LTC1164-5MJ [Linear]

Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter; 低功耗8阶引脚可选巴特沃斯或贝塞尔低通滤波器
LTC1164-5MJ
型号: LTC1164-5MJ
厂家: Linear    Linear
描述:

Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter
低功耗8阶引脚可选巴特沃斯或贝塞尔低通滤波器

文件: 总12页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1164-5  
Low Power 8th Order  
Pin Selectable Butterworth  
or Bessel Lowpass Filter  
U
FEATURES  
DESCRIPTIO  
The LTC®1164-5 is a monolithic 8th order filter; it approxi-  
mates either a Butterworth or a Bessel lowpass response.  
The LTC1164-5 features clock-tunable cutoff frequency  
and low power consumption (4.5mA with ±5V supplies  
and 2.5mA with single 5V supply).  
Pin Selectable Butterworth or Bessel Response  
4mA Supply Current with ±5V Supplies  
fCUTOFF up to 20kHz  
100µVRMS Wideband Noise  
THD < 0.02% (50:1, VS = ±7.5V, VIN = 2VRMS  
Operates with a Single 5V Supply (1VRMS Input  
Range)  
60µVRMS Clock Feedthrough (Single 5V Supply)  
Operates up to ±8V Supplies  
TTL/CMOS-Compatible Clock Input  
No External Components  
)
Low power operation is achieved without compromising  
noise or distortion performance. With ±5V supplies and  
10kHz cutoff frequency, the operating signal-to-noise  
ratio is 86dB and the THD throughout the passband is  
0.015%. Under the same conditions, a 77dB signal-to-  
noise ratio and distortion is obtained with a single 5V  
supply while the clock feedthrough is kept below the noise  
level. The maximum signal-to-noise ratio is 92dB.  
U
APPLICATIO S  
The LTC1164-5 approximates an 8th order Butterworth  
response with a clock-to-cutoff frequency ratio of 100:1  
(Pin 10 to V) or 50:1 double-sampled (Pin 10 to V+ and  
Pin1shortedtoPin13). Double-samplingallowstheinput  
signal frequency to reach the clock frequency before any  
aliasing occurrence. An 8th order Bessel response can  
also be approximated with a clock-to-cutoff frequency  
ratio of 140:1 (Pin 10 to ground). With ±7.5V supply, ±5V  
supply and single 5V supply, the maximum clock fre-  
quency of the LTC1164-5 is 1.5MHz, 1MHz, and 1MHz  
respectively. The LTC1164-5 is pin-compatible with the  
LTC1064-2 and LTC-1064-3.  
Anti-Aliasing Filters  
Battery-Operated Instruments  
Telecommunications Filters  
Smoothing Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
Frequency Response  
TYPICAL APPLICATIO  
0
–10  
–20  
–30  
Butterworth 20kHz Anti-Aliasing Filter  
1
2
3
4
5
6
7
14  
13  
12  
V
IN  
–40  
WIDEBAND NOISE = 110µV  
–8V  
RMS  
THD IN PASSBAND < 0.02% AT V = 2V  
RMS  
11  
10  
9
IN  
–50  
–60  
–70  
–80  
LTC1164-5  
CLK = 1MHz  
8V  
NOTE: THE CONNECTION FROM PIN 7 TO PIN 14  
SHOULD BE MADE UNDER THE PACKAGE.  
FOR 50:1 OPERATION CONNECT PIN 1 TO PIN 13  
AS SHOWN. FOR 100:1 OR 150:1 OPERATION PINS 1  
AND 13 SHOULD FLOAT. THE POWER SUPPLIES  
SHOULD BE BYPASSED BY A 0.1µF CAPACITOR AS  
CLOSE TO THE PACKAGE AS POSSIBLE.  
+
TO V  
NC  
V
OUT  
8
1164-5 TA01  
1
10  
100  
FREQUENCY (kHz)  
LTC1164-5 TA02  
1
LTC1164-5  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V) ............................. 16V  
Input Voltage (Note 2) ......... (V++ 0.3V) to (V– 0.3V)  
Output Short Circuit Duration ......................... Indefinite  
Power Dissipation............................................. 400mW  
Burn-In Voltage ...................................................... 16V  
Operating Temperature Range  
LTC1164-5C ...................................... 40°C to 85°C  
LTC1164-5M .................................... 55°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
50:1 MODE  
1
2
3
4
5
6
7
8
16 CONNECT 2  
NUMBER  
1
2
3
4
5
6
7
CONNECT 2  
50:1 MODE  
14  
13  
12  
11  
10  
9
50:1 MODE  
V
15 50:1 MODE  
V
IN  
IN  
LTC1164-5CN  
LTC1164-5CJ  
LTC1164-5MJ  
LTC1164-5CS  
GND  
14  
13  
12  
11  
10  
9
V
V
GND  
+
+
V
NC  
CLK  
V
GND  
NC  
CLK  
BUTT/BESS  
GND  
LP6  
BUTT/BESS  
NC  
V
OUT  
LP6  
NC  
8
CONNECT 1  
CONNECT 1  
V
OUT  
N PACKAGE  
J PACKAGE  
14-LEAD PDIP  
14-LEAD CERDIP  
S PACKAGE  
16-LEAD PLASTIC SW  
TJMAX = 150°C, θJA = 65°C/W (J)  
TJMAX = 110°C, θJA = 65°C/W (N)  
TJMAX = 110°C, θJA = 85°C/W  
Consult factory for Industrial grade parts.  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, fCLK = 400kHz, TA = Operating Temperature Range, unless otherwise specified.  
LTC1164-5C  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
Passband Gain 0.1Hz at 0.25f  
(Note 3)  
f
f
= 1kHz, (f /f ) = 100:1  
0.5  
0.5  
0.10  
0.10  
0.25  
0.25  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 1kHz, (f /f ) = 50:1  
CLK  
C
Gain at 0.50f  
(Note 3)  
f
f
= 2kHz, (f /f ) = 100:1  
0.45  
0.35  
0.20  
0.10  
0.17  
0.40  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 4kHz, (f /f ) = 50:1  
CLK  
C
Gain at 0.90f  
Gain at 0.95f  
(Note 3)  
(Note 3)  
f
f
= 3.6kHz, (f /f ) = 100:1  
2.50  
–1.90  
2.60  
–1.0  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 3.8kHz, (f /f ) = 100:1  
CUTOFF  
CLK  
C
Gain at f  
(Note 3)  
f
f
= 4kHz, (f /f ) = 100:1  
4.10  
4.20  
3.40  
3.80  
2.75  
2.75  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 8kHz, (f /f ) = 50:1  
CLK  
C
Gain at 1.44f  
(Note 3)  
f
f
f
= 5.76kHz, (f /f ) = 100:1  
20.5  
45.0  
4.50  
–19.0  
43.0  
3.40  
–17.0  
41.0  
2.75  
dB  
dB  
dB  
CUTOFF  
IN  
IN  
IN  
CLK C  
Gain at 2.0f  
(Note 3)  
= 8kHz, (f /f ) = 100:1  
CLK C  
CUTOFF  
Gain with f  
= 20kHz (Note 3)  
= 200Hz, (f /f ) = 100:1  
CLK C  
CLK  
Gain with V = 2.375V (Note 3)  
f
f
= 400kHz, f = 2kHz, (f /f ) = 100:1  
0.50  
4.20  
0.10  
3.40  
0.35  
2.00  
dB  
dB  
S
IN  
IN  
IN  
CLK C  
= 400kHz, f = 4kHz, (f /f ) = 100:1  
IN  
CLK C  
Input Frequency Range  
(f /f ) = 100:1  
0 – <f /2  
kHz  
kHz  
CLK  
C
CLK  
(f /f ) = 50:1  
0 – <f  
CLK  
C
CLK  
2
LTC1164-5  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, fCLK = 400kHz, TA = Operating Temperature Range, unless otherwise specified.  
LTC1164-5C  
PARAMETER  
Maximum f  
CONDITIONS  
V ≥ ±7.5V  
MIN  
TYP  
MAX  
UNITS  
1.5  
1.0  
1.0  
MHz  
MHz  
MHz  
CLK  
S
V = ±5.0V  
S
V = Single 5V (GND = 2V)  
S
Clock Feedthrough  
Wideband Noise  
Input at GND, f = f , Square Wave  
CLK  
±5V, (f /f ) = 100:1  
200  
100  
µV  
µV  
CLK  
C
RMS  
RMS  
±5V, (f /f ) = 50:1  
CLK  
C
Input at GND, 1Hz f < f  
CLK  
±5V, (f /f ) = 100:1  
100 ±5%  
115 ±5%  
µV  
RMS  
µV  
RMS  
CLK  
C
±5V, (f /f ) = 50:1  
CLK  
C
Input Impedance  
70  
100  
160  
kΩ  
Output DC Voltage Swing  
V = ±2.375V  
±1.25  
±3.70  
±5.40  
±1.50  
±4.10  
±5.90  
V
V
V
S
V = ±5.0V  
S
V = ±7.5V  
S
Output DC Offset  
V = ±5V, (f /f ) = 100:1  
±50  
±100  
2.5  
±160  
mV  
S
CLK C  
Output DC Offset TempCo  
Power Supply Current  
V = ±5V, (f /f ) = 100:1  
µV/°C  
S
CLK C  
V = ±2.375V, T 25°C  
4.0  
4.5  
7.0  
8.0  
11.0  
12.5  
mA  
mA  
mA  
mA  
mA  
mA  
S
A
V = ±5.0V, T 25°C  
4.5  
7.0  
S
A
V = ±7.5V, T 25°C  
S
A
Power Supply Range  
±2.375  
±8  
V
+
The  
denotes specifications which apply over the full operating  
Note 2: Connecting any pin to voltages greater than V or less than V  
may cause latchup. It is recommended that no sources operating from  
external supplies be applied prior to power-up of the LTC1164-5.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which life of  
Note 3: All gains are measured relative to passband gain. The filter cutoff  
the device may be impaired.  
frequency is abbreviated as f  
or f .  
CUTOFF  
C
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Passband Gain and Phase  
vs Frequency  
Gain vs Frequency  
A. f  
f
= 100kHz  
= 1kHz  
CLK  
CUTOFF  
(100:1, PIN 10 TO V )  
0
–10  
–20  
A
B
C
0
0
B. f  
f
= 375kHz  
= 2.68kHz  
CLK  
CUTOFF  
GAIN  
(140:1, PIN 10 GND)  
–90  
–5  
–30  
–40  
C. f  
f
= 500kHz  
= 10kHz  
CLK  
CUTOFF  
+
(50:1, PIN 10 TO V ,  
PINS 1-13 SHORTED)  
–180  
–270  
–50  
–60  
–70  
–80  
–10  
–15  
V
f
= ±5V  
S
PHASE  
= 50kHz  
CLK  
f
= 1kHz  
CUTOFF  
+
(50:1, PIN 10 TO V ,  
PINS 1-13 SHORTED)  
V
T
= ±5V  
= 25°C  
S
A
T
A
= 25°C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.1  
1
10  
50  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G01  
LTC1164-5 • G02  
3
LTC1164-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Passband Gain and Phase  
vs Frequency  
Passband Gain and Phase  
vs Frequency  
0
0
0
0
GAIN  
–90  
–5  
–90  
–5  
PHASE  
–180  
–270  
–360  
–10  
–15  
–20  
–180  
–270  
–360  
–10  
–15  
–20  
V
f
= ±5V  
V
f
= ±5V  
S
S
= 100kHz  
= 1kHz  
= 150kHz  
CLK  
CLK  
f
f
= 1.07kHz  
CUTOFF  
CUTOFF  
(100:1, PIN 10 TO V )  
= 25°C  
(140:1, PIN 10 TO GND)  
= 25°C  
T
T
A
A
0.2  
0.4  
FREQUENCY (kHz)  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (kHz)  
LTC1164-5 • G03  
LTC1164-5 • G04  
Group Delay vs Frequency  
Passband vs Frequency and fCLK  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
A. f  
= 200kHz  
= 4kHz  
A. f  
= 500kHz  
CLK  
CUTOFF  
CLK  
V
= ±7.5V  
= 25°C  
S
A
f
(BUTTERWORTH 100:1)  
0.5  
0
T
f
= 5kHz  
B. f  
f
C. f  
f
D. f  
f
E. f  
f
= 300kHz  
= 6kHz  
CUTOFF  
CLK  
B. f  
= 750kHz  
CUTOFF  
CLK  
A
B
C
D E  
F
(BESSEL 140:1)  
= 5.36kHz  
= 500kHz  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
f
= 10kHz  
= 15kHz  
= 20kHz  
CUTOFF  
CUTOFF  
= 750kHz  
CUTOFF  
= 1MHz  
CUTOFF  
CLK  
CLK  
A
F. f  
f
= 1.5MHz  
CLK  
= 30kHz  
CUTOFF  
V
= ±7.5V  
S
B
50:1  
= 25°C  
T
A
0
0.1  
1
10  
30  
0.5  
2.5 3.5 4.5  
5.5 6.5 7.5  
1.5  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G06  
LTC1164-5 • G05  
Maximum Passband over  
Temperature for VS = ±7.5V, 50:1  
Passband vs Frequency and fCLK  
A. f  
f
B. f  
f
C. f  
f
D. f  
f
= 200kHz  
CUTOFF  
CLK  
= 2kHz  
0.5  
0
0.5  
0
T
= 70°C  
A
= 500kHz  
CLK  
= 5kHz  
CUTOFF  
T
A
= –40°C  
A
B
C
D
E
= 750kHz  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
= 7.5kHz  
= 10kHz  
= 15kHz  
CUTOFF  
= 1MHz  
CUTOFF  
= 1.5MHz  
CUTOFF  
CLK  
E. f  
f
CLK  
V
f
= ±7.5V  
V
= ±7.5V  
S
S
= 1.5MHz (50:1)  
100:1  
= 25°C  
CLK  
f
= 30kHz  
T
CUTOFF  
A
1
10  
FREQUENCY (kHz)  
30  
0.1  
1
10 20  
FREQUENCY (kHz)  
LTC1164-5 • G07  
LTC1164-5 • G08  
4
LTC1164-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Passband vs Frequency and fCLK  
Passband vs Frequency and fCLK  
A. f  
f
= 150kHz  
A. f  
f
B. f  
f
C. f  
f
D. f  
f
= 250kHz  
= 5kHz  
= 500kHz  
CLK  
CUTOFF  
CLK  
CUTOFF  
= 1.07kHz  
= 3.21kHz  
= 5.36kHz  
= 7.14kHz  
= 10.71kHz  
0.5  
0
0.5  
0
B. f  
f
= 450kHz  
CLK  
CUTOFF  
CLK  
= 10kHz  
= 15kHz  
= 20kHz  
CUTOFF  
= 750kHz  
CUTOFF  
= 1MHz  
CUTOFF  
A
B
C
D
C. f  
f
= 750kHz  
0.5  
–1.0  
–1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
CUTOFF  
CLK  
D. f  
f
= 1MHz  
CLK  
CUTOFF  
CLK  
E. f  
f
= 1.5MHz  
CLK  
CUTOFF  
A
B
C
D
E
V
= ±7.5V, 140:1  
V
= ±5V  
S
S
(BESSEL RESPONSE)  
= 25°C  
50:1  
T = 25°C  
A
T
A
0.1  
1
10  
1
10  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G09  
LTC1164-5 • G10  
Maximum Passband over  
Temperature for VS = ±5V, 50:1  
Passband vs Frequency and fCLK  
A. f  
f
= 200kHz  
CLK  
= 2kHz  
= 3kHz  
= 5kHz  
= 7.5kHz  
= 10kHz  
0.5  
0
0.5  
0
CUTOFF  
T
= 70°C  
A
B. f  
f
= 300kHz  
CLK  
CUTOFF  
T
A
= –40°C  
A
B
C
D E  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
C. f  
f
= 500kHz  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
CUTOFF  
D. f  
f
= 750kHz  
CLK  
CUTOFF  
E. f  
f
= 1MHz  
CLK  
CUTOFF  
V
f
= ±5V  
V
= ±5V  
S
S
= 1MHz  
100:1  
= 25°C  
CLK  
f
= 20kHz  
T
A
CUTOFF  
1
10  
20  
0.1  
1
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G011  
LTC1164-5 • G12  
Maximum Passband over  
Temperature for VS = ±5V, 100:1  
Passband vs Frequency and fCLK  
A. f  
f
B. f  
f
C. f  
f
D. f  
f
= 250kHz  
CUTOFF  
CLK  
= 5kHz  
0.5  
0
0.5  
0
T
A
= 70°C  
A
= 500kHz  
CLK  
= 10kHz  
= 15kHz  
= 20kHz  
CUTOFF  
= 750kHz  
CUTOFF  
= 1MHz  
CUTOFF  
T
= –40°C  
A
B
C
D
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
CLK  
V
f
= ±5V  
V
= SINGLE 5V  
S
S
= 1MHz (100:1)  
= 10kHz  
50:1  
= 25°C  
CLK  
f
T
A
CUTOFF  
1
10  
20  
0.5  
1
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G14  
LTC1164-5 • G13  
5
LTC1164-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Passband over  
Temperature for Single 5V, 50:1*  
THD + Noise vs RMS Input, 50:1  
THD + Noise vs RMS Input, 100:1  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f
f
= 1kHz  
CLK  
f
f
= 1kHz  
CLK  
IN  
IN  
T
= 70°C  
A
0.5  
0
= 500kHz  
= 500kHz  
T
A
= –40°C  
SINGLE 5V  
±5V  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
SINGLE 5V  
±5V  
±7.5V  
±7.5V  
V
= SINGLE 5V  
S
f
f
= 1MHz (50:1)  
CLK  
CUTOFF  
= 20kHz  
1
10  
0.1  
1
5
0.1  
1
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G015  
LTC1164-5 • G17  
LTC1164-5 • G16  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 2V  
V = 2V  
IN RMS  
V
= 1V  
RMS  
IN  
RMS  
IN  
±7.5V, 50:1  
= 1MHz  
±7.5V, 100:1  
f = 500kHz  
CLK  
±5V, 50:1  
= 500kHz  
f
f
CLK  
CLK  
(5 REPRESENTATIVE  
UNITS)  
(5 REPRESENTATIVE  
UNITS)  
(5 REPRESENTATIVE  
UNITS)  
1
10  
20  
1
2
3
4
5
1
5
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G18  
LTC1164-5 • G19  
LTC1164-5 • G20  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–50  
–54  
–58  
–62  
–66  
–70  
–74  
–78  
–82  
–86  
–90  
V
= 0.7V  
RMS  
V
= 1V  
V
V
f
= 2V  
RMS  
IN  
IN  
RMS  
IN  
S
SINGLE 5V SUPPLY  
50:1, f = 500kHz  
±5V, 100:1  
= 500kHz  
= ±7.5V, 140:1  
f
= 750kHz  
CLK  
= 10kHz  
CLK  
CLK  
f
C
(5 REPRESENTATIVE  
UNITS)  
f = 5.36kHz  
C
(5 REPRESENTATIVE  
UNITS)  
(5 REPRESENTATIVE  
UNITS)  
1
5
10  
1
2
3
4
5
0.5  
1
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1164-5 • G22  
LTC1164-5 • G21  
LTC1164-5 • G23  
*
See also Passband vs Frequency and f  
and Maximum Passband for Single 5V, 50:1, for Two Ground Bias Levels.  
for Single 5V, 50:1; THD + Noise vs RMS Input for Single 5V, 50:1;  
CLK  
6
LTC1164-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Passband for Single 5V,  
50:1, for Two Ground Bias Levels  
THD + Noise vs RMS Input for  
Single 5V, 50:1  
THD + Noise vs Input Voltage  
–50  
54  
–58  
–62  
–66  
–70  
–74  
–78  
–82  
86  
–90  
2.0  
1.5  
–40  
–45  
–50  
–55  
f
f
= 1kHz, 140:1  
= 750kHz  
T
f
= 70°C  
A
CLK  
f
= 1MHz  
IN  
CLK  
CLK  
=25°C  
= 1MHz  
T
A
1.0  
GND = 2.5V  
GND = 2V  
0.5  
V
= ±2.5V  
S
0
–60  
–65  
GND = 2V  
V
= ±5V  
S
–0.5  
–1.0  
–1.5  
–70  
–75  
GND = 2.5V  
–2.0  
–2.5  
–3.0  
–80  
–85  
–90  
V
= ±7.5V  
S
0.1  
1
5
2
6
10 12 14 16 18 20 22  
4
8
0.50  
0.75  
1.00  
1.25  
1.50  
INPUT VOLTAGE (V  
)
FREQUENCY (kHz)  
RMS  
INPUT (V  
)
RMS  
LTC1164-5 • G24  
LTC1164-5 • TPC25  
LTC1164-5 G26  
Power Supply Rejection Ratio  
vs Frequency  
Phase Matching vs Frequency  
10  
8
10  
A. BUTTERWORTH  
(f /f = 100:1 OR 50:1)  
MAXIMUM PHASE DIFFERENCE  
BETWEEN ANY TWO UNITS  
(SAMPLE OF 50 UNITS)  
f
= 1kHz  
CUTOFF  
CLK CUTOFF  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
B. BESSEL (f  
/f  
= 140:1)  
CLK CUTOFF  
V
±5V  
S
T
70°C  
A
+
f
500KHz  
CLK  
V
V
6
4
A
B
2
0
0
0.4  
0.6  
0.8  
1.0  
1.2  
0.2  
20  
100  
1k  
FREQUENCY (Hz)  
50k  
10k  
FREQUENCY (FREQUENCY/f  
)
CUTOFF  
LTC1164-5 • G28  
LTC1164-5 • G27  
Power Supply Current vs Power  
Supply Voltage  
Transient Response  
VIN = ±3V, 500Hz Square Wave  
Transient Response  
VIN = ±3V, 500Hz Square Wave  
12  
11  
10  
9
–55°C  
25°C  
8
125°C  
7
6
5
4
3
1164-5 G30  
1164-5 G31  
2
500µs/DIV  
500µs/DIV  
1
BUTTERWORTH RATIO = 100:1  
BESSEL RATIO = 140:1  
fCLK = 700kHz  
C = 5kHz  
S = ±7.5V  
0
f
f
V
CLK = 500kHz  
C = 5kHz  
S = ±7.5V  
0
1
2
3
4
5
6
7
8
9
10  
+
f
V
POWER SUPPLY (V OR V )  
LTC1164-5 • G29  
7
LTC1164-5  
U
U
U
PI FU CTIO S  
Power Supply (Pins 4, 12)  
Clock Input (Pin 11)  
TheV+ (Pin4)andtheV(Pin12)shouldbebypassedwith  
a 0.1µF capacitor to an adequate analog ground. The  
filter’s power supplies should be isolated from other  
digital or high voltage analog supplies. A low noise linear  
supply is recommended. Using a switching power supply  
will lower the signal-to-noise ratio of the filter. The supply  
during power-up should have a slew rate less than 1V/µs.  
WhenV+ isappliedbeforeV,and Vcanbemorepositive  
than ground, a signal diode must be used to clamp V.  
Figures 1 and 2 show typical connections for dual and  
single supply operation.  
Any TTL or CMOS clock source with a square-wave output  
and 50% duty cycle (±10%) is an adequate clock source  
for the device. The power supply for the clock source  
should not be the filter’s power supply. The analog ground  
for the filter should be connected to clock’s ground at a  
single point only. Table 1 shows the clock’s low and high  
level threshold value for a dual or single supply operation.  
A pulse generator can be used as a clock source provided  
thehighlevelONtimeisgreaterthan0.5µs.Sinewavesare  
not recommended for clock input frequencies less than  
100kHz, since excessively slow clock rise or fall times  
generate internal clock jitter (maximum clock rise or fall  
time 1µs). The clock signal should be routed from the  
rightsideoftheICpackagetoavoidcouplingintoanyinput  
or output analog signal path. A 1k resistor between clock  
source and Pin 11 will slow down the rise and fall times of  
the clock to further reduce charge coupling, Figures 1  
and 2.  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
*
V
V
0.1µF  
IN  
+
1k  
CLOCK SOURCE  
LTC1164-5  
0.1µF  
+
GND  
DIGITAL SUPPLY  
8
Table 1. Clock Source High and Low Threshold Levels  
POWER SUPPLY  
Dual Supply > ±3.4V  
HIGH LEVEL  
LOW LEVEL  
* OPTIONAL (SEE TEXT)  
+
V
1164-5 F01  
OUT  
V /3  
0.5V  
+
Dual Supply ≤ ±3.4V  
V /3  
V + 0.5V  
+
+
+
Figure 1. Dual Supply Operation for fCLK/fCUTOFF = 100:1  
Single Supply V > 6.8V, V = 0V  
V • 0.65  
0.5V + 1/2V  
0.5V  
+
+
Single Supply V < 6.8V, V = 0V  
V /3  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Analog Ground (Pins 3, 5)  
V
IN  
The filter performance depends on the quality of the  
analog signal ground. For either dual or single supply  
operation, an analog ground plane surrounding the pack-  
age is recommended. The analog ground plane should be  
connected to any digital ground at a single point. For dual  
supply operation, Pins 3 and 5 should be connected to the  
analog ground plane. For single supply operation Pins 3  
and 5 should be biased at 1/2 supply and they should be  
bypassed to the analog ground plane with at least a 1µF  
capacitor(Figure2). Forsingle5Voperationatthehighest  
fCLK of 1MHz, Pins 3 and 5 should be biased at 2V. This  
minimizes passband gain and phase variations (see Typi-  
cal Performance Characteristics curves: Maximum Pass-  
band for Single 5V, 50:1; and THD + Noise vs RMS Input  
for Single 5V, 50:1).  
1k  
+
LTC1164-5  
CLOCK SOURCE  
5V V 16V  
0.1µF  
+
GND  
10k  
8
DIGITAL SUPPLY  
+
10k  
1µF  
V
OUT  
1164-5 F02  
Figure 2. Single Supply Operation for fCLK/fCUTOFF = 100:1  
8
LTC1164-5  
U
U
U
PI FU CTIO S  
Butterworth/Bessel (Pin 10)  
is well within the filter’s output swing. Pin 6 is an interme-  
diate filter output providing an unspecified 6th order  
lowpass filter. Pin 6 should not be loaded.  
The DC level at Pin 10 determines the ratio of the clock  
frequency to the cutoff frequency of the filter. Pin 10 at V+  
givesa50:1ratioandaButterworthresponse(pins1to13  
are shorted for 50:1 only). Pin 10 at Vgives a 100:1  
Butterworth response. Pin 10 at ground gives a Bessel  
response and a ratio of 140:1. For single supply operation  
theratiois50:1whenPin10isatV+ (pins1to13shorted),  
100:1 when Pin 10 is at ground, and 140:1 when at 1/2  
supply. When Pin 10 is not tied to ground, it should be  
bypassed to analog ground with a 0.1µF capacitor. If the  
DC level at Pin 10 is switched mechanically or electrically  
at slew rates greater than 1V/µs while the device is  
operating, a 10k resistor should be connected between  
Pin 10 and the DC source.  
LT1056  
1k  
+
1164-5 F03  
Figure 3. Buffer for Filter Output  
External Connection (Pins 7, 14 and 1, 13)  
Pins 7 and 14 should be connected together. In a printed  
circuit board the connection should be done under the IC  
package through a short trace surrounded by the analog  
ground plane. When the clock to cutoff frequency ratio is  
set at 50:1, Pin 1 should be shorted to Pin 13; if not, the  
passbandwillexhibit1dBofgainpeakinganditwilldeviate  
from a Butterworth response. Pin 1 is the inverting input  
ofaninternalopampanditshouldpreferablybe0.2inches  
away from any other circuit trace.  
Filter Input (Pin 2)  
The input pin is connected internally through a 100k  
resistor tied to the inverting input of an op amp.  
Filter Output (Pins 9, 6)  
Pin 9 is the specified output of the filter; it can typically  
source or sink 1mA. Driving coaxial cables or resistive  
loads less than 20k will degrade the total harmonic distor-  
tionofthefilter.Whenevaluatingthedevice’sdistortionan  
output buffer is required. A noninverting buffer, Figure 3,  
can be used provided that its input common mode range  
NC (Pin 8)  
Pin 8 is not connected to any internal circuit point on the  
device and should be preferably tied to analog ground.  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Output Clock Feedthrough  
Clock Feedthrough  
V
50:1  
60µV  
100:1  
60µV  
S
Clock feedthrough is defined as, the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output pin (Pin 9). The clock feedthrough is tested  
with the input pin (Pin 2) grounded and, it depends on PC  
board layout and on the value of the power supplies. With  
properlayouttechniquesthevaluesoftheclockfeedthrough  
are shown in Table 2.  
±2.5V  
±5V  
RMS  
RMS  
100µV  
150µV  
200µV  
500µV  
RMS  
RMS  
RMS  
RMS  
±7.5V  
Note: The clock feedthrough at ±2.5V supplies is imbedded in the  
wideband noise of the filter. The clock waveform is a square wave.  
9
LTC1164-5  
U
W
U U  
APPLICATIO S I FOR ATIO  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple R/C lowpass network at the output of  
the filter pin (Pin 9). This R/C will completely eliminate any  
switching transient.  
Aliasing  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs when input frequencies close to the  
sampling frequency are applied. For the LTC1164-5 case  
at 100:1, an input signal whose frequency is in the range  
of fCLK ±2.5% will be aliased back into the filter’s pass-  
band. If, for instance, an LTC1164-5 operating with a  
100kHz clock and 1kHz cutoff frequency receives a 98kHz  
10mV input signal, a 2kHz 56µV alias signal will appear at  
its output. When the LTC1164-5 operates with a clock-to-  
cutoff frequency of 50:1, aliasing occurs at twice the clock  
frequency. Table 4 shows details.  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering. For instance, the  
Table 4. Aliasing Data (fCLK = 100kHz, VS = ±5V)  
INPUT FREQUENCY  
(V = 1V  
OUTPUT LEVEL  
(Relative to Input)  
OUTPUT FREQUENCY  
(Aliased Frequency)  
)
RMS  
IN  
(f /f ) = 100:1, f  
= 1kHz  
CLK  
C
CUTOFF  
97.0kHz  
97.5kHz  
98.0kHz  
98.5kHz  
99.0kHz  
99.5kHz  
–102.0dB  
65.0dB  
45.0dB  
23.0dB  
4.0dB  
3.0kHz  
2.5kHz  
2.0kHz  
1.5kHz  
1.0kHz  
0.5kHz  
LTC1164-5widebandnoiseat±2.5Vsupplyis100µVRMS  
,
95µVRMS of which have frequency contents from DC up to  
the filter’s cutoff frequency. The total wideband noise  
(µRMS)isnearlyindependentofthevalueoftheclock.The  
clock feedthrough specifications are not part of the wide-  
band noise.  
0.3dB  
(f /f ) = 50:1, f  
= 2kHz  
CLK  
C
CUTOFF  
197.0kHz  
197.5kHz  
198.0kHz  
198.5kHz  
199.0kHz  
199.5kHz  
23.0dB  
3.0kHz  
2.5kHz  
2.0kHz  
1.5kHz  
1.0kHz  
0.5kHz  
–12.0dB  
5.0dB  
–1.8dB  
–1.0dB  
0.8dB  
Speed Limitations  
The LTC1164-5 optimizes AC performance versus power  
consumption. To avoid op amp slew rate limiting at  
maximum clock frequencies, the signal amplitude should  
be kept below a specified level as shown in Table 3.  
Table 5. Transient Response of LTC Lowpass Filters  
DELAY  
TIME*  
(SEC)  
RISE  
TIME**  
(SEC)  
SETTLING OVER-  
TIME***  
(SEC)  
Table 3. Maximum VIN vs VS and fCLK  
SHOOT  
(%)  
LOWPASS FILTER  
POWER SUPPLY  
V = ±7.5V  
MAXIMUM f  
MAXIMUM V  
IN  
CLK  
LTC1064-3 Bessel  
LTC1164-5 Bessel  
LTC1164-6 Bessel  
0.50/f  
0.43/f  
0.43/f  
0.34/f  
0.34/f  
0.34/f  
0.80/f  
0.85/f  
1.15/f  
0.5  
0
1
1.5MHz  
1V  
(f > 35kHz)  
RMS IN  
C
C
C
C
C
C
C
C
C
S
0.5V  
(f > 250kHz)  
RMS IN  
V = ±7.5V  
1.0MHz  
1.0MHz  
1.0MHz  
3V  
0.7V  
(f > 25kHz)  
RMS IN  
(f > 250kHz)  
RMS IN  
S
LTC1264-7 Linear Phase  
LTC1164-7 Linear Phase  
LTC1064-7 Linear Phase  
1.15/f  
1.20/f  
1.20/f  
0.36/f  
0.39/f  
0.39/f  
2.05/f  
2.20/f  
2.20/f  
5
5
5
C
C
C
C
C
C
C
C
C
V = ±5.0V  
S
2.5V  
0.5V  
(f > 25kHz)  
RMS IN  
(f > 100kHz)  
RMS IN  
LTC1164-5 Butterworth  
LTC1164-6 Elliptic  
0.80/f  
0.85/f  
0.48/f  
0.54/f  
2.40/f  
4.30/f  
11  
18  
C
C
C
C
C
C
Single 5V  
0.7V  
(f > 25kHz)  
RMS IN  
0.5V (f > 100kHz)  
RMS IN  
LTC1064-4 Elliptic  
LTC1064-1 Elliptic  
0.90/f  
0.85/f  
0.54/f  
0.54/f  
4.50/f  
6.50/f  
20  
20  
C
C
C
C
C
C
* To 50% ±5%, ** 10% to 90% ±5%, *** To 1% ±0.5%  
10  
LTC1164-5  
U
TYPICAL APPLICATIO S  
Single 5V, IS = 5.2mA, 16th Order Clock-Tunable Lowpass Filter,  
fCLK/fCUTOFF = 60:1, –75dB Attenuation at 2.3 fCUTOFF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
LTC1164-5  
IC1  
LTC1164-5  
IC2  
V
IN  
5V  
5V  
0.1µF  
0.1µF  
15k  
10k  
5V  
5V  
V
OUT  
+
8
8
1µF  
1k  
f
1164-5 F04  
CLK  
Gain vs Frequency  
THD + Noise vs Frequency  
10  
0
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
V
V
f
= SINGLE 5V  
S
= 0.5V  
IN  
RMS  
= 600kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
CLK  
f
= 10kHz  
C
V
f
f
= SINGLE 5V  
S
= 600kHz  
CUTOFF  
CLK  
= 10kHz  
1
10  
FREQUENCY (kHz)  
30  
1
5
10  
FREQUENCY (kHz)  
LTC1164-5 • TA04  
LTC1164-5 • TA03  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J Package  
14-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.840  
(21.336)  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
MAX  
16  
10  
15  
14  
12  
11  
9
8
13  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.220 – 0.310  
(5.588 – 7.874)  
0.025  
(0.635)  
RAD TYP  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
2
3
5
1
4
6
7
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.380 – 1.520)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.125  
(3.175)  
MIN  
0.014 – 0.026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J16 1197  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1164-5  
U
TYPICAL APPLICATIO S  
8th Order Butterworth Lowpass Filter  
fCLK/fC = 50:1  
8th Order Linear Phase Lowpass Filter  
fCLK/fC = 140:1  
8th Order Butterworth Lowpass Filter  
fCLK/fC = 100:1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
IN  
IN  
V
IN  
V
V
0.1µF  
V
+
0.1µF  
+
0.1µF  
LTC1164-5  
LTC1164-5  
V
V
f
CLK  
f
CLK  
+
0.1µF  
LTC1164-5  
V
f
+
CLK  
+
+
0.1µF  
V
V
0.1µF  
V
V
OUT  
OUT  
8
OUT  
8
8
1164-5 TA06  
1164-5 TA07  
1164-5 TA05  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
14  
13  
12  
11  
10  
9
8
7
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
1
2
3
5
6
4
0.325  
0.005  
(0.125)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
–0.381  
N14 1197  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.291 – 0.299**  
(7.391 – 7.595)  
0.398 – 0.413*  
(10.109 – 10.490)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
15 14  
12  
10  
11  
9
16  
13  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2
3
5
7
8
1
4
6
S16 (WIDE) 0396  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Operates from a Single 3.3V to ±5V Supply  
LTC1069-1  
Low Power, 8th Order Elliptic Lowpass Filter  
Very Low Power, 8th Order Elliptic Lowpass Filter  
LTC1069-6  
Optimized for 3V/5V Single Supply Operation, Consumes 1mA at 3V  
11645as, sn11645 LT/TP 1098 2K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1993  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1164-5MJ#PBF

IC SWITCHED CAPACITOR FILTER, PIN PROGRAMMABLE, LOWPASS, CDIP14, 0.300 INCH, LEAD FREE, CERAMIC, DIP-14, Active Filter
Linear

LTC1164-5MJ#TR

IC SWITCHED CAPACITOR FILTER, PIN PROGRAMMABLE, LOWPASS, CDIP14, 0.300 INCH, CERAMIC, DIP-14, Active Filter
Linear

LTC1164-5MJ#TRPBF

IC SWITCHED CAPACITOR FILTER, PIN PROGRAMMABLE, LOWPASS, CDIP14, 0.300 INCH, LEAD FREE, CERAMIC, DIP-14, Active Filter
Linear

LTC1164-5MJ/883

IC SWITCHED CAPACITOR FILTER, BUTTERWORTH/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter
Linear

LTC1164-6

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6C

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CJ

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CJ#PBF

IC SWITCHED CAPACITOR FILTER, ELLIPTIC/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter
Linear

LTC1164-6CN

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CN#PBF

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6CS

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CSW

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear