ISL55291EVAL1Z [INTERSIL]

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp; 单路和双路超低噪音,超低失真,轨到轨,低功耗运算放大器
ISL55291EVAL1Z
型号: ISL55291EVAL1Z
厂家: Intersil    Intersil
描述:

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
单路和双路超低噪音,超低失真,轨到轨,低功耗运算放大器

运算放大器
文件: 总18页 (文件大小:880K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL55191, ISL55291  
®
Data Sheet  
March 30, 2007  
FN6263.1  
Single and Dual Ultra-Low Noise, Ultra-Low  
Distortion, Rail-to-Rail, Low Power Op Amp  
Features  
• 1.3nV/Hz input voltage noise, f = 1kHz  
O
The ISL55191 and ISL55291 are single and dual high speed  
operational amplifiers featuring low noise, low distortion, and  
rail-to-rail output drive capability. They are designed to  
operate with single and dual supplies from +5VDC  
(±2.5VDC) down to +3VDC (±1.5VDC). These amplifiers  
draw 6.1mA of quiescent supply current per amplifier. For  
power conservation, this family offers a low-power shutdown  
mode that reduces supply current to 21µA and places the  
amplifiers' output into a high impedance state. The ISL55191  
ENABLE logic places the device in the shutdown mode with  
EN = 0 and the ISL55291 is placed in the shutdown mode  
with EN = 1.  
• Harmonic Distortion -94dBc, -104dBc, f = 1MHz  
O
• Stable at gains as low as 10  
• 800MHz gain bandwidth product (A = 10)  
V
• 260V/µs slew rate  
• 6.1mA supply current (21µA in disable mode)  
• 800µV maximum offset voltage  
• 12µA input bias current  
• 3V to 5.5V single supply voltage range  
• Rail-to-rail output  
These amplifiers have excellent input and output overload  
recovery times and outputs that swing rail-to-rail. Their input  
common mode voltage range includes ground. The  
ISL55191 and ISL55291 are stable at gains as low as 10  
with an input referred noise voltage of 1.3nV/Hz and  
harmonic distortion products -94dBc (2nd) and -104dBc  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• High speed pulse applications  
• Low noise signal processing  
• ADC buffers  
(3rd) below a 1MHz 2V  
P-P  
signal.  
The ISL55191 is available in space-saving 8 Ld DFN and 8 Ld  
SOIC packages. The ISL55291 is available in a 10 Ld MSOP  
package.  
• DAC output amplifiers  
• Radio systems  
• Portable equipment  
TABLE 1. ENABLE LOGIC  
Ordering Information  
PART  
NUMBER  
(Note)  
TAPE  
AND  
REEL  
PKG.  
DWG.  
#
PART  
MARKING  
PACKAGE  
(Pb-Free)  
ENABLE  
EN = 1  
EN = 0  
DISABLE  
ISL55191  
ISL55291  
EN = 0  
EN = 1  
ISL55191IBZ  
55191 IBZ  
-
8 Ld SOIC  
MDP0027  
MDP0027  
ISL55191IBZ-T13 55191 IBZ  
13”  
8 Ld SOIC  
(2,500 pcs) Tape and Reel  
ISL55191IRZ  
191Z  
-
8 Ld DFN  
L8.3x3D  
L8.3x3D  
ISL55191IRZ-T13 191Z  
13”  
8 Ld DFN  
(2,500 pcs) Tape and Reel  
ISL55291IUZ  
5291Z  
-
10 Ld MSOP MDP0043  
ISL55291IUZ-T13 5291Z  
13”  
10 Ld MSOP MDP0043  
(2,500 pcs) Tape and Reel  
Coming Soon  
ISL55191EVAL1Z  
Evaluation Board  
Coming Soon  
ISL55291EVAL1Z  
Evaluation Board  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL55191, ISL55291  
Pinouts  
ISL55191  
(8 LD SOIC)  
TOP VIEW  
ISL55191  
(8 LD DFN)  
TOP VIEW  
FEEDBACK  
1
2
3
4
8
7
6
5
EN  
EN  
V +  
1
2
3
4
8
7
6
5
IN-  
IN+  
V-  
V+  
FEEDBACK  
OUT  
NC  
V-  
-
+
-
+
IN-  
OUT  
NC  
IN+  
ISL55291  
(10 LD MSOP)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
5
10 V+  
9
8
7
6
OUT_B  
IN-_B  
-
+
-
+
IN+_B  
EN_B  
EN_A  
FN6263.1  
March 30, 2007  
2
ISL55191, ISL55291  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD tolerance, Human Body Model . . . . . . . . . . . . . . . . . . . . . .3kV  
ESD tolerance, Machine Model . . . . . . . . . . . . . . . . . . . . . . . . .300V  
ESD Rating  
Thermal Resistance  
θ
(°C/W)  
JA  
8 Ld DFN Package . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SO Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . .  
Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
TBD  
110  
115  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . .3kV  
Machine Model (Per EIAJ ED-4701 Method C-111). . . . . . . .300V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V = 5V, V- = GND, R = 1kΩ, R = 30Ω, R = 270Ω. unless otherwise specified. Parameters are per amplifier.  
+
L
G
F
All values are at V+ = 5V, T = +25°C.  
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
170  
2.2  
800  
µV  
OS  
ΔV  
Input Offset Drift vs Temperature  
-40°C to +85°C  
µV/°C  
OS  
ΔT  
---------------  
I
I
Input Offset Current  
0.3  
-12  
0.7  
-19  
3.8  
µA  
µA  
V
OS  
B
Input Bias Current  
V
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Maximum Output Voltage Swing  
0
CM  
CMRR  
PSRR  
V
= 0V to 3.8V  
85  
70  
85  
100  
77  
dB  
dB  
dB  
mV  
V
CM  
V+ = 3V to 5V  
= 0.5V to 4V, R = 1kΩ  
A
V
97  
VOL  
O
L
V
Output low, R = 1kΩ connected to V+/2  
23  
40  
OUT  
S,ON  
S,OFF  
L
Output high, R = 1kΩ connected to V+/2  
4.96  
4.98  
6.1  
12  
L
I
I
Supply Current, Enabled  
ISL55191  
ISL55291  
9
mA  
mA  
µA  
mA  
mA  
V
18  
40  
Supply Current, Disabled  
Short-Circuit Output Current  
Short-Circuit Output Current  
Supply Operating Range  
ENABLE High Level  
21  
I +  
R
R
= 10Ω connected to V+/2  
= 10Ω connected to V+/2  
110  
110  
3
132  
132  
O
L
L
I -  
O
V
V
V
V+ to V-  
5
SUPPLY  
INH  
2
V
ENABLE Low Level  
0.8  
80  
V
INL  
I
ENABLE Input High Current  
ISL55191 (EN)  
ISL55291 (EN)  
ISL55191 (EN)  
ISL55291 (EN)  
20  
0.8  
5
nA  
µA  
µA  
nA  
ENH  
V
= V+  
EN  
1.5  
6.2  
80  
I
ENABLE Input Low Current  
= V-  
ENL  
V
EN  
20  
FN6263.1  
March 30, 2007  
3
ISL55191, ISL55291  
Electrical Specifications V = 5V, V- = GND, R = 1kΩ, R = 30Ω, R = 270Ω. unless otherwise specified. Parameters are per amplifier.  
+
L
G
F
All values are at V+ = 5V, T = +25°C.  
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
A
= +10; V  
= +10; V  
= 100mVP-P; R /R = 909Ω/100Ω  
800  
-94  
MHz  
dBc  
dBc  
dB  
V
OUT  
OUT  
f
g
HD  
(4MHz)  
A
= 2VP-P; R /R = 909Ω/100Ω  
f g  
V
-104  
-65  
ISO  
Off-state Isolation; EN = 1 ISL55291;  
EN = 0 ISL55191  
f
= 10MHz; A = +10; V = 640mVP-P  
;
O
V
IN  
R /R = 909Ω/100Ω; C = 1.2pF  
f
g
L
X-TALK  
Channel to Channel Crosstalk  
f
= 10MHz; A = +10; V (Driven Channel) =  
OUT  
-75  
dB  
O
V
ISL55291  
640mVP-P; R /R = 909Ω/100Ω; C = 1.2pF  
f
g
L
V
Input Referred Voltage Noise  
Input Referred Current Noise  
f
f
= 1kHz  
1.2  
3.8  
nV/Hz  
pA/Hz  
N
O
O
IN  
= 10kHz  
TRANSIENT RESPONSE  
SR Slew Rate  
t , t Large Rise Time, t 10% to 90%  
150  
260  
6.6  
5.7  
5
V/uS  
ns  
A
= +10; V  
= 3.5VP-P; R /R = 909Ω/100Ω  
f g  
r
f
r
V
OUT  
OUT  
OUT  
OUT  
Signal  
C = 1.2pF  
L
Fall Time, t 10% to 90%  
ns  
f
Rise Time, t 10% to 90%  
A
= +10; V  
= 1VP-P; R /R = 909Ω/100Ω  
ns  
r
V
f
g
C = 1.2pF  
L
Fall Time, t 10% to 90%  
4
ns  
f
t , t , Small  
Rise Time, t 10% to 90%  
A
= +10; V  
= 100mVP-P; R /R = 909Ω/100Ω  
3
ns  
r
f
r
V
f
g
Signal  
C = 1.2pF  
L
Fall Time, t 10% to 90%  
f
3
ns  
t
t
Propagation Delay  
A
= +10; V  
= 100mVP-P; R /R = 909Ω/100Ω  
1.6  
ns  
pd  
V
f
g
10% V to 10% V  
C = 1.2pF  
IN  
OUT  
L
Positive Input Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = +10; V = +V +0.5V;  
IN CM  
50  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOL  
S
V
R /R = 909Ω/100Ω; C = 1.2pF  
IOL+ IN  
OUT  
f
g
L
Negative Input Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = +10; V = -V -0.5V;  
IN  
S
V
R /R = 909Ω/100Ω; C = 1.2pF  
IOL-  
IN  
Positive Output Overload Recovery  
Time, t ; 10% V to 10% V  
OUT  
f
g
L
t
t
V
= ±2.5V; A = +10; V = 2.3VP-P  
;
;
40  
OOL  
EN  
S
V
IN  
R /R = 909Ω/100Ω; C = 1.2pF  
OOL+ IN OUT  
f
g
L
Negative Output Overload Recovery  
Time, t ; 10% V to 10% V  
V
= ±2.5V; A = +10; V = 2.3VP-P  
IN  
30  
S
V
R /R = 909Ω/100Ω; C = 1.2pF  
OOL-  
IN  
ENABLE to Output Turn-on Delay  
Time; 10% EN to 10% V  
OUT  
f
g
L
A
= +10; V = 500mVP-P; R /R = 909Ω/100Ω  
IN  
540  
390  
330  
50  
V
f
g
ISL55191  
C = 1.2pF  
OUT  
ENABLE to Output Turn-off Delay  
Time; 10% EN to 10% V  
L
A
= +10; V = 500mVP-P; R /R = 909Ω/100Ω  
IN  
V
f
g
C = 1.2pF  
OUT  
ENABLE to Output Turn-on Delay  
Time; 10% EN to 10% V  
L
t
A
= +10; V = 500mVP-P; R /R = 909Ω/100Ω  
IN  
EN  
ISL55291  
V
f
g
C = 1.2pF  
OUT  
ENABLE to Output Turn-off Delay  
L
A
= +10; V = 500mVP-P; R /R = 909Ω/100Ω  
IN  
V
f
g
Time;10% EN to 10% V  
C = 1.2pF  
OUT  
L
FN6263.1  
March 30, 2007  
4
ISL55191, ISL55291  
Typical Performance Curves  
1
1
0
V
= 100mV  
OUT  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
R = 133, R = 14.7  
f
g
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = 249, R = 27.4  
f
g
R = 274, R = 30.1  
f
g
V
= 200mV  
R = 316, R = 34.8  
OUT  
f
g
A
R
C
= 10  
= 1k  
= 1.3pF  
V
L
L
f
g
R = 365, R = 40.2  
f
g
V
= 1V  
OUT  
A
= 10  
= 1k  
= 100mV  
V
R = 2.74k, R = 301  
R = 909  
R
f
g
R
V
L
= 100  
R = 909, R = 100  
f
g
OUT  
P-P  
0.1  
1.0  
10  
FREQUENCY (MHz)  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FIGURE 1. GAIN vs FREQUENCY FOR VARIOUS R vs R  
f
FIGURE 2. GAIN vs FREQUENCY vs V  
OUT  
g
1
0
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
= 1000 R /R = 100k/100  
V
f
i
-1  
-2  
-3  
A
= 10 R /R = 909/100  
f i  
V
R
= 1k  
L
-4  
-5  
-6  
-7  
-8  
-9  
A
= 100 R /R = 10k/100  
f i  
V
R
= 500  
= 250  
= 100  
L
R
L
A
C
= 10  
= 1.3pF  
V
L
R
R
C
V
= 1k  
= 2.2pF  
L
L
L
OUT  
V
= 100mV  
= 100mV  
OUT  
P-P  
P-P  
0
0.1  
.01  
0.1  
1.0  
10  
100  
1k  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS R  
FIGURE 4. CLOSED LOOP GAIN vs FREQUENCY  
LOAD  
2
4
C
= 23.2pF  
= 13.2pF  
L
V
= 1.2V  
S
1
0
3
2
C
L
L
C
= 8.0pF  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
1
0
C
= 1.2pF  
L
-1  
-2  
-3  
-4  
-5  
-6  
C = 2.2pF  
L
V
S
= 2.5V  
C
= 0.5pF  
g
f
g
L
C = 4.5pF  
L
A
= 10  
= 5V  
= 1k  
V
R = 909  
R
R
V
R
+
= 100  
= 1k  
= 100mV  
L
V
= 100mV  
OUT  
P-P  
V
OUT  
P-P  
.01  
0.1  
1.0  
10  
100  
1k  
0.1  
10  
FREQUENCY (MHz)  
100  
1k  
0.1  
FREQUENCY (MHz)  
FIGURE 5. GAIN vs FREQUENCY vs V  
FIGURE 6. GAIN vs FREQUENCY FOR VARIOUS C  
LOAD  
S
FN6263.1  
March 30, 2007  
5
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
5
4
5
4
C
C
= 8.7pF  
= 7.3pF  
= 5.2pF  
C
= 12.8pF  
= 10.8pF  
= 9.0pF  
g
g
C
g
g
g
3
3
C
C
g
2
2
C
= 3.8pF  
g
C
= 7.6pF  
g
1
1
C
= 2.7pF  
g
C
= 5.5pF  
g
0
0
C
= 1.6pF  
C
C
= 3.0pF  
g
g
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
R = 909  
R = 909  
f
f
= 0.8pF  
C = 0.5pF  
g
g
R
A
R
= 100  
= 10  
= 1k  
R
A
R
V
V
= 100  
= 10  
= 1k  
g
V
L
g
V
L
V
V
= 100mV  
= 5V  
= 100mV  
= 5V  
OUT  
S
P-P  
OUT  
S
P-P  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 7. ISL55191 GAIN vs FREQUENCY FOR  
FIGURE 8. ISL55291 GAIN vs FREQUENCY FOR  
VARIOUS C  
VARIOUS C  
g
g
1M  
100k  
10k  
1k  
1M  
100k  
10k  
1k  
C
C
A
= 1.6pF  
= 1.2pF  
= 10  
C
C
A
= 1.6pF  
= 1.2pF  
= 10  
g
L
V
g
L
V
100  
10  
100  
10  
R = 909  
R = 100  
g
R = 909  
R = 100  
g
f
f
V
R
= 500mV  
V
R
= 500mV  
SOURCE  
P-P  
SOURCE  
P-P  
1.0  
= 1k  
= 1k  
L
L
1
1
.01  
0.1  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 9. DISABLED INPUT IMPEDANCE vs FREQUENCY  
FIGURE 10. ENABLED INPUT IMPEDANCE vs FREQUENCY  
100  
10k  
C
= 0.5pF  
g
f
g
R = 909  
R
= 100  
= 10  
A
V
10  
1
V
= 1V  
P-P  
SOURCE  
1k  
100  
C
= 0.5pF  
g
f
g
0.1  
0.01  
R = 909  
R
= 100  
= 10  
A
V
V
= 1V  
P-P  
SOURCE  
10  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 11. DISABLED OUTPUT IMPEDANCE vs  
FREQUENCY  
FIGURE 12. ENABLED OUTPUT IMPEDANCE vs FREQUENCY  
FN6263.1  
March 30, 2007  
6
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
A
= 10  
= 0.8pF  
= 1k  
V
A
= 10  
= 0.8pF  
= 1k  
V
C
R
R
g
L
g
C
R
R
g
L
g
PSRR-  
= 100  
= 100  
Rf = 909  
= 1V  
Rf = 909  
= 1V  
V
P-P  
V
P-P  
PSRR+  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 13. CMRR vs FREQUENCY  
FIGURE 14. PSRR vs FREQUENCY  
0
-20  
0
C
= 1.6pF  
= 1.2pF  
= 10  
C
C
A
= 1.6pF  
= 1.2pF  
= 10  
g
L
g
L
V
C
A
-20  
V
R = 909  
R = 909  
f
f
-40  
R = 100  
i
R = 100  
i
-40  
-60  
V
R
= 640mV  
V
(DRIVEN CHANNEL) = 640mV  
IN  
= 1k  
P-P  
OUT  
R = 1k  
L
P-P  
-60  
L
-80  
-80  
-100  
-120  
-140  
-100  
-120  
.01  
0.1  
1.0  
10  
100  
1k  
.01  
0.1  
1.0  
10  
100  
1k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. OFF ISOLATION vs FREQUENCY  
FIGURE 16. ISL55291 CHANNEL TO CHANNEL CROSSTALK  
vs FREQUENCY  
100  
10  
1
1000  
100  
10  
A
= 100  
V
f
g
i
R = 303  
R
R = 1k  
= 3.3  
A
= 100  
V
f
g
L
R = 303  
R
R
= 3.3  
= 1k  
1
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. INPUT VOLTAGE NOISE vs FREQUENCY  
FIGURE 18. INPUT CURRENT NOISE vs FREQUENCY  
FN6263.1  
March 30, 2007  
7
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
0.6  
0.4  
0.2  
0
0.06  
0.04  
0.02  
0
V
A
R
R
= +2.5V  
= 10  
= 1k  
S
V
L
V
A
R
R
= +2.5V  
= 10  
= 1k  
S
V
L
= 100  
g
= 100  
g
R = 909  
f
R = 909  
f
-0.02  
-0.04  
-0.06  
-0.2  
-0.4  
-0.6  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
FIGURE 19. LARGE SIGNAL STEP RESPONSE  
FIGURE 20. SMALL SIGNAL STEP RESPONSE  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
50  
V
A
R
R
= +2.5V  
= 10  
= 1k  
S
V
L
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 0.1V  
OUT  
= 100  
g
R = 909  
f
V
= 0.5V  
OUT  
INPUT  
V
= 1V  
OUT  
OUTPUT  
A
= 10  
= 10k  
V
R
L
V
= ±2.5V  
= 100  
S
V
= 3.5V  
OUT  
R
g
R = 909  
f
V
= VCM +0.5V  
IN  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
TIME (ns)  
0
5
10 15 20 25 30 35 40 45 50  
CL (pF)  
FIGURE 21. PERCENT OVERSHOOT FOR VARIOUS C  
LOAD  
FIGURE 22. ISL55291 POSITIVE INPUT RECOVERY TIME  
0.6  
0.4  
0.2  
0
3
-2.2  
-2.3  
-2.4  
-2.5  
-2.6  
-2.7  
-2.8  
-2.9  
-3.0  
-3.1  
1.5  
1.0  
0.5  
0
2
INPUT  
1
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
INPUT  
OUTPUT  
0
OUTPUT  
A
R
= 10  
= 10k  
= +2.5V  
= 100  
V
L
A
R
= 10  
= 10k  
V
L
-0.2  
-0.4  
-0.6  
-1  
-2  
-3  
V
S
V
R
= ±2.5V  
= 100  
S
R
g
g
R = 909  
f
R = 909  
f
V
= 0.7V  
P-P  
IN  
V
= -V-0.5V  
IN  
0
20  
40  
60  
80 100 120 140 160 180 200  
TIME (ns  
0
20  
40  
60  
80 100 120 140 160 180 200  
TIME (ns)  
)
FIGURE 23. ISL55291 NEGATIVE INPUT RECOVERY  
RECOVERY  
FIGURE 24. OUTPUT OVERLOAD RECOVERY  
FN6263.1  
March 30, 2007  
8
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
280  
270  
260  
250  
240  
230  
220  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
A
= 10  
V
f
L
i
R = 909  
R
R = 100  
OUTPUT  
= 10k  
A
= 10  
V
f
g
L
R = 909  
R = 100  
R
= 10k  
= 280mV  
V
IN  
ENABLE  
-0.5  
-1.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
TIME (µs)  
V
(V)  
S
FIGURE 25. ENABLE TO OUTPUT DELAY  
FIGURE 26. ISL55291 POSITIVE SLEW RATE vs V  
S
-260  
-270  
-280  
-290  
-300  
-310  
-320  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
S
V
(V)  
S
FIGURE 27. ISL55291 NEGATIVE SLEW RATE vs V  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
n = 2000  
n = 2000  
34  
MAX  
MAX  
30  
26  
22  
MEDIAN  
MEDIAN  
18  
MIN  
MIN  
14  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. SUPPLY CURRENT ENABLED vs TEMPERATURE  
= ±2.5V  
FIGURE 29. SUPPLY CURRENT DISABLED vs  
TEMPERATURE V = ±2.5V  
V
S
S
FN6263.1  
March 30, 2007  
9
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
16  
15  
14  
13  
12  
11  
10  
9
20  
18  
16  
14  
12  
10  
8
n = 2000  
MAX  
MAX  
MEDIAN  
MEDIAN  
n = 2000  
MIN  
60  
6
MIN  
8
4
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 30. SUPPLY CURRENT ENABLED vs TEMPERATURE  
= ±1.5V  
FIGURE 31. SUPPLY CURRENT DISABLED vs TEMPERATURE  
= ±1.5V  
V
V
S
S
500  
300  
800  
600  
400  
200  
0
n = 2000  
n = 2000  
MAX  
MAX  
100  
MEDIAN  
MEDIAN  
-100  
-300  
-500  
-700  
-200  
MIN  
-20  
MIN  
-20  
-400  
-40  
0
20  
40  
60  
80  
-40  
0
20  
TEMPERATURE (°C)  
FIGURE 33. VIO vs TEMPERATURE V = ±1.5V  
40  
60  
80  
TEMPERATURE (°C)  
FIGURE 32. VIO vs TEMPERATURE V = ±2.5V  
S
S
-10  
-10  
n = 2000  
n = 2000  
-10.5  
-11  
-10.5  
-11  
MAX  
MEDIAN  
MAX  
-11.5  
-12  
-11.5  
-12  
MEDIAN  
-12.5  
-13  
-12.5  
-13  
-13.5  
-14  
-13.5  
-14  
MIN  
-14.5  
-15  
MIN  
20  
-14.5  
-15  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 34. I  
vs TEMPERATURE V = ±2.5V  
S
FIGURE 35. I  
BIAS-  
vs TEMPERATURE V = ±2.5V  
BIAS+  
S
FN6263.1  
March 30, 2007  
10  
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
-10.0  
-10.5  
-11.0  
-11.5  
-12.0  
-12.5  
-13.0  
-13.5  
-14.0  
-14.5  
-15.0  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
n = 2000  
n = 2000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
40  
-40  
-20  
0
20  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 36. I  
vs TEMPERATURE V = ±1.5V  
FIGURE 37. I  
vs TEMPERATURE V = ±1.5V  
S
BIAS+  
S
BIAS-  
105  
81  
n = 2000  
n = 2000  
103  
101  
99  
80  
79  
78  
77  
76  
75  
74  
73  
MAX  
V+ = 5V  
MEDIAN  
97  
95  
V+ = 3V  
93  
MIN  
91  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 38. CMRR vs TEMPERATURE V+ = ±2.5V, ±1.5V  
FIGURE 39. PSRR vs TEMPERATURE ±1.5V TO ±2.5V  
38  
4.986  
n = 2000  
n = 2000  
36  
4.984  
MAX  
MAX  
34  
4.982  
32  
30  
MEDIAN  
4.98  
28  
MEDIAN  
4.978  
26  
24  
22  
MIN  
4.976  
4.974  
4.972  
MIN  
20  
18  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 40. V  
R
HIGH vs TEMPERATURE V = ±2.5V,  
S
= 1K  
FIGURE 41. V  
LOW vs TEMPERATURE V = ±2.5V, R = 1k  
OUT  
OUT  
S
L
L
FN6263.1  
March 30, 2007  
11  
ISL55191, ISL55291  
Typical Performance Curves (Continued)  
2.990  
2.988  
2.986  
2.984  
2.982  
2.980  
2.978  
2.976  
41  
38  
35  
32  
29  
26  
23  
n = 2000  
n = 2000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 42. V  
HIGH vs TEMPERATURE V = ±1.5V, R = 1k  
FIGURE 43. V  
LOW vs TEMPERATURE V = ±1.5V, R = 1k  
OUT  
S
L
OUT  
S
L
FN6263.1  
March 30, 2007  
12  
ISL55191, ISL55291  
Pin Descriptions  
ISL55191  
ISL55191  
ISL55291  
(8 LD SOIC) (8 LD DFN) (10 LD MSOP) PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
5
2
6
3
NC  
IN-  
2 (A)  
8 (B)  
Inverting input  
V+  
IN+  
V-  
IN-  
Circuit 1  
3
4
3 (A)  
7 (B)  
IN+  
Non-inverting input  
(See circuit 1)  
4
6
5
7
4
V-  
Negative supply  
Output  
1 (A)  
9 (B)  
OUT  
V+  
OUT  
V-  
Circuit 2  
7
8
10  
V+  
Positive supply  
5 (A)  
6 (B)  
EN  
Enable pin with internal pull-  
down referenced to the -V pin;  
Logic “1” selects the disabled  
state; Logic “0” selects the  
enabled state.  
V+  
EN  
V-  
Circuit 3a  
8
1
EN  
Enable pin with internal pull-  
down referenced to the -V pin;  
Logic “0” (-V) selects the  
disabled state; Logic “1” (+V)  
selects the enabled state.  
V+  
EN  
V-  
Circuit 3b  
1
2
FEEDBACK Feedback pin to reduce IN-  
capacitance  
V+  
FEEDBACK  
OUT  
V-  
Circuit 4  
FN6263.1  
March 30, 2007  
13  
ISL55191, ISL55291  
where:  
Applications Information  
• P  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
is the sum of the maximum power  
Product Description  
)
MAX  
The ISL55191 and ISL55291 are voltage feedback  
operational amplifiers designed for communication and  
imaging applications requiring very low voltage and current  
noise. Both parts features low distortion while drawing  
moderately low supply current. The ISL55191 and ISL55291  
use a classical voltage-feedback topology which allows them  
to be used in a variety of applications where current-  
feedback amplifiers are not appropriate because of  
restrictions placed upon the feedback element used with the  
amplifier.  
• PD  
PD  
for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
R
L
----------------------------  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
(EQ. 2)  
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
Enable/Power-Down  
• V = Supply voltage  
S
Both devices can be operated from a single supply with a  
voltage range of +3V to +5V, or from split ±1.5V to ±2.5V.  
The logic level input to the ENABLE pins are TTL compatible  
and are referenced to the -V terminal in both single and split  
supply applications. The following discussion assumes  
single supply operation.  
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
The ISL55191 uses a logic “0” (<0.8V) to disable the  
amplifier and the ISL55291 uses a logic “1” (>2V) to disable  
its amplifiers. In this condition, the output(s) will be in a high  
impedance state and the amplifier(s) current will be reduced  
to 21µA. The ISL55191 has an internal pull-up on the EN pin  
and is enabled by either floating or tying the EN pin to a  
voltage >2V. The ISL55291 has internal pull-downs on the  
EN pins and are enabled by either floating or tying the EN  
pins to a voltage <0.8V. The enable pins should be tied  
directly to their respective supply pins when not being used  
(EN tied to -V for the ISL55291 and EN tied to +V for the  
ISL55191).  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. When  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
inductance. Use of sockets (particularly for the SOIC  
package) should be avoided if possible. Sockets add  
parasitic inductance and capacitance which will result in  
additional peaking and overshoot.  
Current Limiting  
The ISL55191 and ISL55291 have no internal current-  
limiting circuitry. If the output is shorted, it is possible to  
exceed the Absolute Maximum Rating for output current or  
power dissipation, potentially resulting in the destruction of  
the device.  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
For inverting gains, this parasitic capacitance has little effect  
because the inverting input is a virtual ground, but for non-  
inverting gains, this capacitance (in conjunction with the  
feedback and gain resistors) creates a pole in the feedback  
path of the amplifier. This pole, if low enough in frequency,  
has the same destabilizing effect as a zero in the forward  
open-loop response. The use of large-value feedback and  
gain resistors exacerbates the problem by further lowering  
the pole frequency (increasing the possibility of oscillation.).  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related as follows:  
T
= T  
+ xPD  
)
MAXTOTAL  
JMAX  
MAX  
JA  
(EQ. 1)  
FN6263.1  
March 30, 2007  
14  
ISL55191, ISL55291  
CURRENT  
INPUT  
+5VDC  
R
F
10kΩ  
R
G-  
100  
ISL55191  
R
T
V+  
IN-  
PARASITIC  
L TO R  
FEEDBACK  
R
SENSE  
0.01Ω  
VOUT  
OUT  
IN+  
V-  
R
G+  
100Ω  
R
L
R
REF  
10kΩ  
V
REF  
+2.5V  
CURRENT  
INPUT  
FIGURE 44. GROUND SIDE CURRENT SENSE AMPLIFIER  
Current Sense Application Circuit  
The schematic in Figure 44 provides an example of utilizing  
the ISL55191 high speed performance with the ground  
sensing input capability to implement a single-supply, G = 10  
differential low side current sense amplifier. The reference  
voltage applied to V  
(+2.5V) defines the amplifier output  
REF  
0A current sense reference voltage at one half the supply  
voltage level (V = +5VDC), and R sets the current  
S
SENSE  
sense gain and full scale values. In this example the current  
gain is 10A/V over a maximum current range of slightly less  
than ±25A with R  
SENSE  
= 0.01Ω. The amplifier V error  
IO  
(800µV max) and input bias offset current I error (0.7µA)  
IO  
together contribute less than 10mV (100mA) at the output for  
better than 0.2% full scale accuracy.  
The amplifier’s high slew rate and fast pulse response make  
this circuit suitable for low-side current sensing in PMWM  
and motor control applications. The excellent input overload  
recovery response enables the circuit to maintain  
performance in the presence of parasitic inductance that  
cause fast rise and falling edge spikes that can momentarily  
overload the input stage of the amplifier.  
FN6263.1  
March 30, 2007  
15  
ISL55191, ISL55291  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6263.1  
March 30, 2007  
16  
ISL55191, ISL55291  
Package Outline Drawing  
L8.3x3D  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN)  
Rev 0, 9/06  
PIN 1 INDEX AREA  
3.00  
A
1.45  
PIN 1 INDEX AREA  
B
0.075 C  
4X  
6X 0.50 BSC  
1.50  
REF  
3.00  
1.75  
8X 0.25  
0.10 M C A B  
8X 0.40  
2.20  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL X''  
0.10 C  
(8X 0.60)  
(1.75)  
(8X 0.25)  
0.85  
C
SEATING PLANE  
0.08 C  
(6X 0.50 BSC)  
SIDE VIEW  
(1.45)  
(2.20)  
5
TYPICAL RECOMMENDED LAND PATTERN  
0.20 REF  
c
0~0.05  
DETAIL “X”  
NOTES:  
1. Controlling dimensions are in mm.  
Dimensions in ( ) for reference only.  
2. Unless otherwise specified, tolerance : Decimal ±0.05  
Angular ±2°  
3. Dimensioning and tolerancing conform to JEDEC STD MO220-D.  
4. The configuration of the pin #1 identifier is optional, but must be located  
within the zone indicated. The pin #1 identifier may be either a mold or  
mark feature.  
5. Tiebar shown (if present) is a non-functional feature.  
FN6263.1  
March 30, 2007  
17  
ISL55191, ISL55291  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
MSOP8 MSOP10  
1.10 1.10  
N
SYMBOL  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
0.08  
M
C A B  
b
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6263.1  
March 30, 2007  
18  

相关型号:

ISL55291IUZ

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291IUZ

DUAL OP-AMP, 800uV OFFSET-MAX, 800MHz BAND WIDTH, PDSO10, ROHS COMPLIANT, MSOP-10
RENESAS

ISL55291IUZ-T13

Single and Dual Ultra-Low Noise, Ultra-Low Distortion, Rail-to-Rail, Low Power Op Amp
INTERSIL

ISL55291IUZ-T13

DUAL OP-AMP, 800uV OFFSET-MAX, 800MHz BAND WIDTH, PDSO10, ROHS COMPLIANT, MSOP-10
RENESAS

ISL5571A

Access High Voltage Switch
INTERSIL

ISL5571AIB

Access High Voltage Switch
INTERSIL

ISL5571AIB-T

SPECIALTY TELECOM CIRCUIT, PDSO16, PLASTIC, MS-013AA, SOIC-16
RENESAS

ISL5571AIBZ

Access High Voltage Switch
INTERSIL

ISL5571AIBZ

Access High Voltage Switch; SOIC16; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL5571A_04

Access High Voltage Switch
INTERSIL

ISL5585

3.3V Ringing SLIC Family for Voice Over Broadband VOB
INTERSIL

ISL5585AIM

3.3V Ringing SLIC Family for Voice Over Broadband VOB
INTERSIL