TEMPERATURE  
= ±1.2V  
FIGURE 44. INPUT OFFSET CURRENT vs TEMPERATURE  
V
V
= ±2.5V  
S
S
40  
20  
800  
600  
400  
200  
0
n = 100  
MIN  
n = 100  
MAX  
0
-20  
-40  
-60  
-200  
-400  
-600  
-800  
MEDIAN  
-80  
-100  
-120  
-1400  
MEDIAN  
MIN  
MAX  
-40  
-20  
0
20  
TEMPERATURE (°C)  
FIGURE 45. INPUT OFFSET CURRENT vs TEMPERATURE  
= ±1.2V  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FIGURE 46. IA INPUT OFFSET VOLTAGE vs TEMPERATURE  
= ±2.5V  
V
S
V
S
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
n = 100  
n = 100  
MIN  
MIN  
-100  
-200  
-300  
-400  
-500  
MEDIAN  
-200  
-400  
-600  
-800  
MEDIAN  
MAX  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 47. IA INPUT OFFSET VOLTAGE vs TEMPERATURE  
= ±1.2V  
FIGURE 48. INPUT OFFSET VOLTAGE vs TEMPERATURE  
= ±2.5V  
V
V
S
S
FN6345.0  
December 13, 2006  
12  
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
500  
400  
300  
200  
100  
0
145  
135  
125  
115  
105  
95  
n = 100  
n = 100  
MIN  
MIN  
MEDIAN  
-100  
-200  
-300  
-400  
-500  
MEDIAN  
85  
MAX  
MAX  
75  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 49. INPUT OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 50. IA CMRR vs TEMPERATURE VCM = +2.5V TO  
-2.5V  
V
= ±1.2V  
S
140  
130  
120  
110  
100  
90  
155  
n = 100  
145  
n = 100  
MIN  
135  
MIN  
125  
115  
MEDIAN  
MEDIAN  
105  
95  
MAX  
MAX  
85  
80  
75  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 51. CMRR vs TEMPERATURE VCM = +2.5V TO -2.5V  
FIGURE 52. IA PSRR vs TEMPERATURE V = ±2.5V  
S
4.910  
n = 100  
n = 100  
155  
145  
135  
125  
115  
105  
95  
4.900  
4.890  
4.880  
4.870  
4.860  
4.850  
4.840  
MIN  
MIN  
MEDIAN  
MEDIAN  
MAX  
MAX  
85  
75  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 54. IA V  
HIGH vs TEMPERATURE R = 1k.  
L
FIGURE 53. PSRR vs TEMPERATURE V = ±2.5V  
S
OUT  
V
= ±2.5V  
S
FN6345.0  
December 13, 2006  
13  
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
4.9980  
4.9975  
4.9970  
4.9965  
4.9960  
4.9955  
4.9950  
170  
160  
150  
140  
130  
120  
110  
100  
90  
n = 100  
n = 100  
MIN  
MIN  
MEDIAN  
MEDIAN  
MAX  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 55. IA V  
HIGH vs TEMPERATURE R = 100k.  
L
FIGURE 56. IA VOUT LOW vs TEMPERATURE R = 1k.  
OUT  
L
V
= ±2.5V  
V
= ±2.5V  
S
S
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
4.910  
4.900  
4.890  
4.880  
4.870  
4.860  
4.850  
n = 100  
n = 100  
MIN  
MIN  
MEDIAN  
MEDIAN  
MAX  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 57. IA V  
OUT  
LOW vs TEMPERATURE R = 100k.  
FIGURE 58. V  
V = ±2.5V  
S
HIGH vs TEMPERATURE R = 1k.  
L
OUT L  
V
= ±2.5V  
S
170  
4.9986  
4.9984  
4.9982  
4.9980  
4.9978  
4.9976  
4.9974  
4.9972  
4.9970  
4.9968  
4.9966  
n = 100  
n = 100  
160  
150  
140  
130  
120  
110  
100  
90  
MIN  
MIN  
MEDIAN  
MEDIAN  
MAX  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 59. V  
V
HIGH vs TEMPERATURE R = 100k.  
L
= ±2.5V  
FIGURE 60. V  
LOW vs TEMPERATURE R = 1k. V = ±2.5V  
L S  
OUT  
OUT  
S
FN6345.0  
December 13, 2006  
14  
ISL28274, ISL28474  
Typical Performance Curves (Continued)  
n = 100  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
MIN  
MEDIAN  
MAX  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FIGURE 61. V T LOW vs TEMPERATURE R = 100k. V = ±2.5V  
OU  
L
S
Pin Descriptions  
ISL28274  
(16 LD QSOP) (24 LD QSOP)  
ISL28474  
EQUIVALENT  
CIRCUIT  
PIN NAME  
DESCRIPTION  
1, 9, 13, 14  
11, 14  
NC  
No internal connection  
2
IA OUT  
IA OUT_1/2  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 1  
Circuit 2  
Instrumentation Amplifier output  
1, 24  
3
IA FB+  
IA FB+_1/2  
Instrumentation Amplifier Feedback from non-inverting output  
Instrumentation Amplifier Feedback from inverting output  
Instrumentation Amplifier inverting input  
2, 23  
4
IA FB-  
IA FB-_1/2  
3, 22  
5
IA IN-  
IA IN-_1/2  
4, 21  
6
IA IN+  
IA IN+_1/2  
Instrumentation Amplifier non-inverting input  
5, 20  
7
IA EN  
IA EN_1/2  
Instrumentation Amplifier enable pin internal pull-down; Logic “1” selects  
the disabled state; Logic “0” selects the enabled state.  
6, 19  
8
18  
V-  
Circuit 4  
Circuit 2  
Negative power supply  
10  
EN  
EN 1/2  
Amplifier enable pin with internal pull-down; Logic “1” selects the  
disabled state; Logic “0” selects the enabled state.  
8, 17  
9, 16  
10, 15  
11  
12  
15  
16  
IN+  
IN+ 1/2  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 4  
Amplifier non-inverting input  
Amplifier inverting input  
Amplifier output  
IN-  
IN- 1/2  
OUT  
OUT 1/2  
12, 13  
7
V+  
Positive power supply  
IA = Instrumentation Amplifier  
V+  
V-  
V+  
V+  
V+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
LOGIC  
PIN  
OUT  
IN-  
IN+  
V-  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 4  
FN6345.0  
December 13, 2006  
15  
ISL28274, ISL28474  
of the ISL28274 in-amp is to maintain the differential voltage  
Description of Operation and Application  
Information  
across FB+ and FB- equal to IN+ and IN-; (FB+ - FB-) =  
(IN+ - IN-). Consequently, the transfer function can be  
derived. The gain is set by two external resistors, the  
feedback resistor RF, and the gain resistor RG.  
Product Description  
The ISL28274 and ISL28474 provide both a micropower  
instrumentation amplifier (Amp A) and a low power precision  
amplifier (Amp B) in the same package. The amplifiers  
deliver rail-to-rail input amplification and rail-to-rail output  
swing on a single 2.4V to 5V supply. They also deliver  
excellent DC and AC specifications while consuming only  
60µA typical supply current per amplifier. Because the  
instrumentation amplifiers provide an independent pair of  
feedback terminals to set the gain and to adjust the output  
level, the in-amp achieve high common-mode rejection ratio  
regardless of the tolerance of the gain setting resistors. The  
instrumentation amplifier is internally compensated for a  
minimum closed loop gain of 100 or greater. An EN pin is  
used to reduce power consumption, typically 4µA for the  
ISL28274 and 8µA for the ISL28474, while both amplifiers  
are disabled. The user has independent control of each  
amplifier via separate EN pins.  
2.4V to 5V  
EN_BAR  
16  
7
VIN/2  
VIN/2  
Amp “A”  
VS+  
EN  
6
5
3
4
IN+  
IN-  
+
-
2
VOUT  
ISL28274  
FB+  
FB-  
+
-
VCM  
VS-  
8
RG  
RF  
FIGURE 62. GAIN IS BY EXTERNAL RESISTORS R AND R  
F
G
Input Protection  
R
F
--------  
VOUT = 1 +  
VIN  
The input and feedback terminals have internal ESD  
protection diodes to both positive and negative supply rails,  
limiting the input voltage to within one diode drop beyond the  
supply rails. If overdriving the inputs is necessary, the  
external input current must never exceed 5mA. External  
series resistor may be used as a protection to limit excessive  
external voltage and current from damaging the inputs.  
R
G
In Figure 62, the FB+ pin and one end of resistor RG are  
connected to GND. With this configuration, the above gain  
equation is only true for a positive swing in VIN; negative  
input swings will be ignored and the output will be at ground.  
Reference Connection  
Input Stage and Input Voltage Range  
Unlike a three-opamp instrumentation amplifier, a finite  
series resistance seen at the REF terminal does not degrade  
the high CMRR performance eliminating the need for an  
additional external buffer amplifier. Figure 63 uses the FB+  
pin to provide a high impedance REF terminal.  
The input terminals (IN+ and IN-) of both amplifiers “A” and  
amp “B” are single differential pair P-MOSFET devices aided  
by an Input Range Enhancement Circuit to increase the  
headroom of operation of the common-mode input voltage.  
The feedback terminals (FB+ and FB-) of amplifier “A” also  
have a similar topology. As a result, the input common-mode  
voltage range is rail-to-rail. These amps are able to handle  
input voltages that are at or slightly beyond the supply and  
ground making them well suited for single 5V or 3.3V low  
voltage supply systems. There is no need then to move the  
common-mode input to achieve symmetrical input voltage.  
2.4V to 5V  
EN_BAR  
16  
7
VIN/2  
VIN/2  
VS+  
EN  
6
5
3
4
IN+  
IN-  
Amp “A”  
+
-
2
VOUT  
ISL28274  
FB+  
FB-  
+
-
VCM  
2.9V to 5V  
VS-  
8
Output Stage and Output Voltage Range  
A pair of complementary MOSFET devices drives the output  
VOUT to within a few mV of the supply rails. At a 100kΩ  
load, the PMOS sources current and pulls the output up to  
4mV below the positive supply, while the NMOS sinks  
current and pulls the output down to 3mV above the negative  
supply, or ground in the case of a single supply operation.  
The current sinking and sourcing capability of the ISL28274  
are internally limited to 31mA.  
R1  
R2  
REF  
RG  
RF  
FIGURE 63. GAIN SETTING AND REFERENCE CONNECTION  
R
R
F
R
G
F
--------  
--------  
VOUT = 1 +  
(VIN) + 1 +  
(VREF)  
Gain Setting of Instrumentation amp “A”  
R
G
VIN, the potential difference across IN+ and IN-, is replicated  
(less the input offset voltage) across FB+ and FB-. The goal  
FN6345.0  
December 13, 2006  
16  
ISL28274, ISL28474  
The FB+ pin is used as a REF terminal to center or to adjust  
amplifiers will power down when EN bar is pulled above 2V,  
and will power on when EN bar is pulled below 0.8V.  
the output. Because the FB+ pin is a high impedance input,  
an economical resistor divider can be used to set the voltage  
at the REF terminal without degrading or affecting the CMRR  
performance. Any voltage applied to the REF terminal will  
shift VOUT by VREF times the closed loop gain, which is set  
by resistors RF and RG as shown in Figure 63.  
Using Only the Instrumentation Amplifier  
If the application only requires the instrumentation amp, the  
user must configure the unused Opamp to prevent it from  
oscillating. The unused Opamp will oscillate if the input and  
output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into  
the in-amp. The proper way to prevent this oscillation is to  
short the output to the negative input and ground the positive  
input (as shown in Figure 65).  
The FB+ pin can also be connected to the other end of resistor,  
RG. See Figure 64. Keeping the basic concept that the in-amps  
maintain constant differential voltage across the input terminals  
and feedback terminals (IN+ - IN- = FB+ - FB-), the transfer  
function of Figure 64 can be derived.  
-
2.4V to 5V  
EN_BAR  
+
16  
7
VIN/2  
VIN/2  
VS+  
EN  
6
5
3
4
IN+  
IN-  
Amp “A”  
+
FIGURE 65. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
-
2
VOUT  
ISL28274  
FB+  
FB-  
+
-
VCM  
Proper Layout Maximizes Performance  
VS-  
8
To achieve the maximum performance of the high input  
impedance and low offset voltage, care should be taken in  
the circuit board layout. The PC board surface must remain  
clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
will reduce surface moisture and provide a humidity barrier,  
reducing parasitic resistance on the board. When input  
leakage current is a concern, the use of guard rings around  
the amplifier inputs will further reduce leakage currents.  
Figure 66 shows a guard ring example for a unity gain  
amplifier that uses the low impedance amplifier output at the  
same voltage as the high impedance input to eliminate  
surface leakage. The guard ring does not need to be a  
specific width, but it should form a continuous loop around  
both inputs. For further reduction of leakage currents,  
components can be mounted to the PC board using Teflon  
standoff insulators.  
RG  
RF  
VREF  
FIGURE 64. REFERENCE CONNECTION WITH AN AVAILABLE  
VREF  
R
F
--------  
VOUT = 1 +  
(VIN) + (VREF)  
R
G
A finite resistance Rs in series with the VREF source, adds  
an output offset of VIN*(RS/RG). As the series resistance Rs  
approaches zero, the gain equation is simplified to the above  
equation for Figure 64. VOUT is simply shifted by an amount  
VREF.  
External Resistor Mismatches  
V+  
HIGH IMPEDANCE INPUT  
1/2 ISL28274  
1/4 ISL28474  
Because of the independent pair of feedback terminals  
provided by the ISL28274, the CMRR is not degraded by  
any resistor mismatches. Hence, unlike a three opamp and  
especially a two opamp in-amp, the ISL28274 reduce the  
cost of external components by allowing the use of 1% or  
more tolerance resistors without sacrificing CMRR  
performance. The ISL28274 CMRR will be 100dB  
regardless of the tolerance of the resistors used.  
IN  
FIGURE 66. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
Disable/Power-Down  
The ISL28274 Amplifiers “A” and “B” can be powered down  
reducing the supply current to typically 4µA. When disabled,  
the output is in a high impedance state. The active low EN  
bar pin has an internal pull down and hence can be left  
floating and the in-amp and Opamp enabled by default.  
When the EN bar is connected to an external logic, the  
Current Limiting  
The ISL28274 has no internal current-limiting circuitry. If the  
output is shorted, it is possible to exceed the Absolute  
Maximum Rating for output current or power dissipation,  
potentially resulting in the destruction of the device.  
FN6345.0  
December 13, 2006  
17  
ISL28274, ISL28474  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related in Equation 1:  
T
= T  
+ xPD  
)
MAXTOTAL  
(EQ. 1)  
JMAX  
MAX  
JA  
where:  
• PD  
is the sum of the maximum power  
MAX  
for each amplifier can be calculated as shown in  
MAXTOTAL  
dissipation of each amplifier in the package (PD  
)
• PD  
MAX  
Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
(EQ. 2)  
where:  
• T  
MAX  
= Maximum ambient temperature  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
• V = Supply voltage  
MAX  
S
• I  
MAX  
= Maximum supply current of 1 amplifier  
= Maximum output voltage swing of the  
• V  
OUTMAX  
application  
• R = Load resistance  
L
FN6345.0  
December 13, 2006  
18  
ISL28274, ISL28474  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
PIN #1  
I.D. MARK  
E
E1  
-
-
c
-
1
(N/2)  
D
1, 3  
B
E
-
0.010 C A B  
E1  
e
2, 3  
e
-
H
L
±0.009  
Basic  
-
C
SEATING  
L1  
N
-
PLANE  
Reference  
-
0.007 C A B  
b
0.004 C  
Rev. E 3/01  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6345.0  
December 13, 2006  
19  

相关型号:

ISL28274FAZ-T7

Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier
INTERSIL

ISL28276

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276FBZ

Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp
INTERSIL

ISL28276IAZ

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276IAZ-T

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276IAZ-T7

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL

ISL28276_07

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL

ISL28278

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278FAZ

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278FAZ-T7

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278_07

Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Op-Amp
INTERSIL

ISL28286

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL