IRS21303 [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IRS21303
型号: IRS21303
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器
文件: 总22页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Data Sheet No. PD60274 revA  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
3-PHASE BRIDGE DRIVER  
Product Summary  
Features  
Floating channel designed for bootstrap operation  
Fully operational to +600 V  
VOFFSET  
600 V max.  
Tolerant to negative transient voltage, dV/dt immune  
Gate drive supply range from 10 V to 20 V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Three Independent half-bridge drivers  
Matched propagation delay for all channels  
2.5 V logic compatible  
Outputs out of phase with inputs  
Cross-conduction prevention logic  
All parts are LEAD-FREE  
IO+/- (min.)  
VOUT  
200 mA / 420 mA  
10 V – 20 V (IRS213(0,2))  
13 V – 20 V (IRS21303)  
500 ns  
ton/off (typ.)  
Deadtime (typ.)  
2.0 µs (IRS2130)  
0.7 µs (IRS213(2,03))  
Applications:  
*Motor Control  
*Air Conditioners/ Washing Machines  
*General Purpose Inverters  
*Micro/Mini Inverter Drives  
Description  
Packages  
The IRS213(0, 03, 2) are high voltage, high speed  
power MOSFET and IGBT drivers with three independent  
high and low side referenced output channels. Proprietary  
HVIC technology enables ruggedized monolithic  
construction. Logic inputs are compatible with CMOS or  
LSTTL outputs, down to 2.5 V logic. A ground-referenced  
operational amplifier provides analog feedback of bridge  
current via an external current sense resistor. A current trip  
function which terminates all six outputs is also derived from  
this resistor. An open drain FAULT signal indicates if an  
over-current or undervoltage shutdown has occurred. The  
output drivers feature a high pulse current buffer stage  
designed for minimum driver cross-conduction. Propagation  
delays are matched to simplify use at high frequencies. The  
floating channels can be used to drive N-channel power  
28-Lead SOIC  
28-Lead PDIP  
44-Lead PLCC w/o 12 Leads  
MOSFETs or IGBTs in the high side configuration which operates up to 600 V.  
Typical Connection  
www.irf.com  
1
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to VSO. The thermal resistance and power dissipation ratings are  
measured under board mounted and still air conditions. Zener clamps are included between VCC & VSO (25 V), VCC  
VSS (20V), and VBx & VSx (20 V).  
&
Symbol  
Definition  
Min.  
Max.  
Units  
VB1,2,3  
High side floating supply voltage  
-0.3  
625  
VS1,2,3  
VHO1,2,3  
VCC  
High side floating offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Logic ground  
VB1,2,3 - 20  
VS1,2,3 - 0.3  
-0.3  
VB1,2,3 + 0.3  
VB1,2,3 + 0.3  
25  
VSS  
VCC - 20  
-0.3  
VCC + 0.3  
VCC + 0.3  
VLO1,2,3  
Low side output voltage  
V
(VSS + 15) or  
(VCC + 0.3),  
whichever is  
lower  
Logic input voltage ( HIN1,2,3, LIN1,2,3 & ITRIP)  
VIN  
VSS -0.3  
VFLT  
VCAO  
VCA-  
FAULT output voltage  
VSS -0.3  
VCC +0.3  
VCC +0.3  
VCC +0.3  
50  
Operational amplifier output voltage  
Operational amplifier inverting input voltage  
Allowable offset supply voltage transient  
VSS -0.3  
VSS -0.3  
dVS/dt  
V/ns  
W
(28 lead PDIP)  
1.5  
PD  
Package power dissipation @ TA +25 °C  
(28 lead SOIC)  
(44 lead PLCC)  
(28 lead PDIP)  
(28 lead SOIC)  
(44 lead PLCC)  
1.6  
2.0  
83  
Rth,JA  
Thermal resistance, junction to ambient  
°C/W  
°C  
78  
63  
TJ  
TS  
TL  
Junction temperature  
150  
Storage temperature  
-55  
150  
Lead temperature (soldering, 10 seconds)  
300  
www.irf.com  
2
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the  
recommended conditions. All voltage parameters are absolute voltage referenced to VSO. The VS offset rating is tested  
with all supplies biased at a 15 V differential.  
Symbol  
Definition  
Min.  
Max.  
Units  
IRS213(0,2)  
IRS21303  
VS1,2,3 +10  
VB1,2,3  
High side floating supply voltage  
VS1,2,3 +20  
VS1,2,3 +13  
VS1,2,3  
High side floating offset voltage  
High side floating output voltage  
Note 1  
600  
VHO1,2,3  
VS1,2,3  
10  
13  
VB1,2,3  
IRS213(0,2)  
IRS21303  
VCC  
Low side and logic fixed supply voltage  
20  
V
VSS  
VLO1,2,3  
VIN  
Logic ground  
-5  
5
Low side output voltage  
0
VCC  
Logic input voltage (HIN1,2,3, LIN1,2,3 & ITRIP)  
VSS  
VSS  
VSS  
VSS  
-40  
VSS + 5  
VCC  
FAULT output voltage  
VFLT  
VCAO  
VCA-  
TA  
Operational amplifier output voltage  
Operational amplifier inverting input voltage  
Ambient temperature  
VSS + 5  
VSS + 5  
125  
°C  
Note 1: Logic operational for VS of (VSO - 8 V) to (VSO + 600 V). Logic state held for VS of (VSO - 8 V) to (VSO – VBS .  
)
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: The CAO pin and all input pins (except CA-) are internally clamped with a 5.2 V zener diode.  
www.irf.com  
3
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Static Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters are  
referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
VIH  
VIL  
Logic “0” input voltage (OUT = LO)  
Logic “1” input voltage (OUT = HI)  
ITRIP input positive going threshold  
2.2  
V
0.8  
VIT,TH+  
400 490 580  
mV  
V
VOH  
VOL  
ILK  
High level output voltage, VBIAS - VO  
Low level output voltage, VO  
Offset supply leakage current  
Quiescent VBS supply current  
Quiescent VCC supply current  
30  
3
1
400  
50  
70  
5
VIN = 0 V, Io= 20 mA  
mV VIN = 5 V, Io= 20 mA  
VB = VS = 600 V  
µA  
IQBS  
IQCC  
IIN+  
IIN-  
IITRIP+  
IITRIP-  
VIN = 0 V  
mA  
µA  
nA  
Logic “1” input bias current (OUT = HI)  
Logic “0” input bias current (OUT = LO)  
“High” ITRIP bias current  
300 400  
220 300  
5
VIN = 5 V  
ITRIP = 5 V  
ITRIP = 0 V  
10  
100  
“Low” ITRIP bias current  
VBS supply undervoltage  
positive going threshold  
IRS213(0,2) 7.5 8.35 9.2  
IRS21303 11 13  
IRS213(0,2) 7.1 7.95 8.8  
VBSUV+  
VBSUV-  
VCCUV+  
VCCUV-  
VCCUVH  
VBS supply undervoltage  
negative going threshold  
IRS21303  
IRS213(0,2) 8.3  
9
9
11  
9.7  
13  
9.4  
11  
VCC supply undervoltage  
positive going threshold  
IRS21303  
IRS213(0,2)  
IRS21303  
IRS213(0,2)  
IRS21303  
IRS213(0,2)  
IRS21303  
11  
8
9
8.7  
0.3  
2
V
VCC supply undervoltage  
negative going threshold  
Hysteresis  
0.4  
2
VBSUVH  
Ron, FLT  
IO+  
Hysteresis  
FAULT low on-resistance  
55  
75  
VO = 0 V, VIN = 0 V  
PW 10 µs  
VO = 15 V, VIN = 5 V  
PW 10 µs  
Output high short circuit pulsed current  
Output low short circuit pulsed current  
200 250  
420 500  
mA  
IO-  
VOS  
ICA-  
Operational amplifier input offset voltage  
CA- input bias current  
10  
50  
mV  
nA  
VSO = VCA- = 0.2 V  
VCA- = 2.5 V  
Operational amplifier common mode  
rejection ratio  
Operational amplifier power supply  
rejection ratio  
VSO = VCA- = 0.1 V &  
1.1 V  
VSO = VCA- = 0.2 V  
VCC = 10 V & 20 V  
CMRR  
PSRR  
TBD 80  
TBD 75  
dB  
Operational amplifier high level output  
voltage  
Operational amplifier low level output  
voltage  
VOH,AMP  
VOL,AMP  
4.9  
5.2  
5.4  
30  
V
VCA- = 0 V, VSO =1 V  
VCA- = 1 V, VSO =0 V  
mV  
www.irf.com  
4
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Static Electrical Characteristics - (Continued)  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters  
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters are  
referenced to VSO1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
VCA- = 0 V, VSO =1 V  
ISRC,AMP  
Operational amplifier output source current  
4
1
7
2.1  
10  
4
VCAO = 4 V  
VCA- = 1 V, VSO =0 V  
VCAO = 2 V  
VCA- = 0 V, VSO =5 V  
VCAO = 0 V  
ISNK,AMP  
IO+,AMP  
IO-,AMP  
Operational amplifier output sink current  
mA  
Operational amplifier output high short circuit  
current  
Operational amplifier output low short circuit  
current  
VCA- = 5 V, VSO =0 V  
VCAO = 5 V  
Dynamic Electrical Characteristics  
VBIAS (VCC, VBS1,2,3) = 15 V, VSO1,2,3 = VSS , CL = 1000 pF, TA = 25 °C unless otherwise specified.  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
ton  
toff  
t r  
Turn-on propagation delay  
400 500 700  
400 500 700  
Turn-off propagation delay  
Turn-on rise time  
80  
35  
125  
55  
VS1,2,3 = 0 V to 600 V  
tf  
Turn-off fall time  
titrip  
tbl  
ITRIP to output shutdown propagation delay  
ITRIP blanking time  
400 660 920  
400  
350 550 870  
325  
ns  
ITRIP to FAULT indication delay  
tflt  
tflt, in  
Input filter time (all six inputs)  
LIN1,2,3 to FAULT clear time IRS213(0,2)  
LIN1,2,3 & HIN1,2,3 to FAULT clear time  
IRS21303  
tfltclr  
DT  
5300 8500 13700  
IRS2130  
1300 2000 3100  
500 700 1100  
Deadtime  
IRS213(2,03)  
SR+  
SR-  
Operational amplifier slew rate (+)  
Operational amplifier slew rate (-)  
5
10  
V/µs  
1 V input step  
2.4  
3.2  
NOTE: For high side PWM, HIN pulse width must be > 1.5 µs.  
www.irf.com  
5
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Fig. 1. Input/Output Timing Diagram  
Fig. 2. Detime Waveform Definitions  
Fig. 3. Input/OutSwitching Time Waveform nitions  
www.irf.com  
6
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Fig. 4. Overcurrent Shutdown Switching Time Waveform Definitions  
Fig. 5. Input Filter Function  
Fig. 6. Diagnoic Feedback Operational Amplifier Circuit  
www.irf.com  
7
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Lead Definitions  
Symbol  
Description  
HIN1,2,3  
LIN1,2,3  
FAULT  
Logic input for high side gate driver outputs (HO1,2,3), out of phase  
Logic input for low side gate driver output (LO1,2,3), out of phase  
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic  
Low side and logic fixed supply  
VCC  
ITRIP  
CAO  
Input for over-current shutdown  
Output of current amplifier  
CA-  
Negative input of current amplifier  
VSS  
Logic ground  
VB1,2,3  
HO1,2,3  
VS1,2,3  
LO1,2,3  
VSO  
High side floating supply  
High side gate drive output  
High side floating supply return  
Low side gate drive output  
Low side return and positive input of current amplifier  
Lead Assignments  
www.irf.com  
8
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Functional Block Diagram  
www.irf.com  
9
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Functional Block Diagram  
www.irf.com  
10  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
1 PCB Layout Tips  
1.1 Distance from H to L Voltage  
The IRS213(0,03,2)J package lacks some pins (see page 8) in order to maximizing the distance between the high  
voltage and low voltage pins. It’s strongly recommended to place the components tied to the floating voltage in the  
respective high voltage portions of the device (VB1,2,3, VS1,2,3) side.  
1.2 Ground Plane  
To minimize noise coupling the ground plane must not be placed under or near the high voltage floating side.  
1.3 Gate Drive Loops  
Current loops behave like an antenna able to receive and transmit EM noise (see Fig. 7). In order to reduce EM  
coupling and improve the power switch turn on/off performances, gate drive loops must be reduced as much as  
possible. Moreover, current can be injected inside the gate drive loop via the IGBT collector-to-gate parasitic  
capacitance. The parasitic auto-inductance of the gate loop contributes to develop a voltage across the gate-emitter  
increasing the possibility of self turn-on effect.  
IGC  
VBX (VCC)  
gate  
resistance  
CGC  
HOX (LOX )  
Gate Drive  
Loop  
VGE  
( Vs0 )  
VSX  
Fig. 7. Antenna Loops  
1.4 Supply Capacitors  
Supply capacitors must be placed as close as possible to the device pins (VCC and VSS for the ground tied supply, VB  
and VS for the floating supply) in order to minimize parasitic inductance/resistance.  
1.5 Routing and Placement  
Power stage PCB parasitic may generate dangerous voltage transients for the gate driver and the control logic. In  
particular it’s recommended to limit phase voltage negative transients.  
In order to avoid such undervoltage it is highly recommended to minimize high side emitter to low side collector  
distance and low side emitter to negative bus rail stray inductance. See DT04-4 at www.irf.com for more detailed  
information.  
www.irf.com  
11  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Figures 8-38 provide information on the experimental performance of the IRS2130S HVIC. The line plotted in each  
figure is generated from actual lab data. A large number of individual samples were tested at three temperatures (-40  
ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of three data  
points (one data point at each of the tested temperatures) that have been connected together to illustrate the  
understood trend. The individual data points on the curve were determined by calculating the averaged experimental  
value of the parameter (for a given temperature).  
1500  
1200  
900  
600  
300  
0
1000  
800  
600  
400  
200  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 8. Turn-On Propagation Delay vs. Temperature  
Fig. 9. Turn-Off Propagation Delay vs. Temperature  
125  
100  
75  
250  
200  
150  
50  
100  
Exp.  
Exp.  
50  
0
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 10. Turn-On Rise Time vs. Temperature  
Fig. 11. Turn-Off Fall Time vs. Temperature  
www.irf.com  
12  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
1500  
1200  
3000  
2500  
2000  
1500  
1000  
500  
Exp.  
900  
Exp.  
600  
300  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 13. TITRIP Propagation Delay vs. Temperature  
Fig. 12. DT Propagation Delay vs. Temperature  
250  
200  
150  
100  
1500  
1200  
900  
600  
300  
0
Exp.  
50  
Exp.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
Temperature (oC)  
Temperature (oC)  
Fig.15. FAULT Low On Resistance vs. Temperature  
Fig. 14. ITRIP to FAULT Propagation Delay vs.  
Temperature  
10  
8
100  
80  
60  
40  
20  
0
6
Exp.  
4
Exp.  
2
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 16. VCC Quiescent Current vs. Temperature  
Fig. 17. VBS Quiescent Current vs. Temperature  
www.irf.com  
13  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
11  
10  
9
11  
10  
Exp.  
9
Exp.  
8
8
7
6
7
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 18. VCCUV+ Threshold vs. Temperature  
Fig. 19. VCCUV- Threshold vs. Temperature  
11  
10  
9
11  
10  
9
Exp.  
Exp.  
8
8
7
7
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 20. VBSUV+ Threshold vs. Temperature  
Fig. 21. VBSUV- Threshold vs. Temperature  
750  
500  
250  
0
750  
500  
250  
0
EXP.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 22. ITRIP Positive Going Threshold vs. Temperature  
Fig. 23. ITRIP Negative Going Threshold vs.  
Temperature  
www.irf.com  
14  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
500  
400  
300  
200  
100  
0
750  
600  
Exp.  
450  
300  
150  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 25. Output Low Short Circuit Current vs.  
Temperature  
Fig. 24. Output High Short Circuit Pulsed Current vs.  
Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Exp.  
Exp.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 27. "Low" ITRIP Bias Current vs. Temperature  
Fig. 26. "High" ITRIP Bias Current vs. Temperature  
8
25  
20  
15  
10  
5
6
Exp.  
Exp.  
4
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 28. VOH,AMP vs. Temperature  
Fig. 29. VOL,AMP vs. Temperature  
www.irf.com  
15  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
7
6
20  
15  
10  
5
5
Exp.  
Exp.  
4
3
2
1
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 31. SR-,AMP vs. Temperature  
Fig. 30. SR+,AMP vs. Temperature  
5
12  
10  
8
Exp.  
4
3
2
1
0
Exp.  
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 32. ISNK,AMP vs. Temperature  
Fig. 33. ISRC,AMP vs. Temperature  
20  
16  
12  
8
15  
Exp.  
12  
9
Exp.  
6
4
3
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 35. IO+,AMP vs. Temperature  
Fig. 34. IO-,AMP vs. Temperature  
www.irf.com  
16  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
90  
70  
50  
30  
10  
-10  
125  
100  
Exp.  
75  
50  
25  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 36. VOS,AMP vs. Temperature  
Fig. 37. PSRR vs. Temperature  
150  
125  
100  
75  
Exp.  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Fig. 38. CMRR vs. Temperature  
www.irf.com  
17  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Case Outlines  
www.irf.com  
18  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
Case Outlines  
www.irf.com  
19  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
11.90  
3.90  
23.70  
11.40  
10.80  
18.20  
1.50  
Max  
12.10  
4.10  
24.30  
11.60  
11.00  
18.40  
n/a  
Min  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
B
C
D
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
E
F
98.00  
n/a  
G
H
26.50  
24.40  
1.04  
0.96  
www.irf.com  
20  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 44PLCC  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
H
Min  
23.90  
3.90  
31.70  
14.10  
17.90  
17.90  
2.00  
Max  
24.10  
4.10  
32.30  
14.30  
18.10  
18.10  
n/a  
Min  
0.94  
Max  
0.948  
0.161  
1.271  
0.562  
0.712  
0.712  
n/a  
0.153  
1.248  
0.555  
0.704  
0.704  
0.078  
0.059  
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 44PLCC  
Metric  
Imperial  
Max  
Code  
A
B
C
D
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
13.001  
0.844  
0.519  
0.096  
4.015  
1.511  
1.409  
1.303  
E
F
98.00  
n/a  
102.00  
38.4  
G
34.7  
35.8  
1.366  
1.283  
H
32.6  
33.1  
www.irf.com  
21  
IRS2130/IRS21303/IRS2132 (J&S)PbF  
PRELIMINARY  
ORDER INFORMATION  
28-Lead PDIP IRS2130PbF  
28-Lead PDIP IRS21303PbF  
28-Lead PDIP IRS2132PbF  
28-Lead SOIC IRS2130SPbF  
28-Lead SOIC IRS21303SPbF  
28-Lead SOIC IRS2132SPbF  
44-Lead PLCC IRS2132JPbF  
44-Lead PLCC IRS21303JPbF  
44-Lead PLCC IRS2132JPbF  
28-Lead SOIC Tape & Reel IRS2130STRPbF  
28-Lead SOIC Tape & Reel IRS21303STRPbF  
28-Lead SOIC Tape & Reel IRS2132STRPbF  
44-Lead PLCC Tape & Reel IRS2130JTRPbF  
44-Lead PLCC Tape & Reel IRS21303JTRPbF  
44-Lead PLCC Tape & Reel IRS2132JTRPbF  
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105  
This part has been qualified per industrial level  
http://www.irf.com Data and specifications subject to change without notice.5/19/2006  
www.irf.com  
22  

相关型号:

IRS2130303DTRPBF

Interface Circuit,
INFINEON

IRS21303D

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DJPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DJTRPBF

Half Bridge Based Peripheral Driver, PQCC44, LEAD FREE, MS-018AC, PLASTIC, LCC-44
INFINEON

IRS21303DPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DSPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303DSTRPBF

Half Bridge Based Peripheral Driver, PDSO28, LEAD FREE, MS-013AE, PLASTIC, SOIC-28
INFINEON

IRS21303JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303JTRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303PBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IRS21303STRPBF

3-PHASE BRIDGE DRIVER
INFINEON