IXDE514 [IXYS]

14 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown;
IXDE514
型号: IXDE514
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

14 Ampere Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown

文件: 总13页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Technical Information  
IXDD514 / IXDE514  
14 Ampere Low-Side Ultrafast MOSFET Drivers  
with Enable for fast, controlled shutdown  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedoverentireOperatingRange  
• High Peak Output Current: 14A Peak  
• Wide Operating Range: 4.5V to 30V  
-55°Cto+125°CExtendedOperating  
Temperature  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 15nF in <30ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDD514andIXDE514arehighspeedhighcurrentgate  
drivers specifically designed to drive the largest IXYS  
MOSFETs & IGBTs to their minimum switching time and  
maximum parctical frequency limits. The IXDD514 and  
IXDE514 can source and sink 14 Amps of Peak Current  
while producing voltage rise and fall times of less than  
30ns. The inputs of the Drivers are compatible with TTL or  
CMOS and are virtually immune to latch up over the entire  
operatingrange! Patented*designinnovationseliminate  
crossconductionandcurrent"shoot-through". Improved  
speedanddrivecapabilitiesarefurtherenhancedbyvery  
quick & matched rise and fall times.  
TheIXDD514andIXDE514incorporateauniqueabilityto  
disable the output under fault conditions. When a logical  
low is forced into the Enable input, both final output stage  
MOSFETs, (NMOS and PMOS) are turned off. As a result,  
the output of the IXDD514 or IXDE514 enters a tristate  
modeandachievesaSoftTurn-OffoftheMOSFET/IGBT  
when a short circuit is detected. This helps prevent dam-  
age that could occur to the MOSFET/IGBT if it were to be  
switchedoffabruptlyduetoadv/dtover-voltagetransient.  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
Applications  
• DrivingMOSFETsandIGBTs  
• Limiting di/dt under Short Circuit  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• PowerChargePumps  
TheIXDD514andIXDE514areeachavailableinthe8-Pin  
P-DIP (PI) package, the 8-Pin SOIC (SIA) package, and the  
6-Lead DFN (D1) package, (which occupies less than 65%  
of the board area of the 8-Pin SOIC).  
*United States Patent 6,917,227  
Ordering Information  
Part Number  
Description  
Package  
Type  
Packing Style  
Pack Configuration  
Qty  
IXDD514PI  
IXDD514SIA  
14A Low Side Gate Driver I.C. 8-Pin PDIP  
14A Low Side Gate Driver I.C. 8-Pin SOIC  
Tube  
Tube  
50  
94  
Non-Inverting  
with Enable  
IXDD514SIAT/R 14A Low Side Gate Driver I.C. 8-Pin SOIC  
IXDD514D1 14A Low Side Gate Driver I.C. 6-Lead DFN 2” x 2” Waffle Pack 56  
IXDD514D1T/R 14A Low Side Gate Driver I.C. 6-Lead DFN 13” Tape and Reel 2500  
13” Tape and Reel 2500  
IXDE514PI  
IXDE514SIA  
14A Low Side Gate Driver I.C. 8-Pin PDIP  
14A Low Side Gate Driver I.C. 8-Pin SOIC  
Tube  
Tube  
50  
94  
Inverting  
with Enable  
IXDE514SIAT/R 14A Low Side Gate Driver I.C. 8-Pin SOIC  
IXDE514D1 14A Low Side Gate Driver I.C. 6-Lead DFN 2” x 2” Waffle Pack 56  
13” Tape and Reel 2500  
IXDE514D1T/R 14A Low Side Gate Driver I.C. 6-Lead DFN 13” Tape and Reel 2500  
NOTE: All parts are lead-free and RoHS Compliant  
DS99671(01/07)  
Copyright © 2006 IXYS CORPORATION All rights reserved  
First Release  
IXDD514 / IXDE514  
Figure 1 - IXDD514 14A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
Vcc  
200K  
P
N
ANTI-CROSS  
CONDUCTION  
OUT  
IN  
CIRCUIT
*
EN  
GND  
GND  
Vcc  
Figure 2 - IXDE514 Inverting 14A Gate Driver Functional Block Diagram  
Vcc  
200K  
P
ANTI-CROSS  
OUT  
GND  
CONDUCTION  
IN  
CIRCUIT *  
*
N
EN  
GND  
* United States Patent 6,917,227  
PIN CONFIGURATIONS  
8 PIN DIP (PI)  
8 PIN DIP (PI)  
8 PIN SOIC (SIA)  
8 PIN SOIC (SIA)  
1
8
7
6
5
1
2
8
7
6
5
VCC  
VCC  
VCC  
OUT  
I
I
VCC  
IN  
X
D
E
5
1
4
X
D
D
5
1
4
2
OUT  
IN  
3
3
EN  
EN  
OUT  
GND  
OUT  
GND  
4
4
GND  
GND  
6 LEAD DFN (D1)  
(Bottom View)  
6 LEAD DFN (D1)  
(Bottom View)  
I
I
6
5
4
IN  
6
5
4
IN  
VCC  
1
2
3
VCC  
1
2
3
X
D
E
5
1
4
X
D
D
5
1
4
OUT  
GND  
EN  
OUT  
GND  
EN  
GND  
GND  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
2
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins (unless specified  
otherwise)  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
35 V  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
4.5V to 30V  
-55 °C to 125°C  
-0.3 V to VCC + 0.3V  
150 °C  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θ
(typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJJ--AA(typ) 200°C/W  
θ
(typ) 125-200°C/W  
θJ-A(max) 1.5°C/W  
θJJ--CS(typ) 5.8°C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_514 configured as described in Test Conditions.  
(4)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
VIH, VENH High input & EN voltage  
2.5  
4.5V VCC 18V  
4.5V VCC 18V  
VIL, VENL  
VIN  
Low input & EN voltage  
Input voltage range  
Enable voltage range  
Input current  
1.0  
VCC + 0.3  
VCC + 0.3  
10  
V
-5  
-.3  
V
VEN  
V
IIN  
-10  
0V VIN VCC  
µA  
V
VOH  
VOL  
High output voltage  
Low output voltage  
VCC - 0.025  
0.025  
1000  
V
ROH  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
600  
600  
14  
mΩ  
ROL  
1000  
mΩ  
IPEAK  
IDC  
Peak output current  
A
A
Continuous output  
current  
Limited by package power  
dissipation  
4
tR  
Rise time  
CL=15nF Vcc=18V  
23  
21  
29  
25  
22  
30  
40  
50  
30  
ns  
ns  
ns  
tF  
Fall time  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
tENOH  
tDOLD  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output low  
Disable delay time  
Power supply voltage  
CL=15nF Vcc=18V  
VCC = 18V  
29  
31  
50  
40  
30  
30  
ns  
ns  
ns  
V
VCC = 18V  
VCC  
ICC  
4.5  
18  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDD514 / IXDE514  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ(4)  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
2.7  
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1.25  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
Continuous output  
current  
VCC = 18V  
VCC = 18V  
ROL  
IDC  
1.25  
1
A
tR  
Rise time  
CL=15 nF Vcc=18V  
CL=15 nF Vcc=18V  
CL=15 nF Vcc=18V  
23  
30  
20  
100  
100  
60  
ns  
ns  
ns  
tF  
Fall time  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
Power supply voltage  
CL=15 nF Vcc=18V  
40  
18  
60  
30  
ns  
V
VCC  
ICC  
4.5  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
4
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
andthevalueswouldbelowerwithnaturalconvection. Forthe6-LeadDFNpackage,theθJ-A valuesupposestheDFNpackageissoldered  
onaPCB. TheθJ-A (typ)is200°C/W with no special provisions on the PCB, but because the center pad provides a low thermal resistance  
to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce the θJ-A (typ) to 125 °C/W  
easily, andpotentiallyevenlower. TheθJ-AforDFNonPCBwithoutheatsinkorthermalmanagementwillvarysignificantlywithsize,  
construction, layout, materials, etc. Thistypicalrangetellstheuserwhatheislikelytogetifhedoesnothermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
Pin Description  
SYMBOL  
VCC  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 30V.  
Input signal-TTL or CMOS compatible.  
IN  
The system Enable pin. This pin, when driven low, disables the  
chip, forcing a high impedance state to the output. EN pulled high  
by a resistor.  
Driver Output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
EN  
Enable  
Output  
OUT  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
GND  
Ground  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
Figure 3 - Characteristics Test Diagram  
5.0V  
Vcc  
0V  
0V  
I
IXDE514  
Vcc  
VIN  
0V  
IXDN414  
IXDD514  
5
IXDD514 / IXDE514  
Figure 4 - Timing Diagrams  
Non-Inverting (IXDD514) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
tOFFDLY  
tONDLY  
tR  
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
Inverting (IXDE514) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
tONDLY  
tOFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
IXYS reserves the right to change limits, test conditions, and dimensions.  
6
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
Typical Performance Characteristics  
Fig. 5  
40  
Fig. 6  
40  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
30  
20  
10  
30  
20  
10  
CL=15,000 pF  
CL=15,000 pF  
7,500 pF  
3,600 pF  
7,500 pF  
3,600 pF  
0
8
0
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Rise And Fall Times vs. Case Temperature  
C = 15 nF, V = 18V  
Fig. 7  
Fig. 8  
50  
Rise Time vs. Load Capacitance  
L
cc  
40  
35  
30  
25  
20  
15  
10  
5
8V  
40  
30  
20  
10  
10V  
12V  
tR  
tF  
18V  
16V  
14V  
0
0
0k  
5k  
10k  
15k  
20k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fall Time vs. Load Capacitance  
Fig. 10  
3.2  
Max / Min Input vs. Case Temperature  
VCC=18V CL=15nF  
Fig. 9  
40  
3.0  
8V  
12V  
14V  
Minimum Input High  
Maximum Input Low  
2.8  
10V  
30  
20  
10  
2.6  
18V  
16V  
2.4  
2.2  
2.0  
1.8  
1.6  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0k  
5k  
10k  
15k  
20k  
Temperature (oC)  
Load Capacitance (pF)  
7
IXDD514 / IXDE514  
Fig. 11  
Supply Current vs. Load Capacitance  
Vcc=18V  
Supply Current vs. Frequency  
Vcc=18V  
Fig. 12  
1000  
1000  
CL= 30 nF  
15 nF  
100  
10  
1
2 MHz  
100  
10  
1
1 MHz  
5000 pF  
2000 pF  
500 kHz  
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
100k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 13  
1000  
Supply Current vs. Load Capacitance  
Vcc=12V  
Supply Current vs. Frequency  
Vcc=12V  
Fig. 14  
1000  
100  
10  
CL = 30 nF  
15 nF  
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
500 kHz  
10  
1
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 15  
1000  
Supply Current vs. Load Capacitance  
Vcc=8V  
Fig. 16  
Supply Current vs. Frequency  
Vcc=8V  
1000  
100  
10  
CL= 30 nF  
15 nF  
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
10  
1
500 kHz  
1
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
8
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
Fig. 18  
Propagation Delay vs. Input Voltage  
CL=15nF VCC=15V  
Fig. 17  
Propagation Delay vs. Supply Voltage  
CL=15nF V =5V@1kHz  
IN  
50  
50  
tOFFDLY  
40  
30  
20  
10  
40  
30  
20  
10  
0
tONDLY  
tONDLY  
tOFFDLY  
0
2
4
6
8
10  
12  
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay vs. Case Temperature  
Fig. 19  
Fig. 20  
Quiescent Supply Current vs. Case Temperature  
C = 2500pF, VCC = 18V  
VCC=18V V =5V@1kHz  
L
IN  
0.60  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.58  
0.56  
0.54  
0.52  
0.50  
tONDLY  
tOFFDLY  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
o
Temperature ( C)  
Temperature (°C)  
Fig. 21  
P Channel Output Current vs. Case Temperature  
N Channel Output Current vs. Case Temperature  
Fig. 22  
VCC=18V C =.1uF  
L
VCC=18V C =.1uF  
L
16  
17  
15  
14  
13  
12  
16  
15  
14  
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
9
IXDD514 / IXDE514  
Fig. 24  
High State Output Resistance  
vs. Supply Voltage  
Fig. 23  
Enable Threshold vs. Supply Voltage  
14  
1.0  
12  
10  
8
0.8  
0.6  
0.4  
0.2  
6
4
2
0.0  
8
0
8
10  
15  
20  
25  
10  
12  
14  
16  
18  
20  
22  
24  
26  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 25  
Low-State Output Resistance  
vs. Supply Voltage  
VCC vs. P Channel Output Current  
Fig. 26  
CL=.1uF V =0-5V@1kHz  
IN  
1.0  
0
-2  
-4  
0.8  
0.6  
0.4  
0.2  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
8
0.0  
8
10  
15  
20  
25  
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 27  
Vcc vs. N Channel Output Current  
C =.1uF V =0-5V@1kHz  
Figure 28 - Typical Application Short Circuit di/dt Limit  
L
IN  
24  
22  
20  
18  
16  
14  
12  
10  
8
IXDD514  
6
4
2
0
8
10  
15  
20  
25  
Vcc  
10  
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
by the inductance of the wire connecting the source resistor to  
ground. (Those glitches might cause false triggering of the  
comparator).  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 28, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
TheIXDD514andIXDE514havetheuniquecapabilitytosoftly  
switch off the high-power MOSFET module, significantly  
reducing these Ldi/dt transients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD514/IXDE514 again. This  
Reset can be generated by connecting a One Shot circuit  
between the IXDD514/IXDE514 Input signal and the SRFF  
restart input. The One Shot will create a pulse on the rise of the  
IXDD514/IXDE514 input, and this pulse will reset the SRFF  
outputs to normal operation.  
Thus, the IXDD514/IXDE514 help to prevent device destruction  
from both dangers; over-current, and avalanche breakdown  
due to di/dt induced over-voltage transients.  
The IXDD514/IXDE514 are designed to not only provide ±14A  
under normal conditions, but also to allow their outputs to go  
into a high impedance state. This permits the IXDD514/  
IXDE514 output to control a separate weak pull-down circuit  
during detected overcurrent shutdown conditions to limit and  
separately control dVGS/dt gate turnoff. This circuit is shown in  
Figure 29.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD514/IXDE514  
output. The SRFF also turns on the low power MOSFET,  
(2N7000).  
Referring to Figure 29, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD514/IXDE514, preventing its destruction.  
Figure 29 - Application Test Diagram  
+
VB  
Ld  
10uH  
-
IXDD514/IXDE514  
IXDD409  
Rd  
0.1ohm  
VCC  
VCCA  
Rg  
High_Power  
VMO580-02F  
OUT  
IN  
EN  
1ohm  
Rsh  
1600ohm  
+
-
+
-
VCC  
VIN  
GND  
GND  
Rs  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
0
Rcomp  
5kohm  
Comp  
LM339  
+
V+  
NAND  
CD4011A  
NOT2  
CD4049A  
C+  
100pF  
NOT1  
CD4049A  
V-  
-
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
CD4049A  
NOR1  
CD4001A  
S
EN  
NOR2  
CD4001A  
SR Flip-Flop  
11  
IXDD514 / IXDE514  
Supply Bypassing and Grounding Practices, Output Lead inductance  
WhendesigningacircuittodriveahighspeedMOSFETutilizingtheIXDD514/IXDE514,itisveryimportanttokeepcertaindesigncriteria  
in mind, in order to optimize performance of the driver. Particular attention needs to be paid to Supply Bypassing, Grounding, and  
minimizing the Output Lead Inductance.  
Say, for example, we are using the IXDD514 to charge a 5000pF capacitive load from 0 to 25 volts in 25ns…  
Using the formula: I= V C /t, where V=25V C=5000pF & t=25ns we can determine that to charge 5000pF to 25 volts in 25ns will  
take a constant current of 5A. (In reality, the charging current won’t be constant, and will peak somewhere around 8A).  
SUPPLY BYPASSING  
In order for our design to turn the load on properly, the IXDD514 must be able to draw this 5A of current from the power supply in the  
25ns. This means that there must be very low impedance between the driver and the power supply. The most common method of  
achieving this low impedance is to bypass the power supply at the driver with a capacitance value that is a magnitude larger than the  
load capacitance. Usually, this would be achieved by placing two different types of bypassing capacitors, with complementary  
impedancecurves,veryclosetothedriveritself. (Thesecapacitorsshouldbecarefullyselected,lowinductance,lowresistance,high-  
pulsecurrent-servicecapacitors). Leadlengthsmayradiateathighfrequencyduetoinductance, socareshouldbetakentokeepthe  
lengths of the leads between these bypass capacitors and the IXDD514 to an absolute minimum.  
GROUNDING  
Inorderforthedesigntoturntheloadoffproperly,theIXDD514mustbeabletodrainthis5Aofcurrentintoanadequategroundingsystem.  
Therearethreepathsforreturningcurrentthatneedtobeconsidered: Path#1isbetweentheIXDD514andit’sload. Path#2isbetween  
theIXDD514andit’spowersupply. Path#3isbetweentheIXDD514andwhateverlogicisdrivingit. Allthreeofthesepathsshouldbe  
aslowinresistanceandinductanceaspossible, andthusasshortaspractical. Inaddition, everyeffortshouldbemadetokeepthese  
threegroundpathsdistinctlyseparate. Otherwise,(forinstance),thereturninggroundcurrentfromtheloadmaydevelopavoltagethat  
would have a detrimental effect on the logic line driving the IXDD514.  
OUTPUT LEAD INDUCTANCE  
OfequalimportancetoSupplyBypassingandGroundingareissuesrelatedtotheOutputLeadInductance. Everyeffortshouldbemade  
to keep the leads between the driver and it’s load as short and wide as possible. If the driver must be placed farther than 2” from the  
load, then the output leads should be treated as transmission lines. In this case, a twisted-pair should be considered, and the return  
lineofeachtwistedpairshouldbeplacedascloseaspossibletothegroundpinofthedriver,andconnectdirectlytothegroundterminal  
of the load.  
12  
Copyright © 2006 IXYS CORPORATION All rights reserved  
IXDD514 / IXDE514  
PRELIMINARYTECHNICALINFORMATION  
The product presented herein is under development.  
The Technical Specifications offered are derived from  
data gathered during objective characterizations of  
preliminary engineering lots; but also may yet contain  
some information supplied during a pre-production  
design evaluation. IXYS reserves the right to change  
limits, test conditions, and dimensions without notice.  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
H
h
L
M
N
D
A
A1  
e
B
h X 45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197±0.005 [5.00±0.13]  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^0.000;  
o
[S0.05^0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
13  

相关型号:

IXDE514D1

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDE514D1T/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDE514PI

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDIP8, 0.300 INCH, ROHS COMPLIANT, PLASTIC, MS-001BA, DIP-8
IXYS

IXDE514SIA

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO8, 0.500 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS

IXDE514SIAT/R

Buffer/Inverter Based MOSFET Driver, 14A, CMOS, PDSO8, 0.500 INCH, ROHS COMPLIANT, MS-012AA, SOIC-8
IXYS

IXDF402PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF402SI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF402SI-16

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF402SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF402SIA-16

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS