IXDD409PI [IXYS]

9 Amp Low-Side Ultrafast MOSFET Driver; 9安培低端超快MOSFET驱动器
IXDD409PI
型号: IXDD409PI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

9 Amp Low-Side Ultrafast MOSFET Driver
9安培低端超快MOSFET驱动器

驱动器
文件: 总10页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
9 Amp Low-Side Ultrafast MOSFET Driver  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes.  
• Latch Up Protected  
• High Peak Output Current: 9A Peak  
• Operates from 4.5V to 25V  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 2500pF in <15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDD409/IXDI409/IXDN409arehighspeedhighcurrent  
gate drivers specifically designed to drive the largest  
MOSFETs and IGBTs to their minimum switching time and  
maximumpracticalfrequencylimits.TheIXDD409/IXDI409/  
IXDN409 can source and sink 9A of peak current while  
producing voltage rise and fall times of less than 30ns. The  
input of the drivers are compatible with TTL or CMOS and are  
fully immune to latch up over the entire operating range.  
Designed with small internal delays, cross conduction/  
currentshoot-throughisvirtuallyeliminatedintheIXDD409/  
IXDI409/IXDN409.Theirfeaturesand widesafetymarginin  
operatingvoltageandpowermakethedriversunmatchedin  
performanceandvalue.  
• LowSupplyCurrent  
Applications  
The IXDD409 incorporates a unique ability to disable the  
output under fault conditions. When a logical low is forced  
into the Enable input, both final output stage MOSFETs  
(NMOS and PMOS) are turned off. As a result, the output of  
the IXDD409 enters a tristate mode and achieves a Soft Turn-  
Off of the MOSFET/IGBT when a short circuit is detected.  
This helps prevent damage that could occur to the MOSFET/  
IGBT if it were to be switched off abruptly due to a dv/dt over-  
voltagetransient.  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Limiting di/dt under Short Circuit  
• Class D Switching Amplifiers  
TheIXDN409isconfiguredasanon-invertinggatedriver,and  
theIXDI409isaninvertinggatedriver.  
TheIXDD409/IXDI409/IXDN409areavailableinthestandard8-  
pinP-DIP(PI),SOP-8(SI),5-pinTO-220(CI)andintheTO-263  
(YI)surface-mountpackages.  
Figure 1A - IXDD409 Functional Diagram  
Figure 1B - IXDN409 Functional Diagram  
Ordering Information  
Part Number Package Type Temp. Range  
Configuration  
IXDD409PI  
IXDD409SI  
IXDD409YI  
IXDD409CI  
IXDI409PI  
IXDI409SI  
IXDI409YI  
IXDI409CI  
IXDN409PI  
IXDN409SI  
IXDN409YI  
IXDN409CI  
8-Pin PDIP  
8-Pin SOIC  
5-Pin TO-263  
5-Pin TO-220  
8-Pin PDIP  
8-Pin SOIC  
5-Pin TO-263  
5-Pin TO-220  
8-Pin PDIP  
Non Inverting  
With Enable Line  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Inverting  
8-Pin SOIC  
5-Pin TO-263  
5-Pin TO-220  
Non Inverting  
Figure 1C - IXDI409 Functional Diagram  
Copyright © IXYS CORPORATION 2002 Patent Pending  
First Release  
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
25 V  
-0.3 V to V  
Maximum Junction Temperature  
o
150  
C
+ 0.3 V  
CC  
Operating Temperature Range  
o
o
-40 C to 85 C  
o
Power Dissipation, TAMBIENT 25  
8 Pin PDIP (PI)  
C
Thermal Impedance (Junction To Case)  
975mW  
1055mW  
17W  
o
TO220 (CI), TO263 (YI) (θJC  
)
0.95 C/W  
8 Pin SOIC (SI)  
TO220 (CI), TO263 (YI)  
Derating Factors (to Ambient)  
8 Pin PDIP (PI)  
o
7.6mW/ C  
8 Pin SOIC (SI)  
o
8.2mW/ C  
TO220 (CI), TO263 (YI)  
Storage Temperature  
Lead Temperature (10 sec)  
o
0.14W/ C  
o
o
C
-65 C to 150  
o
300  
C
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD409 configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
VIL  
0.8  
V
VIN  
-5  
VCC + 0.3  
10  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1.5  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
0.8  
0.8  
9
ROL  
IPEAK  
IDC  
1.5  
A
A
Peak output current  
Continuous output  
current  
Limited by package power  
dissipation  
2
VEN  
VENH  
VENL  
tR  
Enable voltage range  
IXDD409 Only  
- .3  
Vcc + 0.3  
V
V
High En Input Voltage  
Low En Input Voltage  
Rise time  
IXDD409 Only  
2/3 Vcc  
IXDD409 Only  
1/3 Vcc  
15  
V
CL=2500pF Vcc=18V  
CL=2500pF Vcc=18V  
CL=2500pF Vcc=18V  
8
8
10  
10  
36  
ns  
ns  
ns  
tF  
Fall time  
15  
tONDLY  
On-time propagation  
delay  
33  
40  
tOFFDLY  
tENOH  
tDOLD  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output low  
Disable delay time  
Power supply voltage  
CL=2500pF Vcc=18V  
IXDD409 Only, Vcc=18V  
IXDD409 Only, Vcc=18V  
31  
33  
36  
52  
30  
25  
ns  
ns  
ns  
V
VCC  
ICC  
4.5  
18  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
Specifications Subject To Change Without Notice  
2
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Pin Configurations  
1 VCC  
2 IN  
VCC 8  
Vcc  
OUT  
GND  
IN  
1
2
3
4
5
OUT 7  
OUT 6  
GND 5  
3
EN *  
EN *  
4 GND  
TO220(CI)  
TO263(YI)  
8 PIN DIP (PI)  
SO8 (SI)  
Pin Description  
SYMBOL  
VCC  
FUNCTION  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 25V.  
Input signal-TTL or CMOS compatible.  
Supply Voltage  
Input  
IN  
The system enable pin. This pin, when driven low, disables the chip,  
forcing high impedance state to the output (IXDD409 Only).  
Driver Output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
EN *  
Enable  
OUT  
GND  
Output  
Ground  
* This pin is used only on the IXDD409, and is N/C on the IXDI409 and IXDN409.  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures  
when handling and assembling this component.  
Figure 2 - Characteristics Test Diagram  
V
IN  
3
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Typical Performance Characteristics  
Fig. 4  
30  
Fall Timesvs. SupplyVoltage  
Fig. 3  
40  
Rise Times vs. SupplyVoltage  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
11900 pF  
11900 pF  
8900 pF  
5860 pF  
8900 pF  
5860 pF  
2950 pF  
1500 pF  
2950 pF  
1500 pF  
0
0
8
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 5  
Rise And Fall Times vs. Temperature  
CL=2500pF, Vcc=18V  
Rise Time vs. Load Capacitance  
Fig. 6  
35  
12  
8V  
10  
8
30  
25  
20  
15  
10  
10V  
12V  
14V  
16V  
18V  
Risetime  
Falltime  
6
4
2
0
5
-40  
-20  
0
25  
40  
60  
85  
1.35  
2.7  
5.4  
8.1  
10.8  
Temperature  
Load Capacitance  
Fall Time vs. Load Capacitance  
Fig. 8  
Max/ MinInput vs. Temperature  
Fig. 7  
25  
23  
21  
19  
17  
15  
13  
11  
9
3.5  
3
8V  
10V  
Maximum Input High  
12V  
14V  
2.5  
2
16V  
18V  
1.5  
1
Minimum Input Low  
0.5  
7
0
5
-40  
-20  
0
25  
40  
60  
85  
1.35  
2.7  
5.4  
8.1  
10.8  
Temperature  
Load Capacitance (nF)  
4
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Supply Current vs. Load Capacitance  
Fig. 9  
Fig. 10  
Supply Current vs. Frequency  
Vcc = 18V  
Vcc = 18V  
1000  
100  
10  
1000  
10800 pF  
8100 pF  
5400 pF  
2700 pF  
1350 pF  
100  
10  
1
2MHz  
1MHz  
500kHz  
100kHz  
50kHz  
1
10kHz  
0.1  
0.1  
1000  
10000  
1
10  
100  
1000  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 11  
SupplyCurrent vs. Frequency  
Vcc =12V  
SupplyCurrent vs. Load Capacitance  
Vcc =12V  
Fig. 12  
1000  
100  
10  
1000  
100  
10  
10800 pF  
8100 pF  
5400 pF  
2700 pF  
1350 pF  
2MHz  
1MHz  
500kHz  
1
100kHz  
50kHz  
1
0.1  
0.01  
10kHz  
0.1  
1
10  
100  
1000  
10000  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 14  
Supply Current vs. Frequency  
Vcc =8V  
Fig. 13  
SupplyCurrent vs. Load Capacitance  
Vcc = 8V  
1000  
1000  
100  
10  
10800 pF  
8100 pF  
5400 pF  
100  
10  
1
2700 pF  
1350 pF  
2MHz  
1MHz  
500kHz  
1
100kHz  
50kHz  
0.1  
0.01  
10kHz  
0.1  
1000  
10000  
1
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
5
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
PropagationDelayvs. SupplyVoltage  
Fig. 15  
PropagationDelayvs. Input Voltage  
Fig. 16  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
Tondly (DD409, DN409)  
Toffdly (DI409)  
Tondly (DD409, DN409)  
Toffdly (DI409)  
Toffdly (DD409, DN409)  
Tondly (DI409)  
Toffdly(DD409, DN409)  
Tondly (DI409)  
30  
3
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
4
5
6
7
8
9
10  
11  
12  
Supply Voltage (V)  
Input Voltage (V)  
PropagationDelayTimes vs. JunctionTemperature  
Fig. 17  
Quiescent SupplyCurrent vs. JunctionTemperature  
Vcc=18v Vin=5v@1kHz  
Fig. 18  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Tondly (DD409, DN409)  
Toffdly (DI409)  
Toffdly (DD409, DN409)  
Tondly (DI409)  
0
-40  
-20  
0
25  
40  
60  
85  
-40  
-20  
0
25  
40  
60  
85  
Temperature (C)  
Temperature (C)  
Fig. 20  
Fig. 19  
Vcc vs. P Channel Peak Output Current  
CL = 10 nF  
Vcc vs. NChannel Peak Output Current  
CL=10 nF  
0
-2  
20  
18  
16  
14  
12  
10  
8
-4  
-6  
-8  
-10  
-12  
6
4
2
-14  
5
0
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
5
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
Vcc (V)  
Vcc (V)  
6
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
NChannel Peak Ouput Current vs. Temperature  
Vcc = 18V CL = 10 nF  
Fig. 22  
Fig. 21  
PChannel Output Current vs. Temperature  
Vcc =18VCL =10 nF  
15  
14.5  
14  
10  
9.8  
9.6  
9.4  
9.2  
9
13.5  
13  
12.5  
12  
8.8  
8.6  
8.4  
8.2  
11.5  
11  
10.5  
10  
8
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (C)  
Temperature (C)  
HighState Output Resistance vs. SupplyVoltage  
Fig. 23  
LowState Output Resistance vs. SupplyVoltage  
Fig. 24  
1.6  
1.4  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
5
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
5
7.5  
10  
12.5  
15  
17.5  
20  
22.5  
25  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 25 - Typical Application Short Circuit di/dt Limit  
7
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 25, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
ground. (Those glitches might cause false triggering of the  
comparator).  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
TheIXDD409hastheuniquecapabilitytosoftlyswitchoffthe  
high-power MOSFET module, significantly reducing these  
Ldi/dttransients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD409 again. This Reset can  
be generated by connecting a One Shot circuit between the  
IXDD409 Input signal and the SRFF restart input. The One Shot  
will create a pulse on the rise of the IXDD409 input, and this  
pulse will reset the SRFF outputs to normal operation.  
Thus, the IXDD409 helps to prevent device destruction from  
both dangers; over-current, and avalanche breakdown due to  
di/dt induced over-voltage transients.  
The IXDD409 is designed to not only provide ±9A under normal  
conditions, but also to allow it's output to go into a high  
impedance state. This permits the IXDD409 output to control  
a separate weak pull-down circuit during detected overcurrent  
shutdown conditions to limit and separately control dVGS/dt gate  
turnoff. This circuit is shown in Figure 26.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD409 output. The  
SRFF also turns on the low power MOSFET, (2N7000).  
Referring to Figure 26, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
by the inductance of the wire connecting the source resistor to  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD409, preventing its destruction.  
Figure 26 - Application Test Diagram  
+
VB  
Ld  
10uH  
-
Rd  
IXDD409  
0.1ohm  
VCC  
VCCA  
Rg  
High_Power  
VMO580-02F  
OUT  
IN  
EN  
1ohm  
Rsh  
1600ohm  
+
-
+
-
VCC  
VIN  
GND  
SUB  
Rs  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
Rcomp  
0
Comp  
LM339  
5kohm  
+
V+  
NAND  
CD4011A  
NOT2  
CD4049A  
C+  
NOT1  
CD4049A  
V-  
-
100pF  
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
CD4049A  
NOR1  
CD4001A  
S
EN  
NOR2  
CD4001A  
SR Flip-Flop  
8
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Supply Bypassing and Grounding Practices,  
Output Lead inductance  
TTL to High Voltage CMOS Level Translation  
(IXDD409 Only)  
The enable (EN) input to the IXDD409 is a high voltage  
CMOS logic level input where the EN input threshold is ½ VCC,  
and may not be compatible with 5V CMOS or TTL input levels.  
The IXDD409 EN input was intentionally designed for  
enhanced noise immunity with the high voltage CMOS logic  
levels. In a typical gate driver application, VCC =15V and the  
EN input threshold at 7.5V, a 5V CMOS logical high input  
applied to this typical IXDD409 application’s EN input will be  
misinterpreted as a logical low, and may cause undesirable  
or unexpected results. The note below is for optional  
adaptation of TTL or 5V CMOS levels.  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD409/IXDI409/IXDN409, it is very important to  
keep certain design criteria in mind, in order to optimize  
performance of the driver. Particular attention needs to be paid  
toSupplyBypassing, Grounding, andminimizingthe Output  
Lead Inductance.  
Say, for example, we are using the IXDD409 to charge a  
5000pF capacitive load from 0 to 25 volts in 25ns…  
Using the formula: I= V C / t, where V=25V C=5000pF &  
t=25ns we can determine that to charge 5000pF to 25 volts  
in25nswilltakeaconstantcurrentof5A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
8A).  
The circuit in Figure 27 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic input  
to high voltage CMOS logic levels needed by the IXDD409 EN  
input. From the figure, VCC is the gate driver power supply,  
typically set between 8V to 20V, and VDD is the logic power  
supply, typically between 3.3V to 5.5V. Resistors R1 and R2  
form a voltage divider network so that the Q1 base is  
positioned at the midpoint of the expected TTL logic transition  
levels.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDD409  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the  
power supply at the driver with a capacitance value that is a  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected, low inductance, low resistance, high-pulse current-  
servicecapacitors). Leadlengthsmayradiateathighfrequency  
due to inductance, so care should be taken to keep the lengths  
oftheleadsbetweenthesebypasscapacitorsandtheIXDD409  
to an absolute minimum.  
A TTL or 5V CMOS logic low, VTTLLOW=~<0.8V, input applied to  
the Q1 emitter will drive it on. This causes the level translator  
output, the Q1 collector output to settle to VCESATQ1  
+
VTTLLOW=<~2V, which is sufficiently low to be correctly  
interpreted as a high voltage CMOS logic low (<1/3VCC=5V for  
VCC =15V given in the IXDD409 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 27 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to VCC=15V, and provides a  
high voltage CMOS logic high output. The high voltage CMOS  
logical EN output applied to the IXDD409 EN input will enable  
it, allowing the gate driver to fully function as an 8 Amp output  
driver.  
GROUNDING  
In order for the design to turn the load off properly, the IXDD409  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDD409  
and it’s load. Path #2 is between the IXDD409 and it’s power  
supply. Path #3 is between the IXDD409 and whatever logic  
is driving it. All three of these paths should be as low in  
resistance and inductance as possible, and thus as short as  
practical. Inaddition, everyeffortshouldbemadetokeepthese  
three ground paths distinctly separate. Otherwise, (for  
instance), the returning ground current from the load may  
develop a voltage that would have a detrimental effect on the  
logic line driving the IXDD409.  
The total component cost of the circuit in Figure 27 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
Figure 27 - TTL to High Voltage CMOS Level Translator  
CC  
(From Gate Driver  
Power Supply)  
R3  
10K  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and it’s  
load as short and wide as possible. If the driver must be placed  
farther than 2” from the load, then the output leads should be  
treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible to the ground pin of the  
driver, and connect directly to the ground terminal of the load.  
High Voltage  
EN  
V
DD  
(From Logic  
Power Supply)  
CMOS  
Output  
3.3K  
R1  
Q1  
2N3904  
(To IXDD409  
EN Input)  
3.3K R2  
or TTL  
Input)  
9
IXDD409PI / 409SI / 409YI / 409CI IXDI409PI / 409SI / 409YI / 409CI  
IXDN409PI / 409SI / 409YI / 409CI  
Package Information  
NOTE: Mounting or solder tabs on all packages are connected to ground  
IXYS Corporation  
IXYS Semiconductor GmbH  
Directed Energy, Inc.  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
www.ixys.com  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
An IXYS Company  
2401 Research Blvd. Ste. 108  
Ft. Collins, CO 80526  
e-mail: sales@ixys.net  
Tel: 970-493-1901; Fax: 970-493-1903  
www.directedenergy.com  
e-mail: deiinfo@directedenergy.com  
Doc #9200-0252 R1  
10  

相关型号:

IXDD409SI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD409YI

9 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414CI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414PI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414YI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415SI

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430CI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430MCI

Buffer/Inverter Based MOSFET Driver, 30A, PSFM5, TO-220, 5 PIN
IXYS

IXDD430YI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS