RF1K49223 [INTERSIL]

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET; 2.5A , 30V , 0.150欧姆,双P沟道LittleFET⑩功率MOSFET
RF1K49223
型号: RF1K49223
厂家: Intersil    Intersil
描述:

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
2.5A , 30V , 0.150欧姆,双P沟道LittleFET⑩功率MOSFET

晶体 晶体管 开关 光电二极管
文件: 总8页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF1K49223  
Data Sheet  
August 1999  
File Number 4322.1  
2.5A, 30V, 0.150 Ohm, Dual P-Channel  
LittleFET™ Power MOSFET  
Features  
• 2.5A, 30V  
• r = 0.150Ω  
The RF1K49223 Dual P-Channel power MOSFET is  
manufactured using an advanced MegaFET process. This  
process, which uses feature sizes approaching those of LSI  
integrated circuits, gives optimum utilization of silicon,  
resulting in outstanding performance. It is designed for use  
in applications such as switching regulators, switching  
converters, motor drivers, relay drivers, and low voltage bus  
switches. This device can be operated directly from  
integrated circuits.  
DS(ON)  
®
Temperature Compensating PSPICE Model  
• Thermal Impedance PSPICE Model  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA49223.  
Symbol  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
RF1K49223  
D1(8)  
D1(7)  
RF1K49223  
MS-012AA  
NOTE: When ordering, use the entire part number. For ordering in  
tape and reel, add the suffix 96 to the part number, i.e. RF1K4922396.  
S1(1)  
G1(2)  
D2(6)  
D2(5)  
S2(3)  
G2(4)  
Packaging  
JEDEC MS-012AA  
BRANDING DASH  
5
1
2
3
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
8-161  
RF1K49223  
o
Absolute Maximum Ratings T = 25 C Unless Otherwise Specified  
A
RF1K49223  
UNITS  
Drain to Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
-30  
-30  
±20  
V
V
V
DSS  
Drain to Gate Voltage (R  
GS  
= 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
GS  
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
2.5  
A
D
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Refer to UIS Curve  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2
W
W/ C  
D
o
o
0.016  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
A
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V, (Figure 12)  
MIN  
TYP  
MAX  
-
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
I
-30  
-
-
DSS  
D
GS  
V
V
= V , I = 250µA, (Figure 11)  
-1  
-
-3  
V
GS(TH)  
GS  
DS D  
o
I
V
V
= -30V,  
= 0V  
T
T
= 25 C  
-
-1  
µA  
µA  
nA  
DSS  
DS  
GS  
A
A
o
= 150 C  
-
-
-50  
±100  
0.150  
0.360  
40  
Gate to Source Leakage Current  
Drain to Source On Resistance  
I
V
= ±20V  
-
-
GSS  
GS  
r
I
= 2.5A,  
V
= -10V  
= -4.5V  
-
-
DS(ON)  
D
GS  
GS  
(Figure 9, 10)  
= -15V, I  
D
V
-
-
Turn-On Time  
t
V
2.5A,  
-
-
ns  
ON  
DD  
R
R
= 6, V  
= -10V,  
L
GS  
= 25Ω  
Turn-On Delay Time  
Rise Time  
t
-
9
-
ns  
d(ON)  
GS  
t
-
19  
60  
34  
-
-
ns  
r
Turn-Off Delay Time  
Fall Time  
t
-
-
ns  
d(OFF)  
t
-
-
ns  
f
Turn-Off Time  
t
-
140  
35  
ns  
OFF  
Total Gate Charge  
Gate Charge at -10V  
Threshold Gate Charge  
Q
V
V
V
= 0V to -20V  
= 0V to -10V  
= 0V to -2V  
V
= -24V,  
2.5A,  
= 9.6Ω  
-
28  
15  
1.5  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
I
D
Q
-
19  
g(-10)  
R
L
I
= -1.0mA  
Q
-
1.9  
g(REF)  
g(TH)  
(Figure 14)  
= -25V, V = 0V,  
GS  
Input Capacitance  
C
V
-
-
-
-
580  
260  
38  
-
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
DS  
f = 1MHz  
(Figure 13)  
Output Capacitance  
C
-
-
Reverse Transfer Capacitance  
Thermal Resistance Junction to Ambient  
C
o
R
Pulse Width = 1s  
62.5  
C/W  
θJA  
Device mounted on FR-4 material  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-1.25  
49  
UNITS  
V
V
I
I
= -2.5A  
-
-
-
-
SD  
SD  
t
=-2.5A, dI /dt = 100A/µs  
SD  
ns  
rr  
SD  
8-162  
RF1K49223  
Typical Performance Curves  
1.2  
1.0  
0.8  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
0.6  
0.4  
0.2  
0
-0.5  
0
75  
100  
125  
150  
50  
0
25  
50  
75  
100  
125  
150  
25  
o
o
T , AMBIENT TEMPERATURE ( C)  
T , AMBIENT TEMPERATURE ( C)  
A
A
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
AMBIENT TEMPERATURE  
10  
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
1
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
0.01  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
JA A  
DM  
JA  
θ
θ
SINGLE PULSE  
0.001  
-4  
10  
-5  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
-100  
-50  
-10  
o
T
= MAX RATED  
FOR TEMPERATURES  
T = 25 C  
A
V
= -20V  
J
GS  
o
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
T
= 25 C  
A
150 - T  
I = I  
A
25  
V
= -10V  
GS  
125  
5ms  
10ms  
-1  
-0.1  
-10  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
1s  
OPERATION IN THIS  
AREA MAY BE  
DC  
V
= -30V  
-10  
LIMITED BY r  
DSS(MAX)  
DS(ON)  
-0.01  
-1  
10  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
-0.1  
-1  
10  
10  
10  
-100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
8-163  
RF1K49223  
Typical Performance Curves (Continued)  
-15  
-20  
If R = 0  
AV  
If R 0  
V
= -20V  
= -10V  
= -8V  
PULSE DURATION = 80µs  
GS  
t
= (L)(I )/(1.3*RATED BV  
- V )  
DD  
AS  
DSS  
DUTY CYCLE = 0.5% MAX  
-10  
V
GS  
o
T
= 25 C  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
- V ) +1]  
DSS DD  
A
V
= -7V  
-16  
-12  
-8  
GS  
V
GS  
V
= -6V  
GS  
o
STARTING T = 25 C  
J
V
= -5V  
GS  
o
STARTING T = 150 C  
J
V
= -4.5V  
GS  
-4  
-1  
0.1  
0
1
10  
100  
0
-1.5  
-3.0  
-4.5  
-6.0  
-7.5  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
500  
400  
300  
200  
100  
0
-20  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= -15V  
DD  
V
= -15V  
o
DD  
150 C  
-16  
-12  
-8  
I
= -5.0A  
= -2.5A  
D
o
-55 C  
I
D
o
25 C  
I
= -1.25A  
D
I
= -0.625A  
D
-4  
0
-6  
-8  
-10  
-2  
-4  
0
-2  
V
-4  
-6  
-8  
-10  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs  
GATE VOLTAGE AND DRAIN CURRENT  
2.0  
1.5  
1.0  
0.5  
0
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = -250µA  
GS  
DS  
D
V
= -10V, I = -2.5A  
GS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-80  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
8-164  
RF1K49223  
Typical Performance Curves (Continued)  
750  
1.2  
I
= -250µA  
D
C
ISS  
600  
450  
300  
1.1  
1.0  
0.9  
0.8  
V
= 0V, f = 1MHz  
GS  
ISS  
C
C
C
= C  
+ C  
GS GD  
= C  
RSS  
OSS  
GD  
= C  
C
C
+ C  
DS GD  
OSS  
150  
0
RSS  
0
-5  
V
-10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
-15  
-20  
-25  
-80  
-40  
0
40  
80  
120  
160  
o
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
-10.0  
-30.0  
V
= BV  
DD  
DSS  
V
= BV  
DSS  
DD  
-22.5  
-15.0  
-7.5  
0
-7.5  
-5.0  
R
= 12Ω  
L
I
= -0.26mA  
G(REF)  
V
= -10V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
V
V
V
V
= BV  
-2.5  
0
DD  
DD  
DD  
DD  
DSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
I
I
G(REF)  
G(REF)  
t, TIME (µs)  
---------------------  
---------------------  
20  
80  
I
I
G(ACT)  
G(ACT)  
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT  
Test Circuits and Waveforms  
V
DS  
t
AV  
L
0
VARY t TO OBTAIN  
P
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
+
DUT  
0V  
V
DD  
t
P
I
AS  
V
GS  
V
DS  
I
AS  
t
P
0.01Ω  
BV  
DSS  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
8-165  
RF1K49223  
Test Circuits and Waveforms (Continued)  
t
t
ON  
OFF  
t
t
d(OFF)  
d(ON)  
t
t
f
r
0
10%  
10%  
R
L
V
DS  
V
GS  
-
V
DS  
90%  
90%  
V
DD  
+
V
0
GS  
V
GS  
10%  
50%  
DUT  
R
GS  
50%  
90%  
PULSE WIDTH  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
V
DS  
V
DS  
Q
R
g(TH)  
L
0
V
= -2V  
GS  
V
GS  
-
V
= -10V  
-V  
GS  
GS  
V
DD  
+
Q
g(-10)  
V
= -20V  
DUT  
GS  
V
DD  
Q
g(TOT)  
0
I
g(REF)  
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
Soldering Precautions  
The soldering process creates a considerable thermal stress  
on any semiconductor component. The melting temperature  
of solder is higher than the maximum rated temperature of  
the device. The amount of time the device is heated to a high  
temperature should be minimized to assure device reliability.  
Therefore, the following precautions should always be  
observed in order to minimize the thermal stress to which  
the devices are subjected.  
4. The peak temperature in the soldering process should be  
o
at least 30 C higher than the melting point of the solder  
chosen.  
5. The maximum soldering temperature and time must not  
o
exceed 260 C for 10 seconds on the leads and case of  
the device.  
6. After soldering is complete, the device should be allowed  
to cool naturally for at least three minutes, as forced cool-  
ing will increase the temperature gradient and may result  
in latent failure due to mechanical stress.  
1. Always preheat the device.  
2. The delta temperature between the preheat and solder-  
o
ing should always be less than 100 C. Failure to preheat  
7. During cooling, mechanical stress or shock should be  
avoided.  
the device can result in excessive thermal stress which  
can damage the device.  
3. The maximum temperature gradient should be less than  
o
5 C per second when changing from preheating to sol-  
dering.  
8-166  
RF1K49223  
PSPICE Electrical Model  
SUBCKT RF1K49223 2 1 3 ;  
rev 4/7/97  
CA 12 8 7.29e-10  
CB 15 14 5.01e-10  
CIN 6 8 5.55e-10  
LDRAIN  
ESG  
DRAIN  
2
5
-
+
8
6
10  
RLDRAIN  
RSLC1  
51  
DBODY 5 7 DBODYMOD  
DBREAK 7 11 DBREAKMOD  
DPLCAP 10 6 DPLCAPMOD  
+
+
RSLC2  
17  
18  
5
51  
EBREAK  
ESLC  
-
-
50  
EBREAK 5 11 17 18 -35.46  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
DPLCAP  
RDRAIN  
DBODY  
ESG 5 10 8 6 1  
EVTHRES 6 21 19 8 1  
EVTEMP 6 20 18 22 1  
EVTHRES  
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
11  
RGATE  
GATE  
1
6
-
+
18  
22  
MMED  
9
20  
IT 8 17 1  
DBREAK  
MSTRO  
8
RLGATE  
LSOURCE  
LDRAIN 2 5 1e-9  
LGATE 1 9 1.27e-9  
LSOURCE 3 7 4.20e-10  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 19.3e-3  
RGATE 9 20 7.44  
RLDRAIN 2 5 10  
RLGATE 1 9 12.7  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
RLSOURCE 3 7 4.2  
+
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 65.37e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*48),2.5))}  
.MODEL DBODYMOD D (IS = 3.30e-13 RS = 4.56e-2 TRS1 =6.98e-4 TRS2 =8.08e-7 CJO = 8.21e-10 TT = 3.51e-8 M=0.4)  
.MODEL DBREAKMOD D (RS = 8.18e-1 TRS1 =5.28e-3 TRS2 = -7.18e-5  
.MODEL DPLCAPMOD D (CJO = 2.52e-10 IS = 1e-30 N = 10 M=0.6)  
.MODEL MMEDMOD PMOS (VTO= -1.95 KP=0.75 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=7.44)  
.MODEL MSTROMOD PMOS (VTO= -2.44 KP= 7.25 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MWEAKMOD PMOS (VTO= -1.68 KP=0.045 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=74.4 RS=0.1)  
.MODEL RBREAKMOD RES (TC1 = 9.45e-4 TC2 = -1.01e-7)  
.MODEL RDRAINMOD RES (TC1 = 3.69e-3 TC2 = 5.90e-6)  
.MODEL RSLCMOD RES (TC1=3.46e-3 TC2= 1.26e-6)  
.MODEL RSOURCEMOD RES (TC1=3.69e-3 TC2=5.90e-6)  
.MODEL RVTHRESMOD RES (TC=-5.19e-4 TC2= 5.02e-6)  
.MODEL RVTEMPMOD RES (TC1 = -3.54e-3 TC2 = -6.53e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 6.94 VOFF= 3.94)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.94 VOFF= 6.94)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.40 VOFF= -2.60)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.60 VOFF= 0.40)  
.ENDS  
NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
8-167  
RF1K49223  
PSPICE Thermal Model  
JUNCTION  
7
REV 28 Feb 97  
RF1K49223  
CTHERM1 7 6 1.00e-7  
CTHERM2 6 5 9.00e-4  
CTHERM3 5 4 3.00e-3  
CTHERM4 4 3 4.00e-2  
CTHERM5 3 2 5.20e-3  
CTHERM6 2 1 1.90e-2  
RTHERM1  
CTHERM1  
6
RTHERM1 7 6 7.10e-2  
RTHERM2 6 5 1.90e-1  
RTHERM3 5 4 5.95e-1  
RTHERM4 4 3 4.27  
RTHERM5 3 2 1.2e1  
RTHERM6 2 1 1.04e2  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
4
3
2
1
CASE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
8-168  

相关型号:

RF1K4922396

2.5A, 30V, 0.150 Ohm, Dual P-Channel LittleFET⑩ Power MOSFET
FAIRCHILD

RF1K4922396

2.5A, 30V, 0.36ohm, 2 CHANNEL, P-CHANNEL, Si, POWER, MOSFET, MS-012AA
RENESAS

RF1K49224

3.5A/2.5A, 30V, 0.060/0.150 Ohms, Complementary LittleFET⑩ Power MOSFET
INTERSIL

RF1K4922496

TRANSISTOR | MOSFET | PAIR | COMPLEMENTARY | 30V V(BR)DSS | 3.5A I(D) | SO
ETC

RF1S0CA137KFT

Fixed Resistor, Metal Film, 1W, 137000ohm, 350V, 1% +/-Tol, 100ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA16R5F

Fixed Resistor, Metal Film, 1W, 16.5ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA1R10JT

Fixed Resistor, Metal Film, 1W, 1.1ohm, 350V, 5% +/-Tol, 200ppm/Cel, Surface Mount, 3916, CHIP
OHMITE

RF1S0CA357RF

Fixed Resistor, Metal Film, 1W, 357ohm, 350V, 1% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S0CA680RJ

Fixed Resistor, Metal Film, 1W, 680ohm, 350V, 5% +/-Tol, -100,100ppm/Cel, 3916,
OHMITE

RF1S15N06SM

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N06SM9A

15A, 60V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

RF1S15N08L9A

45A, 80V, 0.14ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS