ISL29030IROZ-T7 [INTERSIL]

Low Power Ambient Light and Proximity Sensor with Intelligent Interrupt and Sleep Modes - Analog and Digita Out;
ISL29030IROZ-T7
型号: ISL29030IROZ-T7
厂家: Intersil    Intersil
描述:

Low Power Ambient Light and Proximity Sensor with Intelligent Interrupt and Sleep Modes - Analog and Digita Out

文件: 总17页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power Ambient Light and Proximity Sensor with  
Intelligent Interrupt and Sleep Modes - Analog and Digital  
Out  
ISL29030  
Features  
The ISL29030 is an integrated ambient and infrared  
• Works Under All Light Sources Including Sunlight  
• Dual ADCs Measure ALS/Prox Concurrently  
• Intelligent Interrupt Scheme Simplifies μC Code  
2
light-to-digital converter with a built-in IR LED driver and I C  
Interface (SMBus Compatible). This device uses two  
independent ADCs for concurrently measuring ambient light  
and proximity in parallel. The flexible interrupt scheme is  
designed for minimal microcontroller utilization.  
Ambient Light Sensing  
• Simple Output Code Directly Proportional to lux  
• 50Hz/60Hz Flicker Noise and IR Rejection  
• Light Sensor Close to Human Eye Response  
• Selectable 125/2000 Lux Range  
For ambient light sensor (ALS) data conversions, an ADC  
converts photodiode current (with a light sensitivity range of  
2000 Lux) in 100ms per sample. The ADC rejects 50Hz/60Hz  
flicker noise caused by artificial light sources. The I  
provides an analog output current proportional to the  
pin  
ALS  
• Analog 420μA Output Pin I  
Proportional to Lux  
ALS  
Proximity Sensing  
• Proximity Sensor with Broad IR Spectrum  
measured light (420μA FSR).  
For proximity sensor (Prox) data conversions, the built-in driver  
turns on an external infrared LED and the proximity sensor  
ADC converts the reflected IR intensity to digital. This ADC  
rejects ambient IR noise (such as sunlight) and has a 540μs  
conversion time.  
- Can Use 850nm and 950nm External IR LEDs  
2
• IR LED Driver with I C Programmable Sink Currents  
- Net 100μs Pulse with 110mA or 220mA Amplitudes  
- Periodic Sleep Time up to 800ms Between Pulses  
• Ambient IR Noise Cancellation (Including Sunlight)  
Intelligent and Flexible Interrupts  
The ISL29030 provides low power operation of ALS and proximity  
sensing with a typical 138μA normal operation current (110μA for  
sensors and internal circuitry, ~28μA for external LED) with  
220mA current pulses for a net 100μs, repeating every 800ms  
(or under).  
• Independent ALS/Prox Interrupt Thresholds  
• Adjustable Interrupt Persistency  
- 1/4/8/16 Consecutive Triggers Required Before Interrupt  
Ultra Low Power  
• 138μA DC Typical Supply Current for ALS/Prox Sensing  
- 110μA for Sensors and Internal Circuitry  
The ISL29030 uses both a hardware pin and software bits to  
indicate an interrupt event has occurred. An ALS interrupt is  
defined as a measurement which is outside a set window. A  
proximity interrupt is defined as a measurement over a  
threshold limit. The user may also require that both ALS/prox  
interrupts occur at once, up to 16 times in a row before  
activating the interrupt pin.  
- 28μA Typical Current for External IR LED (Assuming  
220mA for 100μs Every 800ms)  
• <1.0μA Supply Current When Powered Down  
Easy to Use  
The ISL29030 is designed to operate from 2.25V to 3.63V over  
the -40°C to +85°C ambient temperature range. It is packaged in  
a clear, lead-free 8 lead ODFN package.  
• Set Registers; Wait for Interrupt  
2
• I C (SMBus Compatible) Output  
• Temperature Compensated  
• Tiny ODFN8 2.0x2.1x0.7 (mm) Package  
Additional Features  
Pin Configuration  
ISL29030  
8 LD ODFN (2.0x2.1x0.7mm)  
TOP VIEW  
2
• 1.7V to 3.63V Supply for I C Interface  
• 2.25V to 3.63V Sensor Power Supply  
• Pb-Free (RoHS compliant)  
I
1
2
3
4
8
7
6
5
IRDR  
INT  
ALS  
Applications  
• Display and Keypad Dimming Adjustment and Proximity  
Sensing for:  
VDD  
GND  
THERMAL  
PAD  
SDA  
SCL  
REXT  
- Mobile Devices: Smart Phone, PDA, GPS  
- Computing Devices: Laptop PC, Netbook  
*THERMAL PAD CAN BE CONNECTED TO GND OR  
ELECTRICALLY ISOLATED  
- Consumer Devices: LCD-TV, Digital Picture Frame, Digital  
Camera  
• Industrial and Medical Light and Proximity Sensing  
November 12, 2012  
FN6872.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Copyright © Intersil Americas Inc. 2010, 2012. All Rights Reserved.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
2
I C Bus is a registered trademark owned by NXP Semiconductors Netherlands, B.V.  
All other trademarks mentioned are the property of their respective owners.  
ISL29030  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
-
T.PAD  
Thermal Pad (connect to GND or float)  
1
2
3
4
5
6
7
8
I
Analog Current Output (Proportional to ALS/IR Data Count: 420µA FSR)  
Positive supply: 2.25V to 3.63V  
ALS  
VDD  
GND  
REXT  
SCL  
Ground  
External resistor (499kΩ; 1%) connects this pin to ground  
2
2
I C clock line  
The I C bus lines can be pulled from 1.7V to above V , 3.63V max  
DD  
2
SDA  
INT  
I C data line  
Interrupt pin; Logic output (open-drain) for interrupt  
IRDR  
IR LED driver pin - current flows into ISL29030 from LED cathode  
Block Diagram  
VDD  
2
ALS PHOTODIODE  
ARRAY  
COMMAND  
REGISTER  
LIGHT DATA  
PROCESS  
ALS AND IR  
DUAL CHANNEL  
ADCs  
DATA  
REGISTER  
1
DAC  
I
ALS  
5
6
SCL  
SDA  
2
I C  
IR PHOTODIODE  
ARRAY  
IREF  
INTERRUPT  
IR DRIVER  
INT  
7
8
FOSC  
IRDR  
3
4
REXT  
GND  
Ordering Information  
PACKAGE  
PART NUMBER  
(Notes 1, 2, 3)  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(Pb-free)  
PKG.  
DWG. #  
ISL29030IROZ-T7  
ISL29030IROZ-EVALZ  
NOTES:  
-40 to +85  
8 Ld ODFN  
L8.2.1x2.0  
Evaluation Board  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate -  
e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL29030. For more information on MSL please see techbrief TB477.  
FN6872.1  
November 12, 2012  
2
ISL29030  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
V
Supply Voltage between V and GND . . . . . . . . . . . . . . . . . . . . . .4.0V  
Thermal Resistance (Typical, Note 4)  
θ
(°C/W)  
88  
DD  
DD  
JA  
2
I C Bus Pin Voltage (SCL, SDA). . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 4.0V  
8 Ld ODFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
I C Bus Pin Current (SCL, SDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <10mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+90°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +100°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Pb-Free Reflow Profile (*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB477  
*Peak temperature during solder reflow +235°C max  
R
Pin Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VDD + 0.5V  
EXT  
IRDR Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5V  
Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VDD + 0.5V  
I
ALS  
INT Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 4.0V  
INT Pin Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <10mA  
ESD Rating  
Human Body Model (Note 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. ESD on all pins is 2kV except for IRDR, which is 1.5kV.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise  
noted, all tests are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 3.0V, T = +25°C, R = 499kΩ 1% tolerance.  
EXT  
DD  
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Power Supply Range  
CONDITION  
(Note 10) TYP (Note 10) UNIT  
V
2.25  
0.5  
3.0  
3.63  
V
V/ms  
µA  
DD  
SR_V  
Input Power-up Slew Rate  
V
Rising Edge between 0.4V and 2.25V  
DD  
DD  
I
Supply Current when Powered Down  
Supply Current for ALS+Prox in Sleep Time  
Supply Current for Prox in Sleep Time  
Supply Current for ALS  
ALS_EN = 0; PROX_EN = 0  
ALS_EN = 1; PROX_EN = 1  
ALS_EN = 0; PROX_EN = 1  
ALS_EN = 1; PROX_EN = 0  
0.1  
116  
85  
0.8  
DD_OFF  
I
135  
µA  
DD_NORM  
I
µA  
DD_PRX_SLP  
I
102  
5.25  
100  
0.54  
3
µA  
DD_ALS  
f
Internal Oscillator Frequency  
MHz  
ms  
ms  
nA  
OSC  
INTGR_ALS  
t
12-bit ALS Integration/Conversion Time  
8-bit Prox Integration/Conversion Time  
88  
112  
t
INTGR_PROX  
I
I
I
Output Current when ALS = Disabled  
Output Current When Dark  
ALS_EN = 0; V = 0V  
I_ALS  
100  
0.6  
ALS_OFF  
ALS  
I
ALS_EN = 1; ALS_RANGE = 1; E = 0 Lux  
0.1  
µA  
ALS_0  
ALS_1  
ALS  
I
Current Output under Specified Conditions  
E = 53 lux, Fluorescent (Note 6),  
ALS_RANGE = 0  
161  
µA  
I
Current Output under Specified Conditions  
E = 320 lux, Fluorescent (Note 6)  
ALS_RANGE = 1  
40  
60  
80  
µA  
ALS_2  
I
I
Output Current At Full Scale  
ALS_EN = 1; ALS Code = 4095  
380  
0
420  
460  
µA  
V
ALS_F  
ALS  
V
Compliance Voltage on I  
Output Current  
w/ 5% Variation in ALS_EN = 1; ALS Code = 4095  
ALS  
VDD-0.8  
I_ALS  
DATA  
DATA  
ALS Result when Dark  
E
E
= 0 lux, 2k Range  
1
3
Counts  
ALS_0  
AMBIENT  
Full Scale ALS ADC Code  
> Selected Range Maximum Lux (Note 9)  
4095 Counts  
%
ALS_F  
AMBIENT  
ΔDATA  
DATA  
Count Output Variation Over Three Light  
Sources: Fluorescent, Incandescent and  
Sunlight  
Ambient Light Sensing  
±10  
DATA  
ALS_1  
Light Count Output with LSB of  
0.0326 lux/count  
E = 53 lux, Fluorescent (Notes 6, 9),  
ALS_RANGE = 0  
1638  
Counts  
FN6872.1  
November 12, 2012  
3
ISL29030  
Electrical Specifications  
V
= 3.0V, T = +25°C, R  
= 499kΩ 1% tolerance. (Continued)  
EXT  
DD  
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITION  
(Note 10) TYP (Note 10) UNIT  
DATA  
Light Count Output With LSB of 0.522 lux/count E = 320 lux, Fluorescent (Note 6)  
ALS_RANGE = 1  
460  
614  
1
768  
Counts  
ALS_2  
DATA  
DATA  
DATA  
Prox Measurement w/o Object in Path  
Full Scale Prox ADC Code  
2
Counts  
Counts  
Counts  
ns  
PROX_0  
PROX_F  
PROX_1  
255  
57  
Prox Measurement Result  
Rise Time for IRDR Sink Current  
Fall time for IRDR Sink Current  
IRDR Sink Current  
(Note 7)  
35  
98  
46  
500  
500  
110  
220  
0.001  
t
R
R
= 15Ω at IRDR pin, 20% to 80%  
= 15Ω at IRDR pin, 80% to 20%  
r
f
LOAD  
LOAD  
t
ns  
I
I
PROX_DR = 0; V  
PROX_DR = 1; V  
= 0.5V  
= 0.5V  
120  
mA  
mA  
µA  
IRDR_0  
IRDR_1  
IRDR  
IRDR  
IRDR Sink Current  
I
IRDR Leakage Current  
PROX_EN = 0; V = 3.63V (Note 8)  
DD  
-1  
1
IRDR_LEAK  
V
Acceptable Voltage Range on IRDR Pin  
Register bit PROX_DR = 0  
0.5  
4.3  
V
IRDR  
t
Net I  
IRDR  
On Time Per PROX Reading  
100  
µs  
PULSE  
V
Voltage of R  
2
Pin  
EXT  
0.51  
V
REF  
2
F
V
I C Clock Rate Range  
400  
3.63  
0.55  
kHz  
V
I C  
2
2
Supply Voltage Range for I C Interface  
SCL and SDA Input Low Voltage  
SCL and SDA Input High Voltage  
SDA Current Sinking Capability  
INT Current Sinking Capability  
1.7  
I C  
V
V
IL  
IH  
V
1.25  
3
V
I
V
V
= 0.4V  
= 0.4V  
5
5
4
mA  
mA  
mA/V  
SDA  
OL  
I
3
INT  
OL  
PSRR  
(ΔI  
)/(ΔV  
)
PROX_DR = 0; V  
= 0.5V to 4.3V  
IRDR  
IRDR  
IRDR  
IRDR  
NOTES:  
6. An LED is used in production test. The LED irradiance is calibrated to produce the same DATA count against a fluorescent light source of the same lux  
level.  
7. An 850nm infrared LED is used to test PROX/IR sensitivity in an internal test mode.  
8. Ability to guarantee I  
IRDR  
leakage of ~1nA is limited by test hardware.  
9. For ALS applications under light-distorting glass, please see the section titled “ALS Range 1 Considerations” on page 11.  
10. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
2
I C Electrical Specifications For SCL and SDA unless otherwise noted, V = 3V, T = +25°C, R  
= 499k1% tolerance  
DD  
A
EXT  
(Note 11).  
PARAMETER  
2
DESCRIPTION  
Supply Voltage Range for I2C Interface  
SCL Clock Frequency  
CONDITION  
MIN  
TYP MAX UNIT  
V
1.7  
3.63  
400  
0.55  
V
kHz  
V
I C  
f
SCL  
V
SCL and SDA Input Low Voltage  
SCL and SDA Input High Voltage  
Hysteresis of Schmitt Trigger Input  
IL  
V
1.25  
V
IH  
V
0.05V  
V
hys  
DD  
V
Low-level Output Voltage (Open-drain) at 4mA Sink  
Current  
0.4  
V
OL  
I
Input Leakage for each SDA, SCL Pin  
-10  
10  
50  
µA  
ns  
i
t
t
Pulse Width of Spikes that must be Suppressed by  
the Input Filter  
SP  
SCL Falling Edge to SDA Output Data Valid  
900  
ns  
AA  
FN6872.1  
November 12, 2012  
4
ISL29030  
2
I C Electrical Specifications For SCL and SDA unless otherwise noted, V = 3V, T = +25°C, R = 499k1% tolerance  
EXT  
DD  
A
(Note 11). (Continued)  
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP MAX UNIT  
C
Capacitance for each SDA and SCL Pin  
Hold Time (Repeated) START Condition  
10  
pF  
ns  
i
t
After this period, the first clock pulse is  
generated  
600  
HD:STA  
t
LOW Period of the SCL Clock  
HIGH period of the SCL Clock  
Set-up Time for a Repeated START Condition  
Data Hold Time  
Measured at the 30% of VDD crossing  
1300  
600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LOW  
t
HIGH  
t
600  
SU:STA  
HD:DAT  
t
30  
t
Data Set-up Time  
100  
SU:DAT  
t
Rise Time of both SDA and SCL Signals  
Fall Time of both SDA and SCL Signals  
Set-up Time for STOP Condition  
(Note 12)  
(Note 12)  
20 + 0.1xC  
20 + 0.1xC  
600  
R
b
b
t
F
t
SU:STO  
t
Bus Free Time Between a STOP and START  
Condition  
1300  
BUF  
C
Capacitive Load for Each Bus Line  
SDA and SCL system bus pull-up resistor  
Data Valid Time  
400  
pF  
kΩ  
µs  
µs  
V
b
R
Maximum is determined by t and t  
F
1
pull-up  
VD;DAT  
VD:ACK  
R
t
0.9  
0.9  
t
Data Valid Acknowledge Time  
Noise Margin at the LOW Level  
Noise Margin at the HIGH Level  
V
0.1VDD  
0.2VDD  
nL  
V
V
nH  
NOTES:  
2
11. I C limits are based on design/simulation and are not production tested.  
12. C is the capacitance of the bus in pF.  
b
FN6872.1  
November 12, 2012  
5
ISL29030  
2
FIGURE 1. I C TIMING DIAGRAM  
Register Map  
2
There are ten 8-bit registers accessible via I C. Registers 0x1 and 0x2 define the operation mode of the device. Registers 0x3 through 0x7  
store the various ALS/IR/Prox thresholds which trigger interrupt events. Registers 0x8 through 0xA store the results of ALS/IR/Prox ADC  
conversions.  
TABLE 1. ISL29030 REGISTERS AND REGISTER BITS  
BIT  
ADDR REG NAME  
7
6
5
4
3
2
1
0
DEFAULT  
(n/a)  
0x00  
0x00  
0x00  
0xFF  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0E  
0x0F  
(n/a)  
(Reserved)  
CONFIGURE  
INTERRUPT  
PROX_LT  
PROX EN  
PROX_SLP[2:0]  
PROX_DR  
ALS_FLAG  
ALS_EN  
ALS_RANGE  
ALSIR_MODE  
INT_CTRL  
PROX_FLAG  
PROX_PRST[1:0]  
(Write 0)  
ALS_PRST[1:0]  
PROX_LT[7:0]  
PROX_HT  
ALSIR_TH1  
ALSIR_TH2  
ALSIR_TH3  
PROX_DATA  
ALSIR_DT1  
ALSIR_DT2  
TEST1  
PROX_HT[7:0]  
ALSIR_LT[7:0]  
0x00  
0xF0  
0xFF  
ALSIR_HT[3:0]  
ALSIR_LT[11:8]  
ALSIR_HT[11:4]  
PROX_DATA[7:0]  
ALSIR_DATA[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
(Unused)  
ALSIR_DATA[11:8]  
(Write as 0x00)  
(Write as 0x00)  
TEST2  
FN6872.1  
November 12, 2012  
6
ISL29030  
Register Descriptions  
TABLE 2. REGISTER 0x00 (RESERVED)  
NAME  
BIT #  
7:0  
ACCESS  
RO  
DEFAULT  
(n/a)  
FUNCTION/OPERATION  
(n/a)  
Reserved - no need to read or write  
TABLE 3. REGISTER 0x01 (CONFIGURE) - PROX/ALS CONFIGURATION  
NAME FUNCTION/OPERATION  
When = 0, proximity sensing is disabled  
BIT #  
ACCESS  
RW  
DEFAULT  
0x00  
PROX_EN  
7
When = 1, continuous proximity sensing is enabled. Prox data will be ready 0.54ms after this bit is  
set high  
(Prox Enable)  
For bits 6:4 = (see the following)  
111; sleep time between prox IR LED pulses is 0.0ms (run continuously)  
110; sleep time between prox IR LED pulses is 12.5ms  
101; sleep time between prox IR LED pulses is 50ms  
100; sleep time between prox IR LED pulses is 75ms  
011; sleep time between prox IR LED pulses is 100ms  
010; sleep time between prox IR LED pulses is 200ms  
001; sleep time between prox IR LED pulses is 400ms  
000; sleep time between prox IR LED pulses is 800ms  
PROX_SLP  
(Prox Sleep)  
6:4  
RW  
0x00  
PROX_DR  
(Prox Drive)  
When = 0, IRDR behaves as a pulsed 110mA current sink  
When = 1, IRDR behaves as a pulsed 220mA current sink  
3
2
1
0
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
ALS_EN  
When = 0, ALS/IR sensing is disabled  
(ALS Enable) When = 1, continuous ALS/IR sensing is enabled with new data ready every 100ms  
ALS_RANGE When = 0, ALS is in low-lux range  
(ALS Range) When = 1, ALS is in high-lux range  
ALSIR_MODE When = 0, ALS/IR data register contains visible ALS sensing data  
(ALSIR Mode) When = 1, ALS/IR data register contains IR spectrum sensing data  
TABLE 4. REGISTER 0x02 (INTERRUPT) - PROX/ALS INTERRUPT CONTROL  
BIT #  
7
ACCESS  
FLAG  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
PROX_FLAG  
(Prox Flag)  
When = 0, no Prox interrupt event has occurred since power-on or last “clear”  
When = 1, a Prox interrupt event occurred. Clearable by writing “0”  
For bits 6:5 = (see the following)  
00; set PROX_FLAG if 1 conversion result trips the threshold value  
01; set PROX_FLAG if 4 conversion results trip the threshold value  
10; set PROX_FLAG if 8 conversion results trip the threshold value  
11; set PROX_FLAG if 16 conversion results trip the threshold value  
PROX_PRST  
(Prox Persist)  
6:5  
RW  
0x00  
Unused  
(Write 0)  
Unused register bit - write 0  
4
3
RW  
0x00  
0x00  
ALS_FLAG  
(ALS FLAG)  
When = 0, no ALS interrupt event has occurred since power-on or last “clear”  
When = 1, an ALS interrupt event occurred. Clearable by writing “0”  
FLAG  
For bits 2:1 = (see the following)  
00; set ALS_FLAG if 1 conversion is outside the set window  
01; set ALS_FLAG if 4 conversions are outside the set window  
10; set ALS_FLAG if 8 conversions are outside the set window  
11; set ALS_FLAG if 16 conversions are outside the set window  
ALS_PRST  
(ALS Persist)  
2:1  
0
RW  
RW  
0x00  
0x00  
INT_CTRL  
When = 0, set INT pin low if PROX_FLAG or ALS_FLAG high (logical OR)  
(Interrupt Control) When = 1, set INT pin low if PROX_FLAG and ALS_FLAG high (logical AND)  
TABLE 5. REGISTER 0x03 (PROX_LT) - INTERRUPT LOW THRESHOLD FOR PROXIMITY SENSOR  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
PROX_LT  
(Prox Threshold)  
8-bit interrupt low threshold for proximity sensing  
FN6872.1  
November 12, 2012  
7
ISL29030  
TABLE 6. REGISTER 0x04 (PROX_HT) - INTERRUPT HIGH THRESHOLD FOR PROXIMITY SENSOR  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
0xFF  
BIT NAME  
FUNCTION/OPERATION  
PROX_HT  
(Prox Threshold)  
8-bit interrupt high threshold for proximity sensing  
TABLE 7. REGISTER 0x05 (ALSIR_TH1) - INTERRUPT LOW THRESHOLD FOR ALS/IR  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
ALSIR_LT[7:0]  
(ALS/IR Low Thr.)  
Lower 8 bits (of 12 bits) for ALS/IR low interrupt threshold  
TABLE 8. REGISTER 0x06 (ALSIR_TH2) - INTERRUPT LOW/HIGH THRESHOLDS FOR ALS/IR  
BIT #  
7:4  
ACCESS  
RW  
DEFAULT  
0x0F  
BIT NAME  
FUNCTION/OPERATION  
ALSIR_HT[3:0]  
(ALS/IR High Thr.)  
Lower 4 bits (of 12 bits) for ALS/IR high interrupt threshold  
ALSIR_LT[11:8]  
(ALS/IR Low Thr.)  
3:0  
RW  
0x00  
Upper 4 bits (of 12 bits) for ALS/IR low interrupt threshold  
TABLE 9. REGISTER 0x07 (ALSIR_TH3) - INTERRUPT HIGH THRESHOLD FOR ALS/IR  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
0xFF  
BIT NAME  
FUNCTION/OPERATION  
ALSIR_HT[11:4]  
(ALS/IR High Thr.)  
Upper 8 bits (of 12 bits) for ALS/IR high interrupt threshold  
TABLE 10. REGISTER 0x08 (PROX_DATA) - PROXIMITY SENSOR DATA  
BIT #  
7:0  
ACCESS  
RO  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
Results of 8-bit proximity sensor ADC conversion  
PROX_DATA  
(Proximity Data)  
TABLE 11. REGISTER 0x09 (ALSIR_DT1) - ALS/IR SENSOR DATA (LOWER 8 BITS)  
BIT #  
7:0  
ACCESS  
RO  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
ALSIR_DATA  
(ALS/IR Data)  
Lower 8 bits (of 12 bits) from result of ALS/IR sensor conversion  
TABLE 12. REGISTER 0x0A (ALSIR_DT2) - ALS/IR SENSOR DATA (UPPER 4 BITS)  
BIT #  
7:4  
ACCESS  
RO  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
(Unused)  
Unused bits.  
Upper 4 bits (of 12 bits) from result of ALS/IR sensor conversion  
ALSIR_DATA  
(ALS/IR Data)  
3:0  
RO  
0x00  
TABLE 13. REGISTER 0x0E (TEST1) - TEST MODE  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
BIT NAME  
FUNCTION/OPERATION  
Test mode register. When 0x00, in normal operation.  
0x00  
(Write as 0x00)  
TABLE 14. REGISTER 0x0F (TEST2) - TEST MODE 2  
BIT #  
7:0  
ACCESS  
RW  
DEFAULT  
0x00  
BIT NAME  
FUNCTION/OPERATION  
Test mode register. When 0x00, in normal operation.  
(Write as 0x00)  
FN6872.1  
November 12, 2012  
8
ISL29030  
START  
DEVICE ADDRESS  
A
A
A
9
REGISTER ADDRESS  
DEVICE ADDRESS  
A
A
DATA BYTE0  
W
STOP START  
2
I C DATA  
2
I C SDA  
A6 A5 A4 A3 A2 A1 A0 W  
SDA DRIVEN BY MASTER  
R7 R6 R5 R4 R3 R2 R1 R0  
SDA DRIVEN BY MASTER  
A
A
9
A6 A5 A4 A3 A2 A1 A0  
W
SDA DRIVEN BY ISL29030  
MASTER  
2
I C SDA  
SDA DRIVEN BY MASTER  
A D7 D6 D5 D4 D3 D2 D1 D0  
SLAVE (ISL29030)  
2
I C CLK  
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
2
FIGURE 2. I C DRIVER TIMING DIAGRAM FOR MASTER AND SLAVE CONNECTED TO COMMON BUS  
Photodiodes and ADCs  
The ISL29030 contains two photodiode arrays which convert  
Principles of Operation  
2
I C Interface  
photons (light) into current. The ALS photodiodes are constructed to  
mimic the human eye’s wavelength response curve to visible light  
(see Figure 7). The ALS photodiodes’ current output is digitized by a  
12-bit ADC in 100ms. These 12 bits can be accessed by reading  
2
The ISL29030’s I C interface slave address is internally hardwired  
as 0b1000100.  
2
Figure 2 shows a sample one-byte read. The I C bus master  
2
from I C registers 0x9 and 0xA when the ADC conversion is  
always drives the SCL (clock) line, while either the master or the  
2
completed.  
slave can drive the SDA (data) line. Every I C transaction begins  
with the master asserting a start condition (SDA falling while SCL  
remains high). The first transmitted byte is initiated by the  
master and includes 7 address bits and a R/W bit. The slave is  
responsible for pulling SDA low during the ACK bit after every  
transmitted byte.  
The ALS converter is a charge-balancing integrating 12-bit ADC.  
Charge-balancing is best for converting small current signals in the  
presence of periodic AC noise. Integrating over 100ms highly rejects  
both 50Hz and 60Hz light flicker by picking the lowest integer  
number of cycles for both 50Hz/60Hz frequencies.  
2
Each I C transaction ends with the master asserting a stop  
condition (SDA rising while SCL remains high).  
2
For more information about the I C standard, please consult the  
™ 2  
Philips I C specification documents.  
FN6872.1  
November 12, 2012  
9
ISL29030  
ALS CONVERSION  
TIME = 100ms  
(FIXED)  
SEVERAL µs BETWEEN  
CONVERSIONS  
ALS  
ACTIVE  
100ms  
100ms  
100ms  
100ms  
100ms  
TIME  
TIME  
0.54ms FOR  
PROX  
CONVERSION  
PROX  
SENSOR  
ACTIVE  
SERIES OF  
CURRENT PULSES  
TOTALING 0.1ms  
IRDR  
(CURRENT  
DRIVER)  
TIME  
SLEEP TIME  
(PROX_SLP)  
FIGURE 3. TIMING DIAGRAM FOR PROX/ALS EVENTS - NOT TO SCALE  
The proximity sensor is an 8-bit ADC which operates in a similar  
will see a fixed 220mA current pulse as seen in Figure 4.  
fashion. When proximity sensing is enabled, the IRDR pin will  
drive a user-supplied infrared LED, the emitted IR reflects off an  
object (i.e., a human head) back into the ISL29030, and a sensor  
converts the reflected IR wave to a current signal in 0.54ms. The  
ADC subtracts the IR reading before and after the LED is driven  
(to remove ambient IR such as sunlight), and converts this value  
to a digital count stored in Register 0x8.  
220mA  
(PROX_DR = 1)  
110mA  
(PROX_DR = 0)  
PIN 8 - IRDR  
The ISL29030 is designed to run two conversions concurrently: a  
proximity conversion and an ALS (or IR) conversion. Please note that  
because of the conversion times, the user must let the ADCs perform  
(IRDR IS HI-Z WHEN  
NOT DRIVING)  
FIGURE 4. CURRENT DRIVE MODE OPTIONS  
2
one full conversion first before reading from I C Registers  
PROX_DATA (wait 0.54ms) or ALSIR_DT1/2 (wait 100ms). The timing  
between ALS and Prox conversions is arbitrary (as shown in Figure 3).  
The ALS runs continuously with new data available every 100ms. The  
proximity sensor runs continuously with a time between conversions  
decided by PROX_SLP (Register 1 Bits [6:4]).  
When the IR from the LED reaches an object and gets reflected  
back into the ISL29030, the reflected IR light is converted into  
current as per the IR spectral response shown in Figure 7. One  
entire proximity measurement takes 0.54ms for one conversion  
(which includes 0.1ms spent driving the LED), and the period  
between proximity measurements is decided by PROX_SLP  
(sleep time) in Register 1 Bits 6:4.  
Ambient Light and IR Sensing  
The ISL29030 is set for ambient light sensing when Register bit  
ALSIR_MODE = 0 and ALR_EN = 1. The light-wavelength response of  
the ALS appears as shown in Figure 6. ALS measuring mode (as  
opposed to IR measuring mode) is set by default.  
Average LED driving current consumption is given by Equation 1.  
I
× 100μs  
lRDR;PEAK  
(EQ. 1)  
-----------------------------------------------------  
I
=
lRDR;AVE  
T
SLEEP  
When the part is programmed for infrared (IR) sensing  
A typical IRDR scheme is 220mA amplitude pulses every 800ms,  
which yields 28μA DC.  
(ALSIR_MODE = 1; ALS_EN = 1), infrared light is converted into a  
current and digitized by the same ALS ADC. The result of an IR  
conversion is strongly related to the amount of IR energy incident  
on our sensor, but is unitless and is referred to in digital counts.  
Total Current Consumption  
Total current consumption is the sum of I and I  
pin sinks current (as shown in Figure 4) and the average IRDR  
. The IRDR  
DD IRDR  
Proximity Sensing  
current can be calculated using Equation 1. I depends on  
When proximity sensing is enabled (PROX_EN = 1), the external  
IR LED is driven for 0.1ms by the built-in IR LED driver through  
the IRDR pin. The amplitude of the IR LED current depends on  
Register 1 bit 3: PROX_DR. If this bit is low, the load will see a  
fixed 110mA current pulse. If this bit is high, the load on IRDR  
DD  
voltage and the mode-of-operation as seen in Figure 11.  
Interrupt Function  
The ISL29030 has an intelligent interrupt scheme designed to  
shift some logic processing away from intensive microcontroller  
2
I C polling routines (which consume power) and towards a more  
FN6872.1  
November 12, 2012  
10  
ISL29030  
independent light sensor which can instruct a system to “wake  
up” or “go to sleep.”  
Power-Down  
The power-down can be set 2 ways by the user. The first is to set both  
PROX_EN and ALS_EN bits to 0 in Register 1. The second and more  
simple way is to set all bits in Register 1 to 0 (0x00).  
An ALS interrupt event (ALS_FLAG) is governed by Registers 5 through  
7. The user writes a high and low threshold value to these registers  
and the ISL29030 will issue an ALS interrupt flag if the actual count  
stored in Registers 0x9 and 0xA are outside the user’s programmed  
window. The user must write 0 to clear the ALS_FLAG.  
Calculating Lux  
The ISL29030’s ADC output codes are directly proportional to lux  
when in ALS mode (see ALSIR_MODE bit).  
A proximity interrupt event (PROX_FLAG) is governed by the high  
and low thresholds in registers 3 and 4 (PROX_LT and PROX_HT).  
PROX_FLAG is set when the measured proximity data is more  
than the higher threshold X-times-in-a-row (X is set by user; see  
following paragraph). The proximity interrupt flag is cleared when  
the prox data is lower than the low proximity threshold  
E
= α  
× OUT  
(EQ. 2)  
calc  
RANGE ADC  
In Equation 2, E  
is the calculated lux reading and OUT  
calc  
represents the ADC code. The constant α to plug in is determined  
by the range bit ALS_RANGE (register 0x1 bit 1) and is  
independent of the light source type.  
X-times-in-a-row, or when the user writes “0” to PROX_FLAG.  
TABLE 15. ALS SENSITIVITY AT DIFFERENT RANGES  
Interrupt persistency is another useful option available for both  
ALS and proximity measurements. Persistency requires X-in-a-  
row interrupt flags before the INT pin is driven low. Both ALS and  
Prox have their own independent interrupt persistency options.  
See ALS_PRST and PROX_PRST bits in Register 2.  
α
RANGE  
ALS_RANGE  
(Lux/Count)  
0
1
0.0326  
0.522  
The final interrupt option is the ability to AND or OR the two  
interrupt flags using Register 2 Bit 0 (INT_CTRL). If the user  
wants both ALS/Prox interrupts to happen at the same time  
before changing the state of the interrupt pin, set this bit high. If  
the user wants the interrupt pin to change state when either the  
ALS or the Proximity interrupt flag goes high, leave this bit to its  
default of 0.  
Table 15 shows two different scale factors: one for the low range  
(ALS_RANGE = 0) and the other for the high range (ALS_RANGE  
= 1).  
Noise Rejection  
Charge balancing ADC’s have excellent noise-rejection  
characteristics for periodic noise sources whose frequency is an  
integer multiple of the conversion rate. For instance, a 60Hz AC  
Analog-Out I  
When ALS_EN = 1, The analog I  
Pin  
ALS  
unwanted signal’s sum from 0ms to k*16.66ms (k = 1,2...k ) is zero.  
output pin sources a current  
i
ALS  
Similarly, setting the device’s integration time to be an integer  
multiple of the periodic noise signal greatly improves the light  
sensor output signal in the presence of noise. Since wall sockets  
may output at 60Hz or 50Hz, our integration time is 100ms: the  
lowest common integer number of cycles for both frequencies.  
directly proportional to the digital count stored in register bits  
ALSIRDATA[11:0]. When ALS_EN = 0, this pin is in a high  
impedance state. See Figure 15 for the effects of the compliance  
voltage V  
on I .  
I_ALS  
ALS  
ALS Range 1 Considerations  
Proximity Detection of Various Objects  
When measuring ALS counts higher than 1800 on range 1  
(ALSIR_MODE = 0, ALS_RANGE = 0, ALS_DATA > 1800), switch  
to range 2 (change the ALS_RANGE bit from “0” to “1”) and  
remeasure ALS counts. This recommendation pertains only to  
applications where the light incident upon the sensor is IR-heavy  
and is distorted by tinted glass that increases the ratio of infrared  
to visible light. For more information, see the separate ALS  
Range 1 Considerations document.  
Proximity sensing relies on the amount of IR reflected back from  
objects. A perfectly black object would absorb all light and reflect  
no photons. The ISL29030 is sensitive enough to detect black ESD  
foam which reflects only 1% of IR. For biological objects, blonde  
hair reflects more than brown hair and customers may notice that  
skin tissue is much more reflective than hair. IR penetrates into  
the skin and is reflected or scattered back from within. As a result,  
the proximity count peaks at contact and monotonically decreases  
as skin moves away. The reflective characteristics of skin are very  
different from that of paper.  
V
Power-up and Power Supply  
DD  
Considerations  
Upon power-up, please ensure a V slew rate of 0.5V/ms or greater.  
Typical Circuit  
DD  
After power-up, or if the user’s power supply temporarily deviates  
from our specification (2.25V to 3.63V), Intersil recommends the  
user write the following: write 0x00 to register 0x01, write 0x29 to  
register 0x0F, write 0x00 to register 0x0E, and write 0x00 to register  
0x0F. The user should then wait ~1ms or more and then rewrite all  
registers to the desired values. If the user prefers a hardware reset  
A typical application for the ISL29030 is shown in Figure 5. The  
2
ISL29030’s I C address is internally hardwired as 0b1000100.  
2
The device can be tied onto a system’s I C bus together with  
2
other I C compliant devices.  
method instead of writing to test registers: set V = 0V for 1 second  
DD  
or more, power back up at the required slew rate, and write registers  
to the desired values.  
FN6872.1  
November 12, 2012  
11  
ISL29030  
Soldering Considerations  
Layout Considerations  
2
Convection heating is recommended for reflow soldering; direct-  
infrared heating is not recommended. The plastic ODFN package  
does not require a custom reflow soldering profile, and is qualified to  
+260°C. A standard reflow soldering profile with a +260°C  
maximum is recommended.  
The ISL29030 is relatively insensitive to layout. Like other I C  
devices, it is intended to provide excellent performance even in  
significantly noisy environments. There are only a few  
considerations that will ensure best performance.  
2
Route the supply and I C traces as far as possible from all sources of  
(http://www.intersil.com/data/tb/TB477.pdf)  
noise. A 0.1µF and 1µF power supply decoupling capacitors need to be  
placed close to the device.  
Suggested PCB Footprint  
It is important that users check the “Surface Mount Assembly  
Guidelines for Optical Dual FlatPack No Lead (ODFN) Package”  
before starting ODFN product board mounting.  
(http://www.intersil.com/data/tb/TB477.pdf)  
V
I2C_PULL-UP  
2
I C MASTER  
R2  
10k  
R3  
10kΩ  
R1  
10kΩ  
MICROCONTROLLER  
INT  
SDA  
V
DD  
SCL  
V
IR-LED  
V
SLAVE_0  
IRDR  
2
SLAVE_1  
I C SLAVE_n  
8
7
1
SDA  
SDA  
I
ALS  
3.5kΩ  
2
SCL  
SCL  
VDD  
INT  
C1  
1µF  
C2  
0.1µF  
6
5
3
4
GND  
SDA  
SCL  
REXT  
REXT  
499kΩ  
ISL29030  
FIGURE 5. ISL29030 TYPICAL CIRCUIT  
FN6872.1  
November 12, 2012  
12  
ISL29030  
Typical Performance Curves  
V
= 3.0V, R  
= 499kΩ  
EXT  
DD  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
HUMAN EYE  
0.9  
FLUORESCENT  
IR/PROX  
0.8  
0.7  
ALS  
0.6  
HALOGEN  
0.5  
0.4  
0.3  
0.2  
0.1  
0
INCAND.  
SUN  
350  
550  
750  
950  
300  
400  
500  
600  
700  
800  
900 1000 1100  
WAVELENGTH (nm)  
WAVELENGTH (nm)  
FIGURE 6. SPECTRUM OF FOUR LIGHT SOURCES NORMALIZED  
BY LUMINOUS INTENSITY (LUX)  
FIGURE 7. ISL29030 SENSITIVITY TO DIFFERENT WAVELENGTHS  
2500  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
HALOGEN  
2000  
1500  
FLUORESCENT  
1000  
INCANDESCENT  
500  
0
-90  
-60  
-30  
0
30  
60  
90  
0
1000  
2000  
3000  
4000  
5000  
ANGULAR OFFSET (°)  
ALS CODE (12-BIT)  
FIGURE 8. ANGULAR SENSITIVITY  
FIGURE 9. ALS LINEARITY OVER 3 LIGHT SOURCES (2000 LUX  
RANGE)  
300  
160  
ALS+PROX (DURING PROX SLEEP)  
140  
18% GREY CARD  
220mA MODE  
250  
200  
150  
100  
50  
ALS-ONLY  
120  
110mA MODE  
100  
80  
WHITE COPY PAPER  
PROX (DURING PROX SLEEP)  
60  
40  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
DISTANCE (mm)  
2.25 2.40 2.55 2.70 2.85 3.00 3.15 3.30 3.45 3.60  
INPUT V  
(V)  
DD  
FIGURE 10. PROX COUNTS vs DISTANCE WITH 10CM x 10CM  
REFLECTOR (USING ISL29030 EVALUATION BOARD)  
FIGURE 11. V vs I FOR VARIOUS MODES OF OPERATION (I  
DD DD  
ALS  
PIN FLOATING)  
FN6872.1  
November 12, 2012  
13  
ISL29030  
Typical Performance Curves  
V
= 3.0V, R  
= 499kΩ (Continued)  
EXT  
DD  
50  
40  
240  
220mA-MODE (PROX_DR = 1)  
30  
220  
200  
180  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
160  
140  
120  
100  
110mA-MODE (PROX_DR = 0)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
V
IRDR  
FIGURE 12. IRDR PULSE AMPLITUDE vs V  
FIGURE 13. STABILITY OF ALS COUNT OVER-TEMPERATURE  
(AT 300 LUX)  
IRDR  
10  
9
100  
80  
8
7
6
5
4
3
I
(%)  
ALS  
60  
40  
20  
0
2
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
10  
60  
V
(V)  
TEMPERATURE (°C)  
I_ALS  
FIGURE 15. COMPLIANCE VOLTAGE V  
'S EFFECTS ON I  
ALS  
= 0V)  
FIGURE 14. STABILITY OF ALS COUNT  
OVER-TEMPERATURE (AT 0.00 LUX)  
I_ALS  
(REFERENCED TO V  
I_ALS  
FN6872.1  
November 12, 2012  
14  
ISL29030  
2.10  
1
2
8
7
2.00  
0.43  
3
4
6
5
0.50  
0.42  
FIGURE 16. 8 LD ODFN SENSOR LOCATION OUTLINE - DIMENSIONS IN mm  
FN6872.1  
November 12, 2012  
15  
ISL29030  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN6872.1  
CHANGE  
4/19/11  
Corrected Tech Brief reference in Note 3 of “Ordering Information” on page 2 from TB363 to TB477.  
Added Note 10 to MIN MAX columns of “Electrical Specifications” on page 3.  
Updated “Package Outline Drawing” on page 17 as follows:  
-In the “bottom view” image, added a dimension from the edge of the package to the edge of the first lead,  
which is 0.15mm. Also added a dimension from the edge of the package (top edge in the picture) to the center  
of the lead, which is 0.25mm  
-Changed the drawing in the bottom view to show the new look of the pin#1 indicator  
-Corrected note 4 from "Dimension b applies.." to "Dimension applies..."  
-Added note 4 callout to bottom view  
-Enclosed Note #'s 4, 5, 6 in triangles  
10/18/10  
6/15/10  
Updates to test methodology, addition of "ALS Range 1 Considerations" paragraph, updates to "Power-Up"  
Sequence, test register clarification, I_als FSR typo fixes  
FN6872.0  
Initial release.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the fastest growing markets within the industrial and infrastructure,  
personal computing and high-end consumer markets. For more information about Intersil or to find out how to become a member of  
our winning team, visit our website and career page at www.intersil.com.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective product information page.  
Also, please check the product information page to ensure that you have the most updated datasheet: ISL29030  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
Reliability reports are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6872.1  
November 12, 2012  
16  
ISL29030  
Package Outline Drawing  
L8.2.1x2.0  
8 LEAD OPTICAL DUAL FLAT NO-LEAD PLASTIC PACKAGE (ODFN)  
Rev 3, 1/11  
A
2.10  
6
0.15  
B
PIN 1  
INDEX AREA  
0.25  
6
0.50  
PIN 1  
INDEX AREA  
1.50  
1.50  
2.00  
0.20±0.05  
4
0.10 M C A B  
(2X)  
0.10  
8X 0 . 35 ± 0 . 05  
TOP VIEW  
0.75  
BOTTOM VIEW  
SEE DETAIL "X"  
0.10 C  
2.50  
2.10  
0.70±0.05  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(6x0.50)  
(1.50)  
(8x0.20)  
5
0 . 2 REF  
C
(8x0.20)  
0 . 00 MIN.  
0 . 05 MAX.  
(8x0.55)  
DETAIL "X"  
(0.75)  
NOTES:  
TYPICAL RECOMMENDED LAND PATTERN  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.25mm and 0.35mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6872.1  
November 12, 2012  
17  

相关型号:

ISL29033

Ultra-Low Lux, Low Power, Integrated Digital Ambient Light Sensor with Interrupt Function
RENESAS

ISL29033IROZ-EVALZ

Ultra-Low Lux, Low Power, Integrated Digital Ambient Light Sensor with Interrupt Function
RENESAS

ISL29033IROZ-EVALZ

Ultra-Low Lux, Low Power, Integrated Digital Ambient Light Sensor with Interrupt Function
INTERSIL

ISL29033IROZ-T7

Ultra-Low Lux, Low Power, Integrated Digital Ambient Light Sensor with Interrupt Function
RENESAS

ISL29033IROZ-T7

Ultra-Low Lux, Low Power, Integrated Digital Ambient Light Sensor with Interrupt Function
INTERSIL

ISL29034

Integrated Digital Light Sensor
RENESAS

ISL29034IROZ-EVALZ

Integrated Digital Light Sensor
RENESAS

ISL29034IROZ-T7

Integrated Digital Light Sensor
RENESAS

ISL29035

Integrated Digital Light Sensor with Interrupt
COOPER

ISL29035

Integrated Digital Light Sensor with Interrupt
INTERSIL

ISL29035

Integrated Digital Light Sensor with Interrupt
RENESAS

ISL29035EVAL1Z

Integrated Digital Light Sensor with Interrupt
RENESAS