IXDF404PI [IXYS]

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers; 4安培双低侧超快MOSFET驱动器
IXDF404PI
型号: IXDF404PI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
4安培双低侧超快MOSFET驱动器

驱动器
文件: 总10页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN404PI / N404SI / N404SI-16 IXDI404PI / I404SI / I404SI-16  
IXDF404PI / F404SI / F404SI-16  
4 Ampere Dual Low-Side Ultrafast MOSFET Drivers  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedOverEntire  
OperatingRange  
• High Peak Output Current: 4A Peak  
• Wide Operating Range: 4.5V to 25V  
• High Capacitive Load  
DriveCapability:1800pFin<15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDN404/IXDI404/IXDF404iscomprisedoftwo4Ampere  
CMOS high speed MOSFET drivers. Each output can source  
and sink 4A of peak current while producing voltage rise and  
fall times of less than 15ns to drive the latest IXYS MOSFETs  
& IGBT's. The input of the driver is compatible with TTL or  
CMOS and is fully immune to latch up over the entire operating  
range. A patent-pending circuit virtually eliminates CMOS  
power supply cross conduction and current shoot-through.  
Improvedspeedanddrivecapabilitiesarefurtherenhancedby  
very low, matched rise and fall times.  
TheIXDN404isconfiguredasadualnon-invertinggatedriver,  
the IXDI404 is a dual inverting gate driver, and the IXDF404 is a  
dualinverting+non-invertinggatedriver.  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
TheIXDN404/IXDI404/IXDF404familyareavailableinthe  
standard 8 pin P-DIP (PI), SOP-8 (SI) and SOP-16 (SI-16)  
packages.  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• Limiting di/dt Under Short Circuit  
Figure 1 - IXDN404 Dual 4A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
ANTI-CROSS  
IN B  
OUT B  
CONDUCTION  
CIRCUIT *  
N
GND  
* Patent Pending  
Copyright©IXYSCORPORATION2001  
First Release  
IXDN404PI / N404SI / N404SI-16 IXDN404PI / N404SI / N404SI-16  
IXDF404PI / F404SI / F404SI-16  
Figure 2 - IXDI404 Dual Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
GND  
Figure 3 - IXDF404 Inverting + Non-Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
GND  
* Patent Pending  
2
IXDN404PI / N404SI / N404SI-16 IXDI404PI / I404SI / I404SI-16  
IXDF404PI / F404SI / F404SI-16  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
25V  
-0.3V to V  
Operating Temperature Range  
o
o
-40 C to 85 C  
+ 0.3V  
CC  
Thermal Impedance (Junction To Ambient)  
o
Junction Temperature  
Storage Temperature  
o
8 Pin PDIP (PI) (θJA)  
120 C/W  
150 C  
o
8 Pin SOIC (SI) (θJA)  
o
o
110 C/W  
-65 C to 150 C  
o
16 Pin SOIC (SI-16) (θJA)  
Soldering Lead Temperature  
(10 seconds maximum)  
o
110 C/W  
300 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. Device configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
VIH  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
V
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
3
Output resistance  
@ Output High  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
1.5  
1.5  
4
ROL  
IPEAK  
IDC  
3
A
A
Peak output current  
Continuous output  
current  
1
tR  
Rise time  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
11  
12  
33  
12  
14  
34  
15  
17  
38  
ns  
ns  
ns  
tF  
Fall time  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
Power supply voltage  
CL=1800pF Vcc=18V  
28  
30  
18  
35  
25  
ns  
V
VCC  
ICC  
4.5  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
Ordering Information  
Part Number  
IXDN404PI  
IXDN404SI  
IXDN404SI-16  
IXDI404PI  
Package Type  
Temp. Range  
Configuration  
8-Pin PDIP  
8-Pin SOIC  
16-Pin SOIC  
8-Pin PDIP  
8-Pin SOIC  
16-Pin SOIC  
8-Pin PDIP  
8-Pin SOIC  
16-Pin SOIC  
Dual Non Inverting  
-40°C to +85°C  
IXDI404SI  
Dual Inverting  
-40°C to +85°C  
-40°C to +85°C  
IXDI404SI-16  
IXDF404PI  
IXDF404SI  
Inverting + Non Inverting  
IXDF404SI-16  
NOTE: Mounting or solder tabs on all packages are connected to ground  
3
IXDN404PI / N404SI / N404SI-16 IXDN404PI / N404SI / N404SI-16  
IXDF404PI / F404SI / F404SI-16  
Pin Description  
SYMBOL  
FUNCTION  
A Channel Input  
DESCRIPTION  
A Channel Input signal-TTL or CMOS compatible.  
IN A  
The system ground pin. Internally connected to all circuitry, this pin provides  
ground reference for the entire chip. This pin should be connected to a low  
noise analog ground plane for optimum performance.  
GND  
Ground  
IN B  
B Channel Input  
B Channel Input signal-TTL or CMOS compatible.  
B Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power to the entire  
chip. The range for this voltage is from 4.5V to 25V.  
VCC  
Supply Voltage  
A Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT A  
A Channel Output  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when  
handling and assembling this component.  
Note 1: Operating the device beyond parameters with listed “Absolute Maximum Ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
Figure 4 - Characteristics Test Diagram  
Vcc  
1
2
3
4
8
7
6
5
NC  
NC  
In A  
Gnd  
In B  
Out A  
Vcc  
10uF  
25V  
Out B  
Agilent 1147A  
Current Probe  
Agilent 1147A  
Current Probe  
1800 pF  
1800 pF  
4
IXDN404PI / N404SI / N404SI-16 IXDI404PI / I404SI / I404SI-16  
IXDF404PI / F404SI / F404SI-16  
Typical Performance Characteristics  
Fig. 6  
Fig. 5  
40  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
CL=4700 pF  
1800 pF  
CL=4700 pF  
1800 pF  
200 pF  
200 pF  
16  
0
8
10  
12  
14  
18  
8
10  
12  
14  
16  
18  
SupplyVoltage(V)  
Supply Voltage (V)  
Fig. 7  
Rise And Fall Times vs. Case Temperature  
Fig. 8  
80  
Rise Time vs. Load Capacitance  
C =1nF VCC=18V  
L
25  
70  
60  
50  
40  
30  
20  
10  
8V  
20  
15  
10  
5
10V  
12V  
tF  
tR  
18V  
16V  
14V  
0
0
0k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2k  
4k  
6k  
8k  
10k  
Temperature (°C)  
Load Capacitance (pF)  
Max / Min Input vs. Case Temperature  
Fig. 10  
Fig. 9  
100  
Fall Timevs. LoadCapacitance  
VCC=18V C =1nF  
L
3.2  
8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
Minimum Input High  
10V  
12V  
18V  
Maximum Input Low  
16V  
14V  
1.6  
-60  
0
0k  
-40  
-20  
0
20  
40  
60  
80  
100  
2k  
4k  
6k  
8k  
10k  
Temperature (oC)  
Load Capacitance (pF)  
5
IXDN404PI / N404SI / N404SI-16 IXDN404PI / N404SI / N404SI-16  
IXDF404PI / F404SI / F404SI-16  
Fig. 11  
Supply Current vs. Load Capacitance  
Supply Current vs. Frequency  
Vcc=18V  
Fig. 12  
Vcc=18V  
100  
100  
CL= 1800 pF  
80  
60  
40  
20  
10  
1
1000 pF  
200 pF  
2 MHz  
1 MHz  
500 KHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 14  
Supply Current vs. Frequency  
Vcc=12V  
Fig. 13  
Supply Current vs. Load Capacitance  
Vcc=12V  
100  
100  
80  
60  
40  
20  
CL= 1800 pF  
200 pF  
10  
1
1000 pF  
2 MHz 1 MHz  
500 KHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 15  
Supply Current vs. Load Capacitance  
Vcc=8V  
Supply Current vs. Frequency  
Vcc=8V  
Fig. 16  
100  
100  
80  
60  
40  
20  
10  
1
CL= 1800 pF  
200 pF  
1000 pF  
500 KHz  
2 MHz  
1 MHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0
0.01  
1
10  
100  
1000  
0.1k  
1.0k  
10.0k  
Load Capacitance (pF)  
Frequency (kHz)  
6
IXDN404PI / N404SI / N404SI-16 IXDI404PI / I404SI / I404SI-16  
IXDF404PI / F404SI / F404SI-16  
Fig. 18  
Fig. 17  
Propagation Delay vs. Input Voltage  
CL=1800pF VCC=15V  
Propagation Delay vs. Supply Voltage  
CL=1800pF V =5V@1kHz  
IN  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
0
8
0
2
4
6
8
10  
12  
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Fig. 20  
0.26  
Quiescent Supply Current vs. Temperature  
VCC=18V V =5V@1kHz C =1000pF  
Fig. 19  
Propagation Delay Times vs. Temperature  
IN  
L
C =1800pF VCC=18V  
L
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
0.24  
tONDLY  
0.22  
0.20  
tOFFDLY  
0.18  
0.16  
0.14  
10  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (oC)  
Temperature (°C)  
Fig. 22  
Fig. 21  
P Channel Output Current Vs. Temperature  
N Channel Output Current Vs. Temperature  
VCC=18V, C =1000pF  
VCC=18V, C =1000pF  
L
L
6
6
5
4
3
5
4
3
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (oC)  
Temperature (oC)  
7
IXDN404PI / N404SI / N404SI-16 IXDN404PI / N404SI / N404SI-16  
IXDF404PI / F404SI / F404SI-16  
Fig. 24  
Low-State Output Resistance  
Fig. 23  
High State Output Resistance  
Vs. Supply Voltage  
vs. Supply Voltage  
5
3.0  
4
3
2
1
2.0  
1.0  
0.0  
8
0
8
10  
15  
20  
25  
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 25  
Vcc vs. P Channel Output Current  
Fig. 26  
VCC vs. N Channel Output Current  
8
0
-2  
-4  
-6  
6
4
2
-8  
8
0
8
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
Vcc  
Vcc  
8
IXDN404PI / N404SI / N404SI-16 IXDI404PI / I404SI / I404SI-16  
IXDF404PI / F404SI / F404SI-16  
PIN CONFIGURATIONS  
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
IN A  
GND  
INB  
IN A  
GND  
INB  
IN A  
GND  
INB  
OUT B  
OUT B  
OUT B  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDN404  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDI404  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDF404  
NC  
NC  
1
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
NC 16  
1
NC  
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
OUT A  
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
IN A  
NC  
2
3
4
5
6
7
8
IN A  
NC  
IN A  
NC  
OUT A  
VCC  
GND  
GND  
GND  
GND  
NC  
VCC  
GND  
NC  
VCC  
GND  
NC  
VCC  
OUT B  
OUT B  
OUT B  
IN B  
NC  
IN B  
NC  
OUT B 10  
NC  
OUT B 10  
NC  
IN B  
NC  
OUT B 10  
NC  
9
9
9
16 Pin SOIC  
IXDI404SI-16  
16 Pin SOIC  
IXDF404SI-16  
16 Pin SOIC  
IXDN404SI-16  
Supply Bypassing, Grounding Practices And Output Lead inductance  
GROUNDING  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDN404/IXDI404/IXDF404, it is very important to  
observe certain design criteria in order to optimize performance  
of the driver. Particular attention needs to be paid to Supply  
Bypassing, Grounding, and minimizing the Output Lead  
Inductance.  
In order for the design to turn the load off properly, the IXDN404  
must be able to drain this 2.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDN404  
and its load. Path #2 is between the IXDN404 and its power  
supply. Path #3 is between the IXDN404 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXDN404.  
Say,forexample,weareusingtheIXDN404tochargea2500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=2500pF &  
t=25ns, we can determine that to charge 2500pF to 25 volts  
in 25ns will take a constant current of 2.5A. (In reality, the  
charging current won’t be constant, and will peak somewhere  
around 4A).  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
ofthedriver,andconnecteddirectlytothegroundterminal  
of the load.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDN404  
must be able to draw this 2.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is a magnitude  
larger than the load capacitance. Usually, this would be  
achievedbyplacingtwodifferenttypesofbypassingcapacitors,  
with complementary impedance curves, very close to the driver  
itself. (These capacitors should be carefully selected, low  
inductance, low resistance, high-pulse current-service  
capacitors). Lead lengths may radiate at high frequency due  
to inductance, so care should be taken to keep the lengths of  
the leads between these bypass capacitors and the IXDN404  
to an absolute minimum.  
9
IXDN404PI / N404SI / N404SI-16 IXDN404PI / N404SI / N404SI-16  
IXDF404PI / F404SI / F404SI-16  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
Doc #9200-0234 R1  
10  

相关型号:

IXDF404SI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SI-16

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SIA-16

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504D1

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS