IXDI414SI [IXYS]

Buffer/Inverter Based Peripheral Driver, 14A, MOS, PDSO14, SOIC-14;
IXDI414SI
型号: IXDI414SI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Buffer/Inverter Based Peripheral Driver, 14A, MOS, PDSO14, SOIC-14

驱动 光电二极管 接口集成电路
文件: 总10页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
14 Ampere Low-Side Ultrafast MOSFET and IGBTDrivers  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedOverEntire  
OperatingRange  
TheIXDI414/IXDN414arehighspeedhighcurrentgatedrivers  
specifically designed to drive the largest MOSFETs and IGBTs  
to their minimum switching time and maximum practical  
frequency limits. The IXDI/N414 can source and sink 14A of  
peak current, while producing voltage rise and fall times of less  
than 30ns, to drive the latest IXYS MOSFETs & IGBTs. The  
input of the driver is compatible with TTL or CMOS and is fully  
immune to latch up over the entire operating range. Designed  
with small internal delays, a patent-pending circuit virtually  
eliminates transistor cross conduction and current shoot-  
through. Improvedspeedanddrivecapabilitiesarefurther  
enhanced by very low, matched rise and fall times.  
• High Peak Output Current: 14A Peak  
• Wide Operating Range: 4.5V to 35V  
o
o
-55 C to 125 C Extended Operating Temperature  
Standard  
• High Capacitive Load  
Drive Capability: 15nF in <30ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDN414isconfiguredasanon-invertinggatedriverand  
theIXDI414isaninvertinggatedriver.  
• LowSupplyCurrent  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
TheIXDN414/IXDI414familyareavailableinstandard8pin  
P-DIP(PI),5-pinTO-220(CI),TO-263(YI)andthermally  
enhanced14-pinSOIC(SI)surface-mountpackages.  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
Figure 1 - IXDN414 14A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
ANTI-CROSS  
OUT  
GND  
IN  
CONDUCTION  
CIRCUIT *  
N
GND  
* Patent Pending  
DS99020B(08/04)  
Copyright©IXYSCORPORATION2004  
First Release  
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Figure 2 - IXDI414 Inverting 14A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT  
GND  
IN  
GND  
Pin Description And Configuration  
SYMBOL  
VCC  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 35V.  
Input signal-TTL or CMOS compatible.  
IN  
Driver Output. For application purposes, this pin is connected via an  
external resistor to a Gate of a MOSFET/IGBT.  
OUT  
Output  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
GND  
Ground  
1
NC  
NC  
14  
13  
12  
NC  
I
1 VCC  
VCC 8  
OUT 7  
OUT 6  
I
X
D
(1)  
4
1
4
P
I
2 NC  
X
D
(1)  
4
1
4
VCC  
VCC  
3
4
5
6
2 IN  
OUT  
OUT  
11  
10  
IN  
3 NC  
4 GND  
NC  
S
I
GND 9  
NC  
GND  
NC  
GND  
5
TO220(CI)  
TO263(YI)  
8
7
8 PIN DIP (PI)  
14 PIN SOIC  
ORDERING INFORMATION  
Part Number Package Type Temp. Range  
Configuration  
IXDN414PI  
IXDN414SI  
IXDN414CI  
IXDN414YI  
IXDI414PI  
IXDI414SI  
IXDI414CI  
IXDI414YI  
8-Pin PDIP  
-55°C to 125°C  
14-Pin SOIC  
5-Pin TO-220  
5-Pin TO-263  
8-Pin PDIP  
14-Pin SOIC  
5-Pin TO-220  
5-Pin TO-263  
Non Inverting  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
Inverting  
-55°C to 125°C  
-55°C to 125°C  
NOTES 1: Either "I" or "N";  
2: Mounting or solder tabs on all packages are connected to ground  
* Patent Pending  
2
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
40V  
o
Supply Voltage  
Maximum Junction Temperature  
Operating Temperature Range  
150 C  
o
o
-0.3V to  
-55 C to 125 C  
All Other Pins  
V
+ 0.3V  
CC  
Thermal Resistance (Junction To Case)  
TO220 (CI)  
Power Dissipation  
o
12.5W  
TO263 (YI), 14 Pin SOIC (SI)  
10 K/W  
TCASE 25 C: TO220 (CI), TO263 (YI)*  
o
Thermal Resistance (Junction to Ambient)  
Power Dissipation, TAMBIENT 25 C  
8 Pin PDIP (PI), 14 Pin SOIC  
TO220 (CI) TO263 (YI)  
Storage Temperature  
833mW  
2W  
8-Pin PDIP (PI)  
150 K/W  
120 K/W  
62.5 K/W  
14-Pin SOIC  
o
o
-55 C to 150 C  
TO-220 (CI), TO-263 (YI)  
* Subject to internal lead current limit IDC  
o
Soldering Lead Temperature (10s)  
Tab Temperature (10s)  
300 C  
o
260 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 35V .  
All voltage measurements with respect to GND. Device configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
V
V
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
0.8  
VCC + 0.3  
10  
VIN  
-5  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1000  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
600  
600  
14  
mΩ  
ROL  
IPEAK  
IDC  
1000  
mΩ  
Peak output current  
A
Continuous output  
current  
8 Pin Dip (PI) (Limited by pkg power dissipation)  
TO220 (CI), TO263 (YI)  
3
4
27  
A
A
ns  
tR  
Rise time (1)  
CL=15nF Vcc=18V  
22  
20  
30  
tF  
Fall time (1)  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
25  
33  
ns  
ns  
tONDLY  
On-time propagation  
delay (1)  
tOFFDLY  
Off-time propagation  
delay (1)  
CL=15nF Vcc=18V  
31  
34  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
35  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µ
A
µA  
(1)  
See Figures 3a and 3b  
Note 1: Operating the device beyond parameters with listed “Absolute Maximum Ratings” may cause permanent damage to the device.  
Typical values indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. The  
guaranteed specifications apply only for the test conditions listed. Exposure to absolute maximum rated conditions for extended periods may  
affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when handling  
and assembling this component.  
Specifications subject to change without notice  
3
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Figure 3a - Characteristics Test Diagram  
5.0V  
Vcc  
0V  
10uF  
25V  
0V  
0V  
IXDI414  
Vcc  
IXDN414  
15nF  
Agilent 1147A  
Current Probe  
Figure 3b - Timing Diagrams  
Non-Inverting (IXDN414) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
t
OFFDLY  
tONDLY  
t
R
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
Inverting (IXDI414) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
tONDLY  
tOFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
4
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Typical Performance Characteristics  
Fig. 4  
40  
Rise Time vs. Supply Voltage  
Fig. 5  
Fall Time vs. Supply Voltage  
40  
30  
20  
10  
0
30  
20  
10  
CL=15,000 pF  
CL=15,000 pF  
7,500 pF  
3,600 pF  
7,500 pF  
3,600 pF  
0
8
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Rise And Fall Times vs. Case Temperature  
CL = 15 nF, Vcc = 18V  
Fig. 6  
Fig. 7 Rise Time vs. Load Capacitance  
40  
50  
35  
30  
25  
20  
15  
10  
5
8V  
40  
30  
20  
10  
0
10V  
12V  
tR  
tF  
18V  
16V  
14V  
0
0k  
5k  
10k  
15k  
20k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fall Time vs. Load Capacitance  
Fig. 9  
Max / Min Input vs. Case Temperature  
VCC=18V CL=15nF  
Fig. 8  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
40  
8V  
12V  
14V  
Minimum Input High  
Maximum Input Low  
10V  
30  
20  
10  
18V  
16V  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0k  
5k  
10k  
15k  
20k  
Temperature (oC)  
Load Capacitance (pF)  
5
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Fig. 12  
Supply Current vs. Load Capacitance  
Vcc=18V  
Supply Current vs. Frequency  
Vcc=18V  
Fig. 11  
1000  
1000  
100  
10  
CL= 30 nF  
15 nF  
2 MHz  
100  
10  
1
1 MHz  
5000 pF  
2000 pF  
500 kHz  
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
100k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 13  
Supply Current vs. Load Capacitance  
Vcc=12V  
Supply Current vs. Frequency  
Vcc=12V  
Fig. 14  
1000  
1000  
100  
10  
CL = 30 nF  
15 nF  
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
500 kHz  
10  
1
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 15  
Supply Current vs. Load Capacitance  
Vcc=8V  
Fig. 16  
Supply Current vs. Frequency  
Vcc=8V  
1000  
100  
10  
1000  
CL= 30 nF  
15 nF  
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
10  
500 kHz  
1
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
6
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Propagation Delay vs. Input Voltage  
Fig. 18  
Fig. 17  
Propagation Delay vs. Supply Voltage  
CL=15nF VIN=5V@1kHz  
CL=15nF VCC=15V  
50  
40  
30  
20  
10  
0
50  
tOFFDLY  
40  
30  
20  
10  
0
tONDLY  
tONDLY  
tOFFDLY  
2
4
6
8
10  
12  
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay vs. Case Temperature  
CL = 2500pF, VCC = 18V  
Fig. 19  
Quiescent Supply Current vs. Case Temperature  
Fig. 20  
VCC=18V V =5V@1kHz  
IN  
0.60  
50  
45  
40  
35  
30  
25  
20  
15  
0.58  
0.56  
0.54  
0.52  
0.50  
tONDLY  
tOFFDLY  
10  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
o
Temperature ( C)  
Temperature (°C)  
P Channel Output Current vs. Case Temperature  
CC=18V CL=.1uF  
Fig. 21  
N Channel Output Current vs. Case Temperature  
VCC=18V CL=.1uF  
Fig. 22  
V
16  
17  
16  
15  
14  
15  
14  
13  
12  
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
7
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Fig. 24  
High State Output Resistance  
vs. Supply Voltage  
Enable Threshold vs. Supply Voltage  
Fig. 23  
14  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
Supply Voltage (V)  
Supply Voltage (V)  
Low-State Output Resistance  
vs. Supply Voltage  
VCC vs. P Channel Output Current  
CL=.1uF VIN=0-5V@1kHz  
Fig. 25  
Fig. 26  
1.0  
0
-2  
-4  
0.8  
0.6  
0.4  
0.2  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
0.0  
8
10  
15  
20  
25  
8
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 27  
Vcc vs. N Channel Output Current  
CL=.1uF V =0-5V@1kHz  
IN  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
Vcc  
8
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
Supply Bypassing, Grounding Practices and Output Lead inductance  
When designing a circuit to drive a high speed  
MOSFETutilizingtheIXDN414/IXDI414,itisvery  
important to observe certain design criteria in  
order to optimize performance of the driver.  
Particular attention needs to be paid to Supply  
Bypassing, Grounding, and minimizing the  
Output Lead Inductance.  
GROUNDING  
Inorderforthedesigntoturntheloadoffproperly,  
the IXDN414 must be able to drain this 5A of  
currentintoanadequategroundingsystem. There  
are three paths for returning current that need to  
beconsidered: Path#1isbetweentheIXDN414  
anditsload. Path#2isbetweentheIXDN414and  
itspowersupply. Path#3isbetweentheIXDN414  
and whatever logic is driving it. All three of these  
paths should be as low in resistance and  
inductance as possible, and thus as short as  
practical. Inaddition,everyeffortshouldbemade  
to keep these three ground paths distinctly  
separate. Otherwise,thereturninggroundcurrent  
from the load may develop a voltage that would  
have a detrimental effect on the logic line driving  
theIXDN414.  
Say, for example, we are using the IXDN414 to  
charge a 5000pF capacitive load from 0 to 25  
voltsin25ns.  
Using the formula: I= V C / t, where V=25V  
C=5000pF & t=25ns we can determine that to  
charge 5000pF to 25 volts in 25ns will take a  
constant current of 5A. (In reality, the charging  
current won’t be constant, and will peak  
somewherearound8A).  
OUTPUT LEAD INDUCTANCE  
SUPPLY BYPASSING  
Of equal importance to Supply Bypassing and  
GroundingareissuesrelatedtotheOutputLead  
Inductance. Everyeffortshouldbemadetokeep  
theleadsbetweenthedriverandit’sloadasshort  
andwideaspossible. Ifthedrivermustbeplaced  
fartherthan2(5mm)fromtheload,thentheoutput  
leadsshouldbetreatedastransmissionlines. In  
this case, a twisted-pair should be considered,  
and the return line of each twisted pair should be  
placed as close as possible to the ground pin of  
the driver, and connected directly to the ground  
terminaloftheload.  
Inorderforourdesigntoturntheloadonproperly,  
the IXDN414 must be able to draw this 5A of  
current from the power supply in the 25ns. This  
means that there must be very low impedance  
between the driver and the power supply. The  
most common method of achieving this low  
impedance is to bypass the power supply at the  
driverwithacapacitancevaluethatisamagnitude  
larger than the load capacitance. Usually, this  
wouldbeachievedbyplacingtwodifferenttypes  
of bypassing capacitors, with complementary  
impedancecurves,veryclosetothedriveritself.  
(These capacitors should be carefully selected,  
lowinductance,lowresistance,high-pulsecurrent-  
servicecapacitors). Leadlengthsmayradiateat  
highfrequencyduetoinductance,socareshould  
betakentokeepthelengthsoftheleadsbetween  
these bypass capacitors and the IXDN414 to an  
absoluteminimum.  
9
IXDN414PI / N414CI / N414YI / N414SI  
IXDI414PI / I414CI / I414YI / I414SI  
8-PIN DIP Case Outline (IXD_414PI)  
14-PIN SOIC Case Outline (IXD_414SI)  
5-Leaded TO-220 Case Outline (IXD_414CI)  
5-Leaded TO-263 Case Outline (IXD_414YI)  
IXYS Corporation  
IXYS Semiconductor GmbH  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
www.ixys.com  
10  

相关型号:

IXDI414YI

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI414YM

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI430CI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI430MCI

Buffer/Inverter Based MOSFET Driver, 30A, PSFM5, TO-220, 5 PIN
IXYS

IXDI430MYI

Buffer/Inverter Based MOSFET Driver, 30A, PSSO5, TO-263, D2PAK-5
IXYS

IXDI430YI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS