IXDF402SIA-16 [IXYS]

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers; 2安培双低侧超快MOSFET驱动器
IXDF402SIA-16
型号: IXDF402SIA-16
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
2安培双低侧超快MOSFET驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总10页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN402 / IXDI402 / IXDF402  
2 Ampere Dual Low-Side Ultrafast MOSFET Drivers  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedOverEntire  
OperatingRange  
TheIXDN402/IXDI402/IXDF402consistsoftwo2Amp  
CMOS high speed MOSFET drivers. Each output can  
source and sink 2A of peak current while producing voltage  
rise and fall times of less than 15ns to drive the latest IXYS  
MOSFETs & IGBTs. The input of the driver is TTL or CMOS  
compatible and is fully immune to latch up over the entire  
operatingrange. Apatent-pendingcircuitvirtuallyeliminates  
crossconductionandcurrentshoot-through. Improved  
speedanddrivecapabilitiesarefurtherenhancedbyvery  
low and matched rise and fall times.  
• High Peak Output Current: 2A Peak  
• Wide Operating Range: 4.5V to 25V  
• High Capacitive Load  
DriveCapability:1000pFin<10ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDN402isconfiguredasadualnon-invertinggate  
driver,theIXDI402asadualinvertinggatedriver,andthe  
IXDF402asadualinverting+non-invertinggatedriver.  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
Applications  
TheIXDN402/IXDI402/IXDF402familyareavailableinthe  
standard 8 pin P-DIP (PI), SOP-8 (SIA) and SOP-16 (SIA-  
16)packages. Forenhancedthermalperformance, the  
SOP-8 and SOP-16 are also available with an exposed  
grounded backmetal package as the SI and SI-16 respec-  
tively.  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
Ordering Information  
Part Number  
Package Type  
Temp. Range  
Configuration  
IXDN402PI  
8-Pin PDIP  
IXDN402SI  
8-Pin SOIC with Grounded Backmetal  
8-Pin SOIC  
-55°C to  
+125°C  
Dual Non  
Inverting  
IXDN402SIA  
IXDN402SI-16  
IXDN402SIA-16  
IXDI402PI  
16-Pin SOIC with Grounded Backmetal  
16-Pin SOIC  
8-Pin PDIP  
IXDI402SI  
8-Pin SOIC with Grounded Backmetal  
8-Pin SOIC  
-55°C to  
+125°C  
Dual Inverting  
IXDI402SIA  
IXDI402SI-16  
IXDI402SIA-16  
IXDF402PI  
16-Pin SOIC with Grounded Backmetal  
16-Pin SOIC  
8-Pin PDIP  
IXDF402SI  
8-Pin SOIC with Grounded Backmetal  
8-Pin SOIC  
Inverting + Non  
Inverting  
-55°C to  
+125°C  
IXDF402SIA  
IXDF402SI-16  
IXDF402SIA-16  
16-Pin SOIC with Grounded Backmetal  
16-Pin SOIC  
NOTE: Mounting or solder tabs on all packages are connected to ground  
Copyright©IXYSCORPORATION2002  
First Release  
IXDN402 / IXDI402 / IXDF402  
Figure 1 - IXDN402 Dual 2A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN B  
OUT B  
GND  
Figure 2 - IXDI402 Dual Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
ANTI-CROSS  
OUT B  
IN B  
CONDUCTION  
CIRCUIT *  
N
GND  
Figure 3 - IXDF402 Inverting + Non-Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
GND  
* Patent Pending  
2
IXDN402 / IXDI402 / IXDF402  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
-55 C to 125  
Supply Voltage  
All Other Pins  
Junction Temperature  
Storage Temperature  
Lead Temperature (10 sec)  
25 V  
Operating Temperature Range  
o
o
C
-0.3 V to V  
+ 0.3 V  
CC  
Thermal Impedance (To Ambient)  
o
o
8 Pin PDIP (PI) (θJA)  
130 C/W  
150 C  
o
8 Pin SOIC (SIA) (θJA)  
16 Pin SOIC (SIA-16) (θJA)  
o
o
120 C/W  
-65 C to 150 C  
o
o
120 C/W  
300 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD402 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
VIL  
VIN  
IIN  
Parameter  
Test Conditions  
Min  
3
Typ  
Max  
Units  
V
V
V
µA  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
2.4  
VCC + 0.3  
10  
-5  
-10  
0V VIN VCC  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
4
Output resistance  
VCC = 18V  
VCC = 18V  
VCC is 18V  
3.7  
2.5  
2
@ Output high  
ROL  
IPEAK  
IDC  
Output resistance  
@ Output Low  
3
A
A
Peak output current  
Continuous output  
current  
1
tR  
tF  
tONDLY  
Rise time  
CL=1000pF Vcc=18V  
CL=1000pF Vcc=18V  
CL=1000pF Vcc=18V  
7
7
27  
8
8
28  
10  
9
32  
ns  
ns  
ns  
Fall time  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=1000pF Vcc=18V  
25  
26  
18  
30  
25  
ns  
V
mA  
µA  
µA  
VCC  
ICC  
Power supply voltage  
4.5  
Power supply current  
VIN = 3.5V  
VIN = 0V  
1
3
0
10  
10  
VIN = + VCC  
Specifications Subject To Change Without Notice  
3
IXDN402 / IXDI402 / IXDF402  
Pin Description  
SYMBOL  
FUNCTION  
DESCRIPTION  
IN A  
A Channel Input  
A Channel Input signal-TTL or CMOS compatible.  
The system ground pin. Internally connected to all circuitry, this pin provides  
ground reference for the entire chip. This pin should be connected to a low  
noise analog ground plane for optimum performance.  
GND  
Ground  
IN B  
B Channel Input  
B Channel Input signal-TTL or CMOS compatible.  
B Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power to the entire  
chip. The range for this voltage is from 4.5V to 25V.  
VCC  
Supply Voltage  
A Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT A  
A Channel Output  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when  
handling and assembling this component.  
Note 1: Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
Figure 4 - Characteristics Test Diagram  
Vcc  
1
2
3
8
7
6
5
NC  
Out A  
Vcc  
NC  
In A  
Gnd  
10uF  
25V  
4 In B  
Out B  
Agilent 1147A  
Current Probe  
Agilent 1147A  
Current Probe  
1000 pF  
1000 pF  
4
IXDN402 / IXDI402 / IXDF402  
Typical Performance Characteristics  
Fig. 3  
Fig. 4  
Output Rise Time vs. Supply Voltage  
CL = 100pF to 6800pF  
Output Fall Time vs. Supply Voltage  
CL = 100pF to 6800pF  
60  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
6800 pF  
6800 pF  
3900 pF  
3900 pF  
2200 pF  
2200 pF  
1000 pF  
1000 pF  
470 pF  
100 pF  
470 pF  
100 pF  
8
10  
12  
14  
16  
18  
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 5  
12  
Output Rise And Fall Times vs. Case Temperature  
CL =1000pF, Vcc =18V  
Fig. 6  
Output Rise Times vs. Load Capacitance  
90  
80  
70  
60  
50  
40  
30  
20  
10  
8V  
10  
8
tR  
tF  
10V  
12V  
14V  
16V  
18V  
6
4
2
0
0
0
-60  
1000  
2000  
3000  
4000  
5000  
6000  
7000  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Load Capacitance (pF)  
Temperature (C)  
Max/ MinInput vs. Temperature  
CL = 1000 pF Vcc = 18V  
Fig. 7  
Fig. 8  
Output Fall Times vs. Load Capacitance  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
8V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
10V  
12V  
Minimum Input High  
14V  
16V  
18V  
Max imum Input Low  
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Load Capacitance (pF)  
Temperature (C)  
5
IXDN402 / IXDI402 / IXDF402  
Supply Current vs. Frequency  
Vcc = 18V  
Fig. 10  
Supply Current vs. Load Capacitance  
Vcc = 18V  
Fig. 9  
1 MHz  
1000  
100  
2 MHz  
6800 pF  
3900 pF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2200 pF  
1000 pF  
470 pF  
100 pF  
100  
10  
500 kHz  
1
0.1  
0.01  
100 kHz  
50 kHz  
10 kHz  
1
10  
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Fig. 12  
Fig. 11  
Supply Current vs. Load Capacitance  
Vcc = 12V  
SupplyCurrent vs. Frequency  
Vcc = 12V  
2 MHz  
100  
1000  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1 Mhz  
6800 pF  
3900 pF  
2200 pF  
1000 pF  
470 pF  
100  
10  
100 pF  
500 kHz  
1
0.1  
0.01  
100 kHz  
50 kHz  
10 kHz  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Fig. 13  
SupplyCurrent vs. Frequency  
Vcc = 8V  
Supply Current vs. Load Capacitance  
Vcc = 8V  
Fig. 14  
2 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1000  
6800 pF  
3900 pF  
100  
10  
1
2200 pF  
1000 pF  
470pF  
100 pF  
1 MHz  
500 kHz  
0.1  
100 kHz  
50 kHz  
10 kHz  
0.01  
1
0
100  
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency(kHz)  
6
IXDN402 / IXDI402 / IXDF402  
Propagation Delay vs. Input Voltage  
CL = 1000 pF Vcc = 15V  
Fig. 16  
Propagation Delay vs. Supply Voltage  
CL=1000 pF Vin=5V@1KHz  
Fig. 15  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
0
0
2
8
10  
12  
14  
16  
18  
3
4
5
6
7
8
9
10  
11  
12  
Supply Voltage (V)  
Input Voltage (V)  
Fig. 17  
Fig. 18  
Quiescent SupplyCurrent vs. Temperature  
Vcc =18V, Vin=5V@1kHz, CL = 1000pF  
Propagation Delay Times vs. Temperature  
CL = 1000pF, Vcc = 18V  
40  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
35  
30  
25  
20  
15  
10  
tONDLY  
tOFFDLY  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (C)  
Temperature (C)  
Fig. 19  
N Channel Sink Output Current vs. Temperature  
Vcc = 18VCL = 1000 pF  
P Channel Output Source Current vs. Temperature  
Vcc = 18V, CL = 1000 pF  
Fig. 20  
4.5  
4
3.5  
3
4
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (C)  
Temperature (C)  
7
IXDN402 / IXDI402 / IXDF402  
Fig. 22  
Low State Output Resistance vs. Supply Voltage  
Fig. 21  
High State Output Resistance vs. Supply Voltage  
8
4.5  
4
3.5  
3
7
6
5
4
3
2
1
2.5  
2
1.5  
1
0.5  
0
0
7
9
11  
13  
15  
17  
19  
21  
23  
25  
7
9
11  
13  
15  
17  
19  
21  
23  
25  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 24  
Vcc vs. P Channel Output Current  
Vcc vs. N Channel Source Output Current  
Fig. 23  
0
5
4.5  
4
-0.5  
-1  
3.5  
3
-1.5  
-2  
2.5  
2
1.5  
1
-2.5  
-3  
0.5  
0
-3.5  
7
9
11  
13  
15  
17  
19  
21  
23  
25  
7
9
11  
13  
15  
17  
19  
21  
23  
25  
Vcc (V)  
Vcc (V)  
8
IXDN402 / IXDI402 / IXDF402  
PIN CONFIGURATIONS  
1
2
3
4
NC  
OUT A  
VS  
1
2
3
4
NC  
NC  
8
7
6
5
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
IN A  
GND  
INB  
IN A OUT A  
IN A  
GND  
INB  
VS  
GND  
INB  
OUT B  
OUT B  
OUT B  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDN402  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDI402  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDF402  
NC  
NC  
1
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
NC 16  
1
NC  
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
OUT A  
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
IN A  
NC  
2
3
4
5
6
7
8
IN A  
NC  
IN A  
NC  
OUT A  
VCC  
GND  
GND  
GND  
GND  
NC  
VCC  
GND  
NC  
VCC  
GND  
NC  
VCC  
OUT B  
OUT B  
OUT B  
IN B  
NC  
IN B  
NC  
OUT B 10  
NC  
OUT B 10  
NC  
IN B  
NC  
OUT B 10  
NC  
9
9
9
16 Pin SOIC  
IXDI402SI-16  
16 Pin SOIC  
IXDF402SI-16  
16 Pin SOIC  
IXDN402SI-16  
Supply Bypassing, Grounding Practices And Output Lead inductance  
GROUNDING  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDN402/IXDI402/IXDF402, it is very important to  
observe certain design criteria in order to optimize performance  
of the driver. Particular attention needs to be paid to Supply  
Bypassing, Grounding, and minimizing the Output Lead  
Inductance.  
In order for the design to turn the load off properly, the IXDN402  
must be able to drain this 1.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDN402  
and its load. Path #2 is between the IXDN402 and its power  
supply. Path #3 is between the IXDN402 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXDN402.  
Say,forexample,weareusingtheIXDN402tochargea1500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=1500pF &  
t=25ns, we can determine that to charge 1500pF to 25 volts  
in 25ns will take a constant current of 1.5A. (In reality, the  
charging current won’t be constant, and will peak somewhere  
around 2A).  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
ofthedriver,andconnecteddirectlytothegroundterminal  
of the load.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDN402  
must be able to draw this 1.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected and should have low inductance, low resistance and  
high-pulse current-service ratings). Lead lengths may radiate  
at high frequency due to inductance, so care should be taken  
to keep the lengths of the leads between these bypass  
capacitors and the IXDN402 to an absolute minimum.  
9
IXDN402 / IXDI402 / IXDF402  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
www.directedenergy.com  
Doc #9200-0254 R2  
10  

相关型号:

IXDF404

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SI-16

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF404SIA-16

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS