IXDR502 [IXYS]

2 Ampere Single Low-Side Ultrafast MOSFET Drivers;
IXDR502
型号: IXDR502
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

2 Ampere Single Low-Side Ultrafast MOSFET Drivers

文件: 总11页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Technical Information  
IXDR502 / IXDS502  
2 Ampere Single Low-Side Ultrafast MOSFET Drivers  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up Protected up to 2 Amps  
• High 2A Peak Output Current  
• Wide Operating Range: 4.5V to 25V  
• -55°C to +125°C Extended Operating  
Temperature  
• High Capacitive Load Drive Capability: 1000pF  
in <10ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• Low Output Impedance  
The IXDR502, and IXDS502 each consist of a single 2A  
CMOS high speed gate driver for driving the latest IXYS  
MOSFETs & IGBTs. Each type can source and sink 2  
Amps of peak current while producing voltage rise and  
fall times of less than 15ns. The input of each driver is  
TTL or CMOS compatible and is virtually immune to  
latch up. Patented* design innovations eliminate cross  
conduction and current "shoot-through". Improved  
speed and drive capabilities are further enhanced by  
very quick & matched rise and fall times.  
The IXDR502 is configured as a single inverting gate  
driver, and the IXDS502 is configured as a single non-  
inverting gate driver.  
• Low Supply Current  
The IXDR502, and IXDS502 are available in the 6-Lead  
DFN (D1) package, which occupies less than 20% of  
the board area of a typical 8-Pin SOIC package.  
Applications  
• Driving MOSFETs and IGBTs  
• Motor Controls  
• Line Drivers  
• Pulse Generators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DC to DC Converters  
• Pulse Transformer Driver  
• Class D Switching Amplifiers  
• Power Charge Pumps  
*United States Patent 6,917,227  
Ordering Information  
Package  
Type  
Pack  
Qty  
Part Number  
Description  
Packing Style  
Configuration  
IXDR502D1B  
2A Low Side Gate Driver I.C.  
2A Low Side Gate Driver I.C.  
2A Low Side Gate Driver I.C.  
2A Low Side Gate Driver I.C.  
6-Lead DFN  
2” x 2” Waffle Pack 121  
7” Tape and Reel 2500  
2” x 2” Waffle Pack 121  
Single Inverting  
Driver  
IXDR502D1BT/R  
IXDS502D1B  
6-Lead DFN  
6-Lead DFN  
6-Lead DFN  
Single Non-  
Inverting Driver  
IXDS502D1BT/R  
7” Tape and Reel  
2500  
NOTE: All parts are lead-free and RoHS Compliant  
DS99909(10/07)  
Copyright © 2007 IXYS CORPORATION All rights reserved  
First Release  
IXDR502 / IXDS502  
Figure 1 - IXDS502 Non-Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN  
OUT  
GND  
GND  
Figure 2 - IXDR502 Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
IN  
OUT  
GND  
CIRCUIT *  
GND  
* United States Patent 6,917,227  
2
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDR502 / IXDS502  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
Junction Temperature  
Storage Temperature  
Lead Temperature (10 Sec)  
35V  
Operating Supply Voltage  
Operating Temperature Range  
Package Thermal Resistance *  
4.5V to 25V  
-55 °C to 125 °C  
-0.3 V to VCC + 0.3V  
150 °C  
-65 °C to 150 °C  
300 °C  
6-Lead DFN  
6-Lead DFN  
6-Lead DFN  
(D1)  
(D1)  
(D1)  
θ
(typ) 125-200 °C/W  
θJ-A(max)3.3 °C/W  
θJJ--CS(typ) 7.3 °C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions.  
(4)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
2.5  
4.5V VCC 18V  
4.5V VCC 18V  
VIH  
VIL  
VIN  
IIN  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
1.0  
VCC + 0.3  
10  
V
-5  
-10  
V
0V VIN VCC  
µA  
V
VCC - 0.025  
VOH  
VOL  
High output voltage  
Low output voltage  
0.025  
4
V
High state output  
resistance  
Low state output  
resistance  
VCC = 15V  
VCC = 15V  
VCC = 15V  
3
2.2  
2
ROH  
3
ROL  
IPEAK  
IDC  
A
A
Peak output current  
Continuous output  
current  
0.5  
CLOAD = 1000pF VCC = 15V  
CLOAD = 1000pF VCC = 15V  
CLOAD = 1000pF VCC = 15V  
CLOAD = 1000pF VCC = 15V  
7.5  
6.5  
25  
12  
10  
35  
30  
25  
ns  
ns  
ns  
ns  
V
tR  
Rise time  
tF  
Fall time  
tONDLY  
tOFFDLY  
VCC  
ON propagation delay  
OFF propagation delay  
Power supply voltage  
20  
4.5  
15  
VIN = 3.5V  
VIN = 0V  
VIN = +VCC, (4.5VVCC 18V)  
1
0
2
15  
15  
mA  
µA  
µA  
ICC  
Power supply current  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDR502 / IXDS502  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 22V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
4.5V VCC 15V  
4.5V VCC 15V  
VIL  
0.8  
VCC + 0.3  
20  
V
VIN  
-5  
-20  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.05  
0.05  
6
V
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
Continuous output  
current  
VCC = 15V  
VCC = 15V  
ROL  
IDC  
4
0.3  
A
tR  
Rise time  
CL=1000pF Vcc=15V  
CL=1000pF Vcc=15V  
CL=1000pF Vcc=15V  
14  
12  
40  
ns  
ns  
ns  
tF  
Fall time  
tONDLY  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=1000pF Vcc=15V  
35  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
15  
22  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC, (4.5VVCC 18V)  
1
0
3
10  
10  
mA  
µA  
µA  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) The θJ-A (typ) is defined as junction to ambient. The θJ-A of the standard single die 8-Lead PDIP and 8-Lead SOIC are dominated  
by the resistance of the package, and the IXD_5XX are typical. The values for these packages are natural convection values with  
vertical boards and the values would be lower with forced convection. For the 6-Lead DFN package, the θJ-A value supposes the DFN  
package is soldered on a PCB. The θJ-A (typ) is 200 °C/W with no special provisions on the PCB, but because the center pad  
provides a low thermal resistance to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB.  
These can reduce the θJ-A (typ) to 125 °C/W easily, and potentially even lower. The θJ-A for DFN on PCB without heatsink or thermal  
management will vary significantly with size, construction, layout, materials, etc. This typical range tells the user what they are likely  
to get if no thermal management is done.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally  
not published for the PDIP and SOIC packages. The θJ-C for the DFN packages are important to show the low thermal resistance from  
junction to the die attach pad on the back of the DFN, -- and a guardband has been added to be safe.  
3) The θJ-S (typ) is defined as junction to heatsink, where the DFN package is soldered to a thermal substrate that is mounted on a  
heatsink. The value must be typical because there are a variety of thermal substrates. This value was calculated based on easily  
available IMS in the U.S. or Europe, and not a premium Japanese IMS. A 4 mil dialectric with a thermal conductivity of 2.2W/mC was  
assumed. The result was given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential  
low thermal resistance for the DFN package.  
4
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDR502 / IXDS502  
Pin Description  
PIN NUMBER  
SYMBOL  
FUNCTION  
DESCRIPTION  
Input signal-TTL or CMOS compatible.  
IN  
Signal Input  
1
2
Positive power supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 25V.  
Driver output. For application purposes, this pin is connected via a  
resistor to the gate of a MOSFET or IGBT.  
The drivers ground pins. Internally connected to all circuitry, these  
pins provide ground reference for the entire device. These pins  
should be connected to a low noise analog ground plane for  
optimum performance.  
Vcc  
Supply Voltage  
Drive Output  
OUT  
GND  
3
Ground  
4,5,6  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
Pin Configuration  
IXDR 6 Lead DFN (D1B)  
(Bottom View)  
IXDS 6 Lead DFN (D1B)  
(Bottom View)  
6
5
4
GND  
GND  
GND  
1
2
3
IN  
6
GND  
GND  
GND  
1
2
3
IN  
Vcc  
5
4
Vcc  
OUT  
OUT  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
Figure 3 - Characteristics Test Diagram  
Vcc  
1
2
3
6
5
4
IN  
GND  
GND  
GND  
Vcc  
OUT  
10uF  
0.01uF  
Agilent 1147A  
Current Probe  
1000 pF  
IXYS reserves the right to change limits, test conditions, and dimensions.  
5
IXDR502 / IXDS502  
Typical Performance Characteristics  
Fig. 4  
Fig. 5  
Fall Time vs. Supply Voltage  
Rise Time vs. Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
10000pF  
5400pF  
10000pF  
5400pF  
1000pF  
560pF  
1000pF  
560pF  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Rise / Fall Time vs. Temperature  
Fig. 6  
Fig. 7  
V
SUPPLY = 15V CLOAD = 1000pF  
Rise Time vs. Capacitive Load  
90  
80  
70  
60  
50  
40  
30  
20  
10  
12  
10  
8
5V  
Rise time  
Fall time  
10V  
15V  
20V  
6
4
2
0
0
-50  
0
50  
100  
150  
100  
1000  
10000  
Load Capacitance (pF)  
Temperature (C)  
Fig. 9  
Fig. 8  
Fall Time vs. Capacitive Load  
Input Threshold Levels vs. Supply Voltage  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
5
2
1.5  
1
10V  
Positive going input  
15V  
20V  
Negative going input  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
100  
1000  
10000  
Supply Voltage (V)  
Load Capacitance (pF)  
6
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDR502 / IXDS502  
Propagation Delay vs. Supply Voltage  
Rising Input, CLOAD = 1000pF  
Fig. 10  
Fig. 11  
Input Threshold Levels vs. Temperature  
3
2.5  
2
40  
35  
30  
25  
20  
15  
10  
5
Non-Inverting  
Positive going input  
Negative going input  
1.5  
1
Inverting  
0.5  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
Temperature (C)  
Supply Voltage (V)  
Propagation Delay vs. Temperature  
VSUPPLY = 15V CLOAD = 1000pF  
Propagation Delay vs. Supply Voltage  
Falling Input, CLOAD = 1000pF  
Fig. 13  
Fig. 12  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
Negative going input  
Positve going input  
Inverting  
Non-Inverting  
0
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
Temeprature (C)  
Supply Voltage (V)  
Quiescent Current vs. Temperature  
VSUPPLY = 15V  
Fig. 15  
Fig. 14  
Quiescent Current vs. Supply Voltage  
10000  
1000  
100  
10  
1000000  
100000  
10000  
1000  
100  
Non-inverting, Input= "1"  
Inverting, Input= "0"  
Inverting/Non-inverting  
Input = "1"  
Inverting, Input= "1"  
Inverting  
Input = "0"  
10  
Non-inverting  
Input = "0"  
1
Non-inverting, Input= "0"  
1
0.1  
0.1  
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temperature (C)  
7
IXDR502 / IXDS502  
Supply Current vs. Frequency  
Supply Current vs. Capacitive Load  
Fig. 16  
Fig. 17  
V
SUPPLY = 5V  
VSUPPLY = 5V  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10000pF  
2MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5400pF  
1MHz  
1000pF  
560pF  
100kHz  
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Supply Current vs. Capacitive Load  
Supply Current vs. Frequency  
Fig. 19  
Fig. 18  
V
SUPPLY = 10V  
VSUPPLY = 10V  
200  
180  
160  
140  
120  
100  
80  
200  
10000pF  
5400pF  
2MHz  
180  
160  
140  
120  
100  
80  
1MHz  
60  
60  
40  
40  
1000pF  
560pF  
20  
20  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Supply Current vs. Capacitive Load  
VSUPPLY = 15V  
Supply Current vs. Frequency  
VSUPPLY = 15V  
Fig. 20  
Fig. 21  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
2MHz  
10000pF  
5400pF  
1MHz  
1000pF  
560pF  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
8
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDR502 / IXDS502  
Supply Current vs. Frequency  
Supply Current vs. Capacitive Load  
Fig. 23  
Fig. 22  
V
SUPPLY = 20V  
VSUPPLY = 20V  
400  
400  
350  
300  
250  
200  
150  
100  
50  
10000pF  
2MHz  
1MHz  
350  
300  
250  
200  
150  
100  
50  
5400pF  
1000pF  
560pF  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
Frequency (kHz)  
Output Sink Current vs. Supply Voltage  
Load Capacitance (pF)  
Output Source Current vs. Supply Voltage  
Fig. 25  
Fig. 24  
7
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
6
5
4
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Output Sink Current vs. Temperature  
VSUPPLY = 15V  
Output Source Current vs. Temperature  
SUPPLY = 15V  
Fig. 27  
Fig. 26  
V
0
-0.5  
-1  
3.5  
3
2.5  
2
-1.5  
-2  
1.5  
1
-2.5  
-3  
0.5  
0
-3.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (C)  
Temperature (C)  
9
IXDR502 / IXDS502  
Fig. 29  
Fig. 28  
Low State Output Resistance vs. Supply Voltage  
High State Output Resistance vs. Supply Voltage  
4.5  
6
5
4
3
2
1
0
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Bypassing, Grounding Practices And Output Lead Inductance  
GROUNDING  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXD_502, it is very important to observe certain  
design criteria in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
In order for the design to turn the load off properly, the IXD_502  
must be able to drain this 1.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXD_502  
and its load. Path #2 is between the IXD_502 and its power  
supply. Path #3 is between the IXD_502 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
groundpathsdistinctlyseparate.Otherwise,thereturningground  
current from the load may develop a voltage that would have a  
detrimental effect on the logic line driving the IXD_502.  
Say, forexample, weareusingtheIXD_502tochargea1500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=1500pF &  
t=25ns, we can determine that to charge 1500pF to 25 volts in  
25nswilltakeaconstantcurrentof1.5A. (Inreality, thecharging  
current won’t be constant, and will peak somewhere around  
2A).  
OUTPUT LEAD INDUCTANCE  
SUPPLY BYPASSING  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
fartherthan2(5mm)fromtheload, thentheoutputleadsshould  
be treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible to the ground pin of the  
driver, and connected directly to the ground terminal of the load.  
In order for our design to turn the load on properly, the IXD_502  
must be able to draw this 1.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitudelargerthantheloadcapacitance. Usually, thiswould  
be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
tothedriveritself.(Thesecapacitorsshouldbecarefullyselected  
and should have low inductance, low resistance and high-pulse  
current-service ratings). Lead lengths may radiate at high  
frequency due to inductance, so care should be taken to keep  
the lengths of the leads between these bypass capacitors and  
the IXD_502 to an absolute minimum.  
10  
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDR502 / IXDS502  
0.013 [0.32]  
0.044 [1.12]  
0.079±0.004 [2.00±0.10]  
0.035±0.004 [0.90±0.10]  
0.010 [0.26]  
0.012 [0.30]  
0.008 [0.20]  
S0.002^0.000; o  
[
S0.05^0.00;o  
]
IXYS Corporation  
IXYS Semiconductor GmbH  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
www.ixys.com  
11  

相关型号:

IXDR502D1B

Buffer/Inverter Based MOSFET Driver, 2A, CMOS, 2 X 2 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDR502D1BT/R

Buffer/Inverter Based MOSFET Driver, 2A, CMOS, 2 X 2 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDS430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDS430SI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDS502

2 Ampere Single Low-Side Ultrafast MOSFET Drivers
IXYS

IXDS502D1B

Buffer/Inverter Based MOSFET Driver, 2A, CMOS, 2 X 2 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDS502D1BT/R

Buffer/Inverter Based MOSFET Driver, 2A, CMOS, 2 X 2 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDT30N120

High Voltage IGBT with optional Diode
IXYS

IXDT30N120AU1

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 50A I(C) | TO-268AA
ETC

IXDT30N120D1

High Voltage IGBT with optional Diode
IXYS

IXD_602

2-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE

IXD_604

4-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE