LTM9008-14_15 [Linear]

14-Bit, 65Msps/40Msps/ 25Msps Low Power Octal ADCs;
LTM9008-14_15
型号: LTM9008-14_15
厂家: Linear    Linear
描述:

14-Bit, 65Msps/40Msps/ 25Msps Low Power Octal ADCs

文件: 总38页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM9008-14/  
LTM9007-14/LTM9006-14  
14-Bit, 65Msps/40Msps/  
25Msps Low Power Octal ADCs  
FeaTures  
DescripTion  
TheLTM®9008-14/LTM9007-14/LTM9006-14are8-chan-  
nel,simultaneoussampling14-bitA/Dconvertersdesigned  
for digitizing high frequency, wide dynamic range signals.  
AC performance includes 73dB SNR and 90dB spurious  
free dynamic range (SFDR). Low power consumption per  
channel reduces heat in high channel count applications.  
Integrated bypass capacitance and flowthrough pinout  
reduces overall board space requirements.  
n
8-Channel Simultaneous Sampling ADC  
n
73dB SNR  
n
90dB SFDR  
n
Low Power: 88mW/59mW/46mW per Channel  
n
Single 1.8V Supply  
n
Serial LVDS Outputs: 1 or 2 Bits per Channel  
n
Selectable Input Ranges: 1V to 2V  
P-P  
P-P  
n
n
n
n
800MHz Full Power Bandwidth S/H  
Shutdown and Nap Modes  
DC specs include 1LSB INL (typ), 0.3LSB DNL (typ)  
and no missing codes over temperature. The transition  
Serial SPI Port for Configuration  
Internal Bypass Capacitance, No External  
Components  
noise is a low 1.2LSB  
.
RMS  
The digital outputs are serial LVDS to minimize the num-  
ber of data lines. Each channel outputs two bits at a time  
(2-lane mode). At lower sampling rates there is a one bit  
per channel option (1-lane mode).  
n
140-Pin (11.25mm × 9mm) BGA Package  
applicaTions  
n
Communications  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL, or  
CMOS inputs. An internal clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Cellular Base Stations  
n
Software Defined Radios  
n
Portable Medical Imaging  
n
Multichannel Data Acquisition  
n
Nondestructive Testing  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
LTM9008-14, 65Msps,  
2-Tone FFT, fIN = 70MHz and 75MHz  
1.8V  
1.8V  
OV  
V
DD  
DD  
CHANNEL 1  
ANALOG  
INPUT  
0
–10  
–20  
–30  
–40  
14-BIT  
OUT1A  
OUT1B  
S/H  
S/H  
ADC CORE  
CHANNEL 2  
ANALOG  
INPUT  
OUT2A  
OUT2B  
14-BIT  
ADC CORE  
DATA  
SERIALIZER  
–50  
SERIALIZED  
LVDS  
–60  
–70  
OUTPUTS  
CHANNEL 8  
ANALOG  
INPUT  
OUT8A  
OUT8B  
14-BIT  
ADC CORE  
–80  
–90  
S/H  
DATA  
CLOCK  
OUT  
–100  
–110  
–120  
ENCODE  
INPUT  
PLL  
FRAME  
0
20  
10  
FREQUENCY (MHz)  
30  
90067814 TA01  
GND  
GND  
90067814 TA01b  
90067814fa  
For more information www.linear.com/LTM9008-14  
1
LTM9008-14/  
LTM9007-14/LTM9006-14  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltages  
V , OV ................................................ –0.3V to 2V  
DD  
DD  
+
A
B
C
D
E
Analog Input Voltage (A , A  
,
IN  
IN  
PAR/SER, SENSE) (Note 3).......... –0.3V to (V + 0.2V)  
DD  
+
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4)............................................. –0.3V to 3.9V  
F
Digital Output Voltage................ –0.3V to (OV + 0.3V)  
Operating Temperature Range  
LTM9008C, LTM9007C, LTM9006C......... 0°C to 70°C  
LTM9008I, LTM9007I, LTM9006I........–40°C to 85°C  
Storage Temperature Range .................. –55°C to 125°C  
DD  
G
H
J
K
L
M
N
P
1
2
3
4
5
6
7
8
9
10  
BGA PACKAGE  
140-LEAD (11.25mm × 9.00mm × 2.72mm)  
T
JMAX  
= 150°C, θ = 30°C/W, θ = 25°C/W, θ = 15°C/W, θ  
= 12°C/W  
JA  
JC  
JB  
JCbottom  
orDer inForMaTion  
LEAD FREE FINISH  
LTM9008CY-14#PBF  
LTM9008IY-14#PBF  
LTM9007CY-14#PBF  
LTM9007IY-14#PBF  
LTM9006CY-14#PBF  
LTM9006IY-14#PBF  
TRAY  
PART MARKING*  
LTM9008Y14  
LTM9008Y14  
LTM9007Y14  
LTM9007Y14  
LTM9006Y14  
LTM9006Y14  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM9008CY-14#PBF  
LTM9008IY-14#PBF  
LTM9007CY-14#PBF  
LTM9007IY-14#PBF  
LTM9006CY-14#PBF  
LTM9006IY-14#PBF  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
140-Lead (11.25mm × 9mm × 2.72mm) BGA  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
90067814fa  
For more information www.linear.com/LTM9008-14  
2
LTM9008-14/  
LTM9007-14/LTM9006-14  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTM9008-14  
LTM9007-14  
LTM9006-14  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
14  
14  
–2.75  
–0.8  
–12  
14  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–4.1  
–0.9  
–12  
1.2  
0.3  
3
4.1  
0.9  
12  
1
0.3  
3
2.75 –2.75  
1
0.3  
3
2.75  
0.8  
12  
LSB  
LSB  
mV  
0.8  
12  
–0.8  
–12  
Gain Error  
Internal Reference  
External Reference  
–1.3  
–1.3  
–1.3  
–1.3  
–1.3  
–1.3  
%FS  
%FS  
l
–2.5  
0.5  
–2.5  
0.5  
–2.6  
0.5  
Offset Drift  
20  
20  
20  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
35  
25  
35  
25  
35  
25  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Noise  
External Reference  
0.2  
3
0.2  
3
0.2  
3
%FS  
mV  
External Reference  
1.2  
1.2  
1.2  
LSB  
RMS  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
+
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
CM  
– 100mV  
0.625  
V
CM  
V
CM  
+ 100mV  
1.300  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE External Reference Mode  
1.250  
V
I
Analog Input Common Mode Current  
Per Pin, 65Msps  
Per Pin, 40Msps  
Per Pin, 25Msps  
81  
50  
31  
µA  
µA  
µA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current  
0 < A , A < V , No Encode  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
DD  
PAR/SER Input Leakage Current  
SENSE Input Leakage Current  
0 < PAR/SER < V  
IN2  
DD  
0.625 < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
0
AP  
0.15  
80  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
Figure 6 Test Circuit  
800  
MHz  
90067814fa  
For more information www.linear.com/LTM9008-14  
3
LTM9008-14/  
LTM9007-14/LTM9006-14  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTM9008-14  
LTM9007-14  
LTM9006-14  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
73.7  
73.7  
73.5  
73  
73.5  
73.4  
73.4  
72.8  
72.9  
72.9  
72.8  
72.3  
dBFS  
dBFS  
dBFS  
dBFS  
l
l
l
l
30MHz Input  
70MHz Input  
140MHz Input  
71.8  
74  
69.6  
76.8  
84  
69.6  
76.8  
84  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd or 3rd Harmonic  
90  
90  
89  
84  
90  
90  
89  
84  
90  
90  
89  
84  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
Spurious Free Dynamic Range 5MHz Input  
4th Harmonic or Higher  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
84  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
73.6  
73.5  
73.2  
72.5  
73.3  
73.2  
73.1  
72.3  
72.8  
72.7  
72.5  
71.9  
dBFS  
dBFS  
dBFS  
dBFS  
30MHz Input  
70MHz Input  
140MHz Input  
71  
69.5  
69.5  
Crosstalk, Near Channel  
Crosstalk, Far Channel  
10MHz Input (Note 12)  
10MHz Input (Note 12)  
–90  
–90  
–90  
dBc  
dBc  
–105  
–105  
–105  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
90067814fa  
For more information www.linear.com/LTM9008-14  
4
LTM9008-14/  
LTM9007-14/LTM9006-14  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
IN  
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
V
kΩ  
pF  
R
10  
IN  
IN  
C
Input Capacitance  
3.5  
Single-Ended Encode Mode (ENC Tied to GND)  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.26  
0.54  
0 to 3.6  
30  
V
V
IH  
IL  
IN  
DD  
DD  
+
ENC to GND  
V
R
(See Figure 11)  
kΩ  
pF  
IN  
C
Input Capacitance  
3.5  
IN  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
µA  
pF  
C
IN  
Input Capacitance  
3
200  
3
SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2kΩ Pull-Up Resistor if SDO Is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
350  
175  
454  
250  
mV  
mV  
OD  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
1.375  
1.375  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
90067814fa  
For more information www.linear.com/LTM9008-14  
5
LTM9008-14/  
LTM9007-14/LTM9006-14  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTM9008-14  
LTM9007-14  
LTM9006-14  
SYMBOL PARAMETER  
CONDITIONS  
(Note 10)  
MIN TYP MAX MIN  
TYP  
MAX MIN TYP MAX UNITS  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DD  
OV  
(Note 10)  
1.8  
DD  
I
I
Sine Wave Input  
357  
400  
232  
275  
175  
250  
mA  
VDD  
OVDD  
1-Lane Mode, 1.75mA Mode  
1-Lane Mode, 3.5mA Mode  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, 3.5mA Mode  
32  
60  
50  
94  
32  
58  
48  
92  
30  
56  
48  
90  
mA  
mA  
mA  
mA  
l
l
58  
54  
54  
104  
102  
100  
P
Power Dissipation  
1-Lane Mode, 1.75mA Mode  
1-Lane Mode, 3.5mA Mode  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, 3.5mA Mode  
700  
751  
733  
812  
475  
522  
504  
583  
369  
416  
401  
477  
mW  
mW  
mW  
mW  
DISS  
l
l
824  
907  
592  
679  
547  
630  
P
P
P
Sleep Mode Power  
Nap Mode Power  
2
2
2
mW  
mW  
mW  
SLEEP  
NAP  
170  
40  
170  
40  
170  
40  
Power Decrease With Single-Ended Encode Mode Enabled  
(No Decrease for Sleep Mode)  
DIFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTM9008-14  
LTM9007-14  
MIN TYP MAX  
LTM9006-14  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
65  
100 11.88 12.5  
100 12.5  
l
f
t
Sampling Frequency  
(Notes 10,11)  
5
5
40  
5
25  
MHz  
S
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2
7.69  
7.69  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCL  
2
l
l
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2
7.69  
7.69  
100 11.88 12.5  
100  
100  
19  
2
20  
20  
100  
100  
ns  
ns  
ENCH  
AP  
100  
2
12.5  
t
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
SYMBOL PARAMETER  
Digital Data Outputs (R  
CONDITIONS  
= 100Ω Differential, C = 2pF to GND on Each Output)  
MIN  
TYP  
MAX  
UNITS  
TERM  
L
t
Serial Data Bit Period  
2-Lanes, 16-Bit Serialization  
2-Lanes, 14-Bit Serialization  
2-Lanes, 12-Bit Serialization  
1-Lane, 16-Bit Serialization  
1-Lane, 14-Bit Serialization  
1-Lane, 12-Bit Serialization  
1/(8 • f )  
s
s
s
s
s
s
SER  
S
1/(7 • f )  
S
1/(6 • f )  
S
1/(16 • f )  
S
1/(14 • f )  
S
1/(12 • f )  
S
l
l
l
t
t
t
t
t
FR to DCO Delay  
DATA to DCO Delay  
Propagation Delay  
Output Rise Time  
Output Fall Time  
(Note 8)  
0.35 • t  
0.35 • t  
0.5 • t  
0.5 • t  
0.65 • t  
0.65 • t  
s
s
FRAME  
DATA  
PD  
SER  
SER  
SER  
SER  
(Note 8)  
SER  
SER  
(Note 8)  
0.7n + 2 • t  
1.1n + 2 • t  
1.5n + 2 • t  
SER  
s
SER  
SER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
ns  
ns  
R
F
DCO Cycle-Cycle Jitter  
Pipeline Latency  
t
= 1ns  
ps  
P-P  
SER  
6
Cycles  
90067814fa  
For more information www.linear.com/LTM9008-14  
6
LTM9008-14/  
LTM9007-14/LTM9006-14  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
SPI Port Timing (Note 8)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Read Back Mode, C  
= 20pF,  
= 20pF,  
250  
SDO  
R
= 2k  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Read Back Mode, C  
125  
SDO  
R
= 2k  
PULLUP  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and 11 1111 1111  
1111 in 2’s complement output mode.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 8: Guaranteed by design, not subject to test.  
Note 2: All voltage values are with respect to GND (unless otherwise  
noted).  
Note 9: V = OV = 1.8V, f  
= 65MHz (LTM9008), 40MHz  
DD  
DD  
SAMPLE  
(LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential  
+
ENC /ENC = 2V sine wave, input range = 2V with differential  
Note 3: When these pin voltages are taken below GND or above V , they  
P-P  
P-P  
DD  
drive, unless otherwise noted. The supply current and power dissipation  
specifications are totals for the entire device, not per channel.  
will be clamped by internal diodes. This product can handle input currents  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 10: Recommended operating conditions.  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
DD  
Note 11: The maximum sampling frequency depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
data rate is 1000Mbps so t  
must be greater than or equal to 1ns.  
SER  
Note 5: V = OV = 1.8V, f  
= 65MHz (LTM9008), 40MHz  
DD  
DD  
SAMPLE  
Note 12: Near-channel crosstalk refers to Ch. 1 to Ch.2, and Ch.7 to Ch.8.  
Far-channel crosstalk refers to Ch.1 to Ch.7, Ch.1 to Ch.8, Ch.2 to Ch.7, and  
Ch.2 to Ch.8.  
+
(LTM9007), or 25MHz (LTM9006), 2-lane output mode, differential ENC /  
ENC = 2V sine wave, input range = 2V with differential drive, unless  
P-P  
P-P  
otherwise noted.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
90067814fa  
For more information www.linear.com/LTM9008-14  
7
LTM9008-14/  
LTM9007-14/LTM9006-14  
TiMing DiagraMs  
2-Lane Output Mode, 16-Bit Serialization*  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D5 D3 D1  
0
0
D13 D11 D9 D7 D5 D3 D1  
0
D13 D11 D9  
D12 D10 D8  
+
OUT#A  
OUT#B  
D4 D2 D0  
SAMPLE N-6  
D12 D10 D8 D6 D4 D2 D0  
SAMPLE N-5  
0
+
OUT#B  
SAMPLE N-4  
90067814 TD01  
*SEE THE DIGITAL OUTPUTS SECTION  
2-Lane Output Mode, 14-Bit Serialization  
t
AP  
N+2  
ANALOG  
INPUT  
N
N+1  
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9  
+
OUT#A  
OUT#B  
D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
SAMPLE N-3  
90067814 TD02  
+
+
NOTE THAT IN THIS MODE FR /FR HAS TWO TIMES THE PERIOD OF ENC /ENC  
90067814fa  
For more information www.linear.com/LTM9008-14  
8
LTM9008-14/  
LTM9007-14/LTM9006-14  
TiMing DiagraMs  
2-Lane Output Mode, 12-Bit Serialization  
t
AP  
ANALOG  
INPUT  
N
N+1  
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
t
SER  
FRAME  
DATA  
+
FR  
FR  
t
PD  
SER  
OUT#A  
D9 D7 D5 D3 D13 D11 D9 D7 D5 D3 D13 D11 D9  
+
OUT#A  
OUT#B  
D8 D6 D4 D2 D12 D10 D8 D6 D4 D2 D12 D10 D8  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
90067814 TD03  
1-Lane Output Mode, 16-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D1 D0  
0
0
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
D13 D12 D11 D10  
+
OUT#A  
90067814 TD04  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
1-Lane Output Mode, 14-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D3 D2 D1 D0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D13 D12 D11 D10  
+
OUT#A  
90067814 TD06  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
90067814fa  
For more information www.linear.com/LTM9008-14  
9
LTM9008-14/  
LTM9007-14/LTM9006-14  
TiMing DiagraMs  
1-Lane Output Mode, 12-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D5 D4 D3 D2 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D13 D12 D11  
+
OUT#A  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
90067814 TD07  
+
OUT#B , OUT#B ARE DISABLED  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
90067814 TD08  
HIGH IMPEDANCE  
90067814fa  
For more information www.linear.com/LTM9008-14  
10  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9008-14: Integral  
Nonlinearity (INL) vs Output Code  
LTM9008-14: Differential  
Nonlinearity (DNL) vs Output Code  
LTM9008-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, SENSE = VDD  
0
–10  
0.5  
0.4  
2.0  
1.5  
–20  
0.3  
–30  
1.0  
0.2  
–40  
0.5  
0.1  
–50  
–60  
0
0
–70  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
8192  
0
4096  
12288  
16384  
20  
FREQUENCY (MHz)  
35  
0
8192  
12288  
0
10  
15  
25  
30  
4096  
16384  
5
OUTPUT CODE  
OUTPUT CODE  
90067814 G01  
90067814 G02  
90067814 G03  
LTM9008-14: 64k Point FFT,  
fIN = 30MHz, –1dBFS, SENSE = VDD  
LTM9008-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, SENSE = VDD  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
15  
20  
25  
30  
35  
5
0
10  
15  
20  
25  
30  
35  
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
90067814 G04  
90067814 G05  
LTM9008-14: 64k Point 2-Tone FFT,  
fIN = 28.5MHz and fIN = 31.5MHz,  
–7dBFS per Tone, SENSE = VDD  
LTM9008-14: Shorted Input  
Histogram  
0
–10  
6000  
5000  
4000  
3000  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2000  
1000  
0
–90  
–100  
–110  
–120  
8197  
8201  
8203  
8205  
8199  
0
10  
15  
20  
25  
30  
35  
5
OUTPUT CODE  
FREQUENCY (MHz)  
90067814 G07  
90067814 G06  
90067814fa  
For more information www.linear.com/LTM9008-14  
11  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9008-14: SNR vs Input  
Frequency, –1dBFS, 2V Range,  
65Msps  
LTM9008-14: SFDR vs Input  
Frequency, –1dBFS, 2V Range,  
65Msps  
LTM9008-14: SFDR vs Input Level,  
f
IN = 70MHz, 2V Range, 65Msps  
74  
73  
72  
71  
70  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
80  
70  
60  
dBc  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
50  
90067814 G08  
90067814 G09  
90067814 G11  
LTM9008-14: SNR vs Input Level,  
LTM9008-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
f
IN = 70MHz, 2V Range, 65Msps  
320  
310  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
300  
290  
280  
270  
260  
250  
240  
230  
220  
dBc  
0
10  
20  
30  
40  
50  
60  
–60  
–50  
–40  
–30  
–20  
–10  
0
SAMPLE RATE (Msps)  
INPUT LEVEL (dBFS)  
90067814 G12  
90067814 G11  
IOVDD vs Sample Rate, 5MHz Sine  
Wave Input, –1dBFS  
LTM9008-14: SNR vs SENSE,  
IN = 5MHz, –1dBFS  
f
50  
40  
30  
75  
74  
73  
72  
71  
70  
2-LANE, 3.5mA  
1-LANE, 3.5mA  
2-LANE, 1.75mA  
1-LANE, 1.75mA  
20  
10  
0
69  
68  
67  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
20  
40  
60  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
90067814 G14  
90067814 G13  
90067814fa  
For more information www.linear.com/LTM9008-14  
12  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9007-14: Integral Nonlinearity  
(INL) vs Output Code  
LTM9007-14: Differential  
Nonlinearity (DNL) vs Output Code  
LTM9007-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, SENSE = VDD  
0.5  
0.4  
2.0  
1.5  
0
–10  
–20  
0.3  
–30  
–40  
–50  
1.0  
0.2  
0.5  
0.1  
0
–60  
–70  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
8192  
0
5
10  
15  
20  
0
4096  
12288  
16384  
0
8192  
12288  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
90067814 G15  
90067814 G17  
90067814 G16  
LTM9007-14: 64k Point FFT,  
fIN = 30MHz, –1dBFS, SENSE = VDD  
LTM9007-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, SENSE = VDD  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
10  
10  
0
5
15  
20  
0
5
15  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
90067814 G19  
90067814 G18  
LTM9007-14: 64k Point 2-Tone FFT,  
fIN = 28.5MHz and fIN = 31.5MHz,  
–7dBFS per Tone, SENSE = VDD  
LTM9007-14: Shorted Input  
Histogram  
6000  
5000  
4000  
3000  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2000  
1000  
0
–90  
–100  
–110  
–120  
8
10 12  
8198  
8202  
8204  
8206  
0
2
4
6
14 16 18 20  
8200  
OUTPUT CODE  
FREQUENCY (MHz)  
90067814 G20  
90067814 G21  
90067814fa  
For more information www.linear.com/LTM9008-14  
13  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9007-14: SNR vs Input  
Frequency, –1dBFS, 2V Range,  
40Msps  
LTM9007-14: SFDR vs Input  
Frequency, –1dBFS, 2V Range,  
40Msps  
LTM9007-14: SFDR vs Input Level,  
f
IN = 70MHz, 2V Range, 40Msps  
74  
73  
72  
71  
70  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
80  
70  
60  
dBc  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
50  
90067814 G22  
90067814 G23  
90067814 G24  
LTM9007-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTM9007-14: SNR vs SENSE,  
IN = 5MHz, –1dBFS  
f
200  
190  
180  
170  
160  
150  
140  
74  
73  
72  
71  
70  
69  
68  
67  
66  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
10  
20  
30  
40  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
90067814 G26  
90067814 G25  
90067814fa  
For more information www.linear.com/LTM9008-14  
14  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9006-14: Integral Nonlinearity  
(INL) vs Output Code  
LTM9006-14: Differential  
Nonlinearity (DNL) vs Output Code  
LTM9006-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, SENSE = VDD  
0.5  
0.4  
2.0  
1.5  
0
–10  
–20  
0.3  
–30  
–40  
–50  
1.0  
0.2  
0.5  
0.1  
0
–60  
–70  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
8192  
8
10  
12  
0
4096  
12288  
16384  
0
8192  
12288  
0
2
4
6
14  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
90067814 G27  
90067814 G28  
90067814 G29  
LTM9006-14: 64k Point FFT,  
LTM9006-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, SENSE = VDD  
f
IN = 30MHz, –1dBFS, SENSE = VDD  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
8
10  
12  
0
2
4
6
14  
8
10  
12  
0
2
4
6
14  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
90067814 G30  
90067814 G31  
LTM9006-14: 64k Point 2-Tone FFT,  
IN = 28.5MHz and 31.5MHz, –7dBFS  
per Tone, SENSE = VDD  
f
LTM9006-14: Shorted Input  
Histogram  
6000  
5000  
4000  
3000  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
2000  
1000  
0
–90  
–100  
–110  
–120  
8
10  
12  
8198  
8202  
8204  
8206  
0
2
4
6
14  
8200  
OUTPUT CODE  
FREQUENCY (MHz)  
90067814 G32  
90067814 G33  
90067814fa  
For more information www.linear.com/LTM9008-14  
15  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical perForMance characTerisTics  
LTM9006-14: SNR vs Input  
Frequency, –1dBFS, 2V Range,  
25Msps  
LTM9006-14: SFDR vs Input  
Frequency, –1dBFS, 2V Range,  
25Msps  
LTM9006-14: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 25Msps  
74  
73  
72  
71  
70  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
50  
90067814 G34  
90067814 G35  
90067814 G36  
LTM9006-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTM9006-14: SNR vs SENSE,  
IN = 5MHz, –1dBFS  
DCO Cycle-Cycle Jitter vs Serial  
Data Rate  
f
350  
300  
250  
200  
150  
160  
150  
140  
130  
74  
73  
72  
71  
70  
69  
100  
50  
0
68  
67  
66  
120  
0
5
10  
15  
20  
25  
0
200  
400  
600  
800  
1000  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SERIAL DATA RATE (Mbps)  
SENSE PIN (V)  
90067814 G37  
90067814 G39  
90067814 G38  
90067814fa  
For more information www.linear.com/LTM9008-14  
16  
LTM9008-14/  
LTM9007-14/LTM9006-14  
pin FuncTions  
+
+
A
A
V
(B2): Channel 1 Positive Differential Analog Input.  
A
IN8  
A
IN8  
V
DD  
(N1): Channel 8 Positive Differential Analog Input.  
(N2): Channel 8 Negative Differential Analog Input  
IN1  
(B1): Channel 1 Negative Differential Analog Input.  
IN1  
(B3): Common Mode Bias Output, Nominally Equal  
(D3, D4, E3, E4, K3, K4, L3, L4): 1.8V Analog Power  
CM12  
to V /2. V should be used to bias the common mode  
Supply. V is internally bypassed to ground with 0.1μF  
DD  
CM  
DD  
of the analog inputs of channels 1 and 2. V is internally  
ceramic capacitors.  
CM  
bypassed to ground with a 0.1µF ceramic capacitor. No  
+
ENC (P5): Encode Input. Conversion starts on the rising  
external capacitance is required.  
edge.  
+
A
IN2  
A
IN2  
A
IN3  
A
IN3  
V
(C2): Channel 2 Positive Differential Analog Input.  
(C1): Channel 2 Negative Differential Analog Input.  
(E2): Channel 3 Positive Differential Analog Input.  
(E1): Channel 3 Negative Differential Analog Input.  
(F3): Common Mode Bias Output, Nominally Equal  
ENC (P6): Encode Complement Input. Conversion starts  
+
on the falling edge.  
CSA (L5): In serial programming mode, (PAR/SER = 0V),  
CSA is the serial interface chip select input for registers  
controlling channels 1, 4, 5 and 8. When CS is low, SCK  
is enabled for shifting data on SDI into the mode control  
CM34  
to V /2. V should be used to bias the common mode  
registers.Inparallelprogrammingmode(PAR/SER=V ),  
DD  
CM  
DD  
of the analog inputs of channels 3 and 4. V is internally  
CS selects 2-lane or 1-lane output mode. CS can be driven  
CM  
bypassed to ground with a 0.1µF ceramic capacitor. No  
with 1.8V to 3.3V logic.  
external capacitance is required.  
CSB (M5): In serial programming mode, (PAR/SER = 0V),  
CSB is the serial interface chip select input for registers  
controlling channels 2, 3, 6 and 7. When CS is low, SCK  
is enabled for shifting data on SDI into the mode control  
+
A
IN4  
A
IN4  
A
IN5  
A
IN5  
V
(G2): Channel 4 Positive Differential Analog Input.  
(G1): Channel 4 Negative Differential Analog Input.  
(H1): Channel 5 Positive Differential Analog Input.  
(H2): Channel 5 Negative Differential Analog Input.  
+
registers.Inparallelprogrammingmode(PAR/SER=V ),  
DD  
CS selects 2-lane or 1-lane output mode. CS can be driven  
with 1.8V to 3.3V logic.  
(J3): Common Mode Bias Output, Nominally Equal  
CM56  
SCK (L6): In serial programming mode, (PAR/SER =  
to V /2. V should be used to bias the common mode  
DD  
CM  
0V), SCK is the serial interface clock input. In parallel  
of the analog inputs of channels 5 and 6. V is internally  
CM  
programmingmode(PAR/SER=V ),SCKselects3.5mA  
bypassed to ground with a 0.1µF ceramic capacitor. No  
DD  
or 1.75mA LVDS output currents. SCK can be driven with  
external capacitance is required.  
1.8V to 3.3V logic.  
+
A
IN6  
A
IN6  
A
IN7  
A
IN7  
V
(K1): Channel 6 Positive Differential Analog Input.  
(K2): Channel 6 Negative Differential Analog Input.  
(M1): Channel 7 Positive Differential Analog Input.  
(M2): Channel 7 Negative Differential Analog Input.  
(N3): Common Mode Bias Output, Nominally Equal  
SDI (M6): In serial programming mode, (PAR/SER = 0V),  
SDIistheserialinterfacedataInput.DataonSDIisclocked  
into the mode control registers on the rising edge of SCK.  
+
In parallel programming mode (PAR/SER = V ), SDI can  
DD  
be used to power down the part. SDI can be driven with  
1.8V to 3.3V logic.  
CM78  
to V /2. V should be used to bias the common mode  
DD  
CM  
GND (See Pin Configuration Table): ADC Power Ground.  
Use multiple vias close to pins.  
of the analog inputs of channels 7 and 8. V is internally  
CM  
bypassed to ground with a 0.1µF ceramic capacitor. No  
external capacitance is required.  
90067814fa  
For more information www.linear.com/LTM9008-14  
17  
LTM9008-14/  
LTM9007-14/LTM9006-14  
pin FuncTions  
OV (G9, G10): Output Driver Supply. OV is internally  
LVDS Outputs  
DD  
DD  
bypassed to ground with a 0.1µF ceramic capacitor.  
All pins in this section are differential LVDS outputs.  
The output current level is programmable. There is an  
optionalinternal100terminationresistorbetweenthe  
pins of each LVDS output pair.  
SDOA(E6):Inserialprogrammingmode,(PAR/SER=0V),  
SDOA is the optional serial interface data output for  
registers controlling channels 1, 4, 5 and 8. Data on SDO  
is read back from the mode control registers and can be  
latched on the falling edge of SCK. SDO is an open-drain  
N-channel MOSFET output that requires an external 2k  
pull-up resistor from 1.8V to 3.3V. If read back from the  
mode control registers is not needed, the pull-up resis-  
tor is not necessary and SDO can be left unconnected. In  
+
+
OUT1A /OUT1A ,OUT1B /OUT1B (E7/E8,C8/D8):Serial  
Data Outputs for Channel 1. In 1-lane output mode only  
+
OUT1A /OUT1A are used.  
+
+
OUT2A /OUT2A ,OUT2B /OUT2B (B8/A8,D7/C7):Serial  
Data Outputs for Channel 2. In 1-lane output mode only  
+
OUT2A /OUT2A are used.  
parallelprogrammingmode(PAR/SER=V ), SDOAisan  
DD  
+
+
input that enables internal 100Ω termination resistors on  
the digital outputs of channels 1, 4, 5 and 8. When used  
as an input, SDO can be driven with 1.8V to 3.3V logic  
through a 1k series resistor.  
OUT3A /OUT3A , OUT3B /OUT3B (D10/D9, E10/E9):  
Serial Data Outputs for Channel 3. In 1-lane output mode  
only OUT3A /OUT3A are used.  
+
+
+
OUT4A /OUT4A ,OUT4B /OUT4B (C9/C10,F7/F8):Serial  
SDOB (D6): Serial Data Output Pin for Channels 2, 3, 6  
and 7. See description for SDOA.  
Data Outputs for Channel 4. In 1-lane output mode only  
+
OUT4A /OUT4A are used.  
+
+
PAR/SER(A7):ProgrammingModeSelectionPin.Connect  
to ground to enable the serial programming mode. CSA,  
CSB, SCK, SDI, SDOA and SDOB become a serial interface  
OUT5A /OUT5A ,OUT5B /OUT5B (J8/J7,K8/K7):Serial  
Data Outputs for Channel 5. In 1-lane output mode only  
+
OUT5A /OUT5A are used.  
that control the A/D operating modes. Connect to V to  
DD  
+
+
OUT6A /OUT6A , OUT6B /OUT6B (K9/K10, L9/L10):  
enableparallelprogrammingmodewhereCSA, CSB, SCK,  
SDI, SDOA and SDOB become parallel logic inputs that  
control a reduced set of the A/D operating modes. PAR/  
Serial Data Outputs for Channel 6. In 1-lane output mode  
+
only OUT6A /OUT6A are used.  
+
+
SER should be connected directly to ground or the V  
OUT7A /OUT7A ,OUT7B /OUT7B (M7/L7,P8/N8):Serial  
DD  
of the part and not be driven by a logic signal.  
Data Outputs for Channel 7. In 1-lane output mode only  
+
OUT7A /OUT7A are used.  
V
(B6): Reference Voltage Output. V  
is internally  
REF  
REF  
+
+
bypassed to ground with a 1μF ceramic capacitor, nomi-  
OUT8A /OUT8A , OUT8B /OUT8B (L8/M8, M10/M9):  
nally 1.25V.  
Serial Data Outputs for Channel 8. In 1-lane output mode  
+
only OUT8A /OUT8A are used.  
SENSE (C5): Reference Programming Pin. Connecting  
+
SENSE to V selects the internal reference and a 1V  
FRA /FRA (H7/H8): Frame Start Outputs for Channels  
1, 4, 5 and 8.  
DD  
input range. Connecting SENSE to ground selects the  
internal reference and a 0.5V input range. An external  
reference between 0.625V and 1.3V applied to SENSE  
+
FRB /FRB (J9/J10): Frame Start Outputs for Channels  
2, 3, 6 and 7.  
selectsaninputrangeof±0.8V  
. SENSEisinternally  
SENSE  
+
bypassed to ground with a 0.1µF ceramic capacitor.  
DCOA /DCOA (G8/G7): Data Clock Outputs for Channels  
1, 4, 5 and 8.  
+
DCOB /DCOB (F10, F9): Data Clock Outputs for Chan-  
nels 2, 3, 6 and 7.  
90067814fa  
For more information www.linear.com/LTM9008-14  
18  
LTM9008-14/  
LTM9007-14/LTM9006-14  
pin conFiguraTion Table  
1
2
3
4
5
6
7
8
9
10  
+
+
+
+
A
B
C
D
E
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PAR/SER  
O2A  
O2A  
GND  
GND  
+
AIN1  
AIN1  
V
V
REF  
GND  
GND  
GND  
CM12  
+
+
+
AIN2  
AIN2  
GND  
GND  
SENSE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CSA  
GND  
SDOB  
SDOA  
GND  
GND  
GND  
GND  
GND  
SCK  
O2B  
O1B  
O1B  
O1A  
O4B  
O4A  
O3A  
O3B  
O4A  
O3A  
O3B  
+
+
GND  
GND  
V
V
V
V
O2B  
DD  
DD  
DD  
DD  
+
AIN3  
AIN3  
O1A  
+
F
GND  
GND  
V
GND  
GND  
GND  
GND  
O4B  
DCOB  
OV  
DCOB  
OV  
CM34  
+
+
G
H
J
AIN4  
AIN4  
GND  
DCOA  
DCOA  
DD  
DD  
+
+
AIN5  
AIN5  
GND  
FRA  
FRA  
GND  
GND  
+
+
GND  
GND  
V
O5A  
O5A  
O5B  
O8A  
O8A  
O7B  
O7B  
FRB  
FRB  
CM56  
+
+
+
+
+
K
L
AIN6  
AIN6  
V
DD  
V
DD  
V
V
O5B  
O6A  
O6B  
O8B  
O6A  
O6B  
O8B  
DD  
DD  
+
+
+
GND  
GND  
O7A  
+
M
N
P
AIN7  
AIN7  
GND  
GND  
GND  
GND  
CSB  
SDI  
O7A  
+
AIN8  
AIN8  
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CM78  
+
GND  
GND  
GND  
CLK  
CLK  
Top View of BGA Package (Looking Through Component).  
90067814fa  
For more information www.linear.com/LTM9008-14  
19  
LTM9008-14/  
LTM9007-14/LTM9006-14  
FuncTional block DiagraM  
V
DD  
= 1.8V  
OV = 1.8V  
DD  
+
+
OUT1A  
OUT1A  
OUT1B  
OUT1B  
CH 1  
ANALOG  
INPUT  
14-BIT  
S/H  
S/H  
S/H  
S/H  
S/H  
S/H  
S/H  
S/H  
ADC CORE  
+
+
OUT2A  
OUT2A  
OUT2B  
OUT2B  
CH 2  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
+
OUT3A  
OUT3A  
OUT3B  
OUT3B  
CH 3  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
+
OUT4A  
OUT4A  
OUT4B  
OUT4B  
CH 4  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
DATA  
SERIALIZER  
+
+
OUT5A  
OUT5A  
OUT5B  
OUT5B  
CH 5  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
+
OUT6A  
OUT6A  
OUT6B  
OUT6B  
CH 6  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
+
OUT7A  
OUT7A  
OUT7B  
OUT7B  
CH 7  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
+
OUT8A  
OUT8A  
OUT8B  
OUT8B  
CH 8  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
+
ENC  
ENC  
DCOA  
DCOB  
FRA  
PLL  
FRB  
1.25V  
REFERENCE  
SDOA  
SDOB  
SDI  
V
REF  
REFH  
REFL  
MODE  
CONTROL  
REGISTERS  
SCK  
RANGE  
SELECT  
CSA  
CSB  
PAR/SER  
REF  
BUFFER  
V /2  
DD  
DIFF  
REF  
AMP  
GND  
90067814 F01  
SENSE  
VCM12  
VCM34  
VCM56  
VCM78  
Figure 1. Functional Block Diagram  
90067814fa  
For more information www.linear.com/LTM9008-14  
20  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
CONVERTER OPERATION  
INPUT DRIVE CIRCUITS  
The LTM9008-14/LTM9007-14/LTM9006-14 are low  
power, 8-channel, 14-bit, 65Msps/40Msps/25Msps A/D  
converters that are powered by a single 1.8V supply. The  
analog inputs should be driven differentially. The encode  
input can be driven differentially for optimal jitter perfor-  
mance,orsingle-endedforlowerpowerconsumption.The  
digital outputs are serial LVDS to minimize the number  
of data lines. Each channel outputs two bits at a time  
(2-lane mode) or one bit at a time (1-lane mode). Many  
additional features can be chosen by programming the  
mode control registers through a serial SPI port.  
Input Filtering  
If possible, there should be an RC low pass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitryfromtheA/Dsample-and-holdswitching,andalso  
limits wideband noise from the drive circuitry. Figure 3  
showsanexampleofaninputRCfilter.TheRCcomponent  
values should be chosen based on the application’s input  
frequency.  
Transformer Coupled Circuits  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
ANALOG INPUT  
tap is biased with V , setting the A/D input at its opti-  
CM  
The analog inputs are differential CMOS sample-and-hold  
circuits(Figure2).Theinputsshouldbedrivendifferentially  
around a common mode voltage set by the appropriate  
mal DC level. At higher input frequencies a transmission  
line balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
V
output pins, which are nominally V /2. For the 2V  
CM  
DD  
input range, the inputs should swing from V – 0.5V  
CM  
50Ω  
V
CM  
to V + 0.5V. There should be 180° phase difference  
CM  
0.1µF  
between the inputs.  
0.1µF  
T1  
1:1  
+
25Ω  
A
IN  
ANALOG  
INPUT  
Theeightchannelsaresimultaneouslysampledbyashared  
encode circuit (Figure 2).  
LTM9008-14  
0.1µF  
25Ω  
25Ω  
12pF  
LTM9008-14  
10Ω  
V
25Ω  
DD  
A
IN  
C
SAMPLE  
3.5pF  
R
ON  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
25Ω  
90067814 F03  
+
A
IN  
IN  
C
PARASITIC  
1.8pF  
V
DD  
C
SAMPLE  
3.5pF  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
R
ON  
10Ω  
25Ω  
A
C
PARASITIC  
1.8pF  
V
DD  
1.2V  
10k  
+
ENC  
ENC  
10k  
1.2V  
90067814 F02  
Figure 2. Equivalent Input Circuit. Only One  
of the Eight Analog Channels Is Shown  
90067814fa  
For more information www.linear.com/LTM9008-14  
21  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Amplifier Circuits  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingle-ended,thenatransformercircuit(Figures4  
to 6) should convert the signal to differential before driv-  
ing the A/D.  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
See back page for a DC-coupled example.  
50Ω  
V
CM  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTM9008-14  
T1  
0.1µF  
25Ω  
25Ω  
4.7pF  
0.1µF  
A
IN  
90067814 F04  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 4. Recommended Front End Circuit for Input  
Frequencies from 70MHz to 170MHz  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTM9008-14  
T1  
0.1µF  
25Ω  
25Ω  
1.8pF  
A
IN  
90067814 F05  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 5. Recommended Front End Circuit for Input  
Frequencies from 170MHz to 300MHz  
90067814fa  
For more information www.linear.com/LTM9008-14  
22  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
50Ω  
V
CM  
0.1µF  
0.1µF  
2.7nH  
0.1µF  
+
A
IN  
IN  
ANALOG  
INPUT  
LTM9008-14  
25Ω  
25Ω  
T1  
0.1µF  
2.7nH  
A
90067814 F06  
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 6. Recommended Front End Circuit for Input  
Frequencies Above 300MHz  
V
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
200Ω 200Ω  
25Ω  
0.1µF  
0.1µF  
+
A
IN  
LTM9008-14  
ANALOG  
INPUT  
+
+
12pF  
25Ω  
A
IN  
90067814 F07  
Figure 7. Front End Circuit Using a High Speed  
Differential Amplifier  
90067814fa  
For more information www.linear.com/LTM9008-14  
23  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Reference  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
TheLTM9008-14/LTM9007-14/LTM9006-14hasaninter-  
nal 1.25V voltage reference. For a 2V input range using  
will then be 1.6 • V  
. The reference is shared by all  
SENSE  
eight ADC channels, so it is not possible to independently  
adjust the input range of individual channels.  
the internal reference, connect SENSE to V . For a 1V  
DD  
input range using the internal reference, connect SENSE  
to ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9).  
The V , SENSE, REFH and REFL pins are internally  
REF  
bypassed, as shown in Figure 8.  
V
LTM9008-14  
REF  
5Ω  
1.25V  
1.25V BANDGAP  
REFERENCE  
1µF  
0.625V  
RANGE  
DETECT  
AND  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
RANGE = 1.6 • V  
FOR  
SENSE  
0.1µF  
INTERNAL ADC  
HIGH REFERENCE  
0.65V < V  
< 1.300V  
BUFFER  
SENSE  
0.1µF  
2.2µF  
0.1µF  
0.1µF  
0.8x  
DIFF AMP  
INTERNAL ADC  
LOW REFERENCE  
90067814 F08  
Figure 8. Reference Circuit  
LTM9008-14  
SENSE  
1.25V  
EXTERNAL  
REFERENCE  
1µF  
90067814 F09  
Figure 9. Using an External 1.25V Reference  
90067814fa  
For more information www.linear.com/LTM9008-14  
24  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Encode Input  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance. The encode inputs can be taken  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
above V (up to 3.6V), and the common mode range is  
DD  
from 1.1V to 1.6V. In the differential encode mode, ENC  
should stay at least 200mV above ground to avoid falsely  
triggering the single-ended encode mode. For good jitter  
+
performance ENC should have fast rise and fall times.  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12 and 13).  
+
to ground and ENC is driven with a square wave encode  
LTM9008-14  
V
DD  
DIFFERENTIAL  
COMPARATOR  
V
DD  
15k  
30k  
+
ENC  
ENC  
LTM9008-14  
1.8V TO  
+
3.3V  
0V  
ENC  
30k  
ENC  
CMOS LOGIC  
BUFFER  
90067814 F10  
90067814 F11  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
Figure 11. Equivalent Encode Input Circuit for  
Single-Ended Encode Mode  
0.1µF  
0.1µF  
+
T1  
ENC  
LTM9008-14  
50Ω  
50Ω  
100Ω  
0.1µF  
+
ENC  
0.1µF  
ENC  
PECL OR  
LTM9008-14  
LVDS  
CLOCK  
90067814 F12  
0.1µF  
ENC  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
90067814 F13  
Figure 12. Sinusoidal Encode Drive  
Figure 13. PECL or LVDS Encode Drive  
90067814fa  
For more information www.linear.com/LTM9008-14  
25  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
details). Note that with 12-bit serialization the two LSBs  
are not available—this mode is included for compatibility  
with 12-bit versions of these parts.  
DD  
+
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
is0.9V. ForgoodjitterperformanceENC shouldhavefast  
+
rise and fall times.  
The output data should be latched on the rising and falling  
edges of the data clock out (DCO). A data frame output  
(FR) can be used to determine when the data from a new  
conversionresultbegins. Inthe2-lane, 14-bitserialization  
mode, the frequency of the FR output is halved.  
Clock PLL and Duty Cycle Stabilizer  
Theencodeclockismultipliedbyaninternalphase-locked  
loop (PLL) to generate the serial digital output data. If the  
encode signal changes frequency or is turned off, the PLL  
requires 25µs to lock onto the input clock.  
The maximum serial data rate for the data outputs is  
1Gbps, so the maximum sample rate of the ADC will de-  
pend on the serialization mode as well as the speed grade  
of the ADC (see Table 1). The minimum sample rate for  
all serialization modes is 5Msps.  
A clock duty cycle stabilizer circuit allows the duty cycle  
of the applied encode signal to vary from 30% to 70%.  
In the serial programming mode it is possible to disable  
the duty cycle stabilizer, but this is not recommended. In  
the parallel programming mode the duty cycle stabilizer  
is always enabled.  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
DIGITAL OUTPUTS  
The digital outputs of the LTM9008-14/LTM9007-14/  
LTM9006-14 are serialized LVDS signals. Each channel  
outputs two bits at a time (2-lane mode) or one bit at a  
time (1-lane mode). The data can be serialized with 16, 14,  
or12-bitserialization(seetheTimingDiagramssectionfor  
The outputs are powered by OV which is independent  
DD  
from the A/D core power.  
Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTM9008-14.  
The Sampling Frequency for the Slower Speed Grades Cannot Exceed 40MHz (LTM9007-14) or 25MHz (LTM9006-14)  
MAXIMUM SAMPLING  
SERIALIZATION MODE  
FREQUENCY, f (MHz)  
DCO FREQUENCY  
4 • f  
FR FREQUENCY  
SERIAL DATA RATE  
S
2-Lane  
2-Lane  
2-Lane  
1-Lane  
1-Lane  
1-Lane  
16-Bit Serialization  
65  
65  
f
8 • f  
7 • f  
6 • f  
S
S
S
S
S
14-Bit Serialization  
12-Bit Serialization  
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
3.5 • f  
0.5 • f  
S
S
65  
3 • f  
8 • f  
7 • f  
6 • f  
f
f
f
f
S
S
S
S
S
62.5  
65  
16 • f  
14 • f  
12 • f  
S
S
S
S
S
S
65  
90067814fa  
For more information www.linear.com/LTM9008-14  
26  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Table 2. Output Codes vs Input Voltage  
Programmable LVDS Output Current  
+
A
– A  
D13-D0  
(OFFSET BINARY)  
D13-D0  
(2’s COMPLEMENT)  
IN  
IN  
The default output driver current is 3.5mA. This current  
can be adjusted by control register A2 in the serial pro-  
gramming mode. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA. In the  
parallel programming mode, the SCK pin can select either  
3.5mA or 1.75mA.  
(2V RANGE)  
>1.000000V  
+0.999878V  
+0.999756V  
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
+0.000122V  
+0.000000V  
–0.000122V  
–0.000244V  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
Optional LVDS Driver Internal Termination  
In most cases, using just an external 100Ω termina-  
tion resistor will give excellent LVDS signal integrity. In  
addition, an optional internal 100Ω termination resistor  
can be enabled by serially programming mode con-  
trol register A2. The internal termination helps absorb  
any reflections caused by imperfect termination at the  
receiver. When the internal termination is enabled, the  
output driver current is doubled to maintain the same  
output voltage swing. In the parallel programming  
mode the SDO pin enables internal termination. Internal  
termination should only be used with 1.75mA, 2.1mA or  
2.5mA LVDS output current modes.  
–0.999878V  
–1.000000V  
<–1.000000V  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
Digital Output Randomizer  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
DATA FORMAT  
The digital output is randomized by applying an exclusive-  
OR logic operation between the LSB and all other data  
output bits. To decode, the reverse operation is applied  
—an exclusive-OR operation is applied between the LSB  
andallotherbits.TheFRandDCOoutputsarenotaffected.  
Theoutputrandomizerisenabledbyseriallyprogramming  
mode control register A1.  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A1.  
90067814fa  
For more information www.linear.com/LTM9008-14  
27  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Digital Output Test Pattern  
DEVICE PROGRAMMING MODES  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
(D13-D0) of all channels to known values. The digital  
output test patterns are enabled by serially programming  
mode control registers A3 and A4. When enabled, the test  
patterns override all other formatting modes: 2’s comple-  
ment and randomizer.  
The operating modes of the LTM9008-14/LTM9007-14/  
LTM9006-14 can be programmed by either a parallel  
interface or a simple serial interface. The serial interface  
has more flexibility and can program all available modes.  
Theparallelinterfaceismorelimitedandcanonlyprogram  
some of the more commonly used modes.  
Parallel Programming Mode  
Output Disable  
To use the parallel programming mode, PAR/SER should  
The digital outputs may be disabled by serially program-  
ming mode control register A2. The current drive for all  
digital outputs including DCO and FR are disabled to save  
powerorenablein-circuittesting.Whendisabledthecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance may remain low.  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
logic inputs that set certain operating modes. These pins  
DD  
can be tied to V or ground, or driven by 1.8V, 2.5V, or  
DD  
3.3V CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table 3 shows the  
modes set by CS, SCK, SDI and SDO.  
Table 3. Parallel Programming Mode Control Bits  
Sleep and Nap Modes  
(PAR/SER = VDD  
)
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire device is powered down,  
resulting in 2mW power consumption. Sleep mode is  
enabled by mode control register A1 (serial programming  
mode), or by SDI (parallel programming mode). The time  
required to recover from sleep mode is about 2ms.  
Pin  
DESCRIPTION  
CS  
2-Lane / 1-Lane Selection Bit  
0 = 2-Lane, 16-Bit Serialization Output Mode  
1 = 1-Lane, 14-Bit Serialization Output Mode  
LVDS Current Selection Bit  
0 = 3.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
Power Down Control Bit  
SCK  
SDI  
In nap mode any combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL stay active, allowing faster wakeup than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cycles. If the application demands very accurate DC  
settling then an additional 50µs should be allowed so the  
on-chip references can settle from the slight temperature  
shift caused by the change in supply current as the A/D  
leaves nap mode. Nap mode is enabled by mode control  
register A1 in the serial programming mode.  
0 = Normal Operation  
1 = Sleep Mode  
SDO  
Internal Termination Selection Bit  
0 = Internal Termination Disabled  
1 = Internal Termination Enabled  
90067814fa  
For more information www.linear.com/LTM9008-14  
28  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Serial Programming Mode  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address  
bits (A6:A0) will be read back on the SDO pin (see the  
Timing Diagrams section). During a read back command  
the register is not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and read back is not needed,  
then SDO can be left floating and no pull-up resistor is  
needed.Table4showsamapofthemodecontrolregisters.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bit 7  
RESET  
Software Reset Bit  
0 = Not Used  
1 = Software Reset. All Mode Control Registers Are Reset to 00h. The ADC Is Momentarily Placed in SLEEP Mode.  
After the Reset SPI Write Command Is Complete, Bit D7 Is Automatically Set Back to Zero. The Reset Register Is Write Only.  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1 (CSA): FORMAT AND POWER-DOWN REGISTER (ADDRESS 01h with CSA = GND)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_8  
NAP_5  
NAP_4  
NAP_1  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bit 7  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This Is Not Recommended.  
Bit 6  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = vData Output Randomizer Mode On  
Bit 5  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Bits 4-0  
SLEEP: NAP_X Sleep/Nap Mode Control Bits  
00000 = Normal Operation  
0XXX1 = Channel 1 in Nap Mode  
0XX1X = Channel 4 in Nap Mode  
0X1XX = Channel 5 in Nap Mode  
01XXX = Channel 8 in Nap Mode  
1XXXX = Sleep Mode. Channels 1, 4, 5 and 8 Are Disabled  
Note: Any Combination of Channels Can Be Placed in Nap Mode.  
90067814fa  
For more information www.linear.com/LTM9008-14  
29  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
REGISTER A1 (CSB): FORMAT AND POWER-DOWN REGISTER (ADDRESS 01h with CSB = GND)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_7  
NAP_6  
NAP_3  
NAP_2  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bit 7  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This Is Not Recommended.  
Bit 6  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
Bit 5  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Bits 4-0  
SLEEP: NAP_4:NAP_1 Sleep/Nap Mode Control Bits  
00000 = Normal Operation  
0XXX1 = Channel 2 in Nap Mode  
0XX1X = Channel 3 in Nap Mode  
0X1XX = Channel 6 in Nap Mode  
01XXX = Channel 7 in Nap Mode  
1XXXX = Sleep Mode. Channels 2, 3, 6 and 7 Are Disabled  
Note: Any Combination of Channels Can Be Placed in Nap Mode.  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE2  
OUTMODE1  
OUTMODE0  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bits 7-5  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 4  
TERMON LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current Is 2x the Current Set by ILVDS2:ILVDS0. Internal Termination Should Only Be  
Used with 1.75mA, 2.1mA or 2.5mA LVDS Output Current Modes.  
Bit 3  
OUTOFF Output Disable Bit  
0 = Digital Outputs Are Enabled.  
1 = Digital Outputs Are Disabled.  
Bits 2-0  
OUTMODE2:OUTMODE0 Digital Output Mode Control Bits  
000 = 2-Lanes, 16-Bit Serialization  
001 = 2-Lanes, 14-Bit Serialization  
010 = 2-Lanes, 12-Bit Serialization  
011 = Not Used  
100 = Not Used  
101 = 1-Lane, 14-Bit Serialization  
110 = 1-Lane, 12-Bit Serialization  
111 = 1-Lane, 16-Bit Serialization  
90067814fa  
For more information www.linear.com/LTM9008-14  
30  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST  
TP13  
TP12  
TP11  
TP10  
TP9  
TP8  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bit 7  
OUTTEST  
Digital Output Test Pattern Control Bit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Bit 6  
Unused, Don’t Care Bit.  
Bit 5-0  
TP13:TP8  
Test Pattern Data Bits (MSB)  
TP13:TP8 Set the Test Pattern for Data Bit 13 (MSB) Through Data Bit 8.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TP7  
TP6  
TP5  
TP4  
TP3  
TP2  
TP1  
TP0  
Note That CSA Controls Channels 1, 4, 5 and 8, CSB Controls Channels 2, 3, 6 and 7.  
Bit 7-0  
TP7:TP0  
Test Pattern Data Bits (LSB)  
TP7:TP0 Set the Test Pattern for Data Bit 7 Through Data Bit 0 (LSB).  
Software Reset  
Bypass capacitors are integrated inside the package; ad-  
ditional capacitance is optional.  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset SPI  
write command is complete, bit D7 is automatically set  
back to zero.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
The pin assignments of the LTM9008-14/LTM9007-14/  
LTM9006-14 allow a flow-through layout that makes  
it possible to use multiple parts in a small area when  
a large number of ADC channels are required. The  
device has similar layout rules to other BGA pack-  
ages. The layout can be implemented with 6mil blind vias  
and5miltraces.Thepinouthasbeendesignedtominimize  
the space required to route the analog and digital traces.  
The analog and digital traces can essentially be routed  
within the width of the package. This allows multiple  
packages to be located close together for high channel  
count applications. Trace lengths for the analog inputs  
and digital outputs should be matched as well as possible.  
GROUNDING AND BYPASSING  
The LTM9008-14/LTM9007-14/LTM9006-14 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane in the  
first layer beneath the ADC is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
90067814fa  
For more information www.linear.com/LTM9008-14  
31  
LTM9008-14/  
LTM9007-14/LTM9006-14  
applicaTions inForMaTion  
Table 5 lists the trace lengths for the analog inputs and  
digital outputs inside the package from the die pad to the  
package pad. These should be added to the PCB trace  
lengths for best matching.  
HEAT TRANSFER  
MostoftheheatgeneratedbytheLTM9008-14/LTM9007-14/  
LTM9006-14 is transferred from the die through the bot-  
tom of the package onto the printed circuit board. The  
ground pins should be connected to the internal ground  
planes by multiple vias.  
The material used for the substrate is BT (bismaleimide-  
triazine), supplied by Mitsubishi Gas and Chemical. In  
the DC to 125MHz range, the speed for the analog input  
signals is 198ps/in or 7.795ps/mm. The speed for the  
digital outputs is 188.5ps/in or 7.417ps/mm.  
Table 5. Internal Trace Lengths  
LENGTH  
(mm)  
LENGTH  
(mm)  
LENGTH  
(mm)  
LENGTH  
(mm)  
PIN  
E7  
NAME  
PIN  
K8  
K7  
K9  
NAME  
PIN  
E1  
NAME  
PIN  
F10  
F9  
NAME  
01A  
1.775  
1.947  
1.847  
1.850  
3.233  
3.246  
0.179  
1.127  
2.126  
2.177  
1.811  
1.812  
3.199  
3.196  
0.706  
0.639  
0.392  
0.436  
05B  
0.379  
0.528  
1.866  
1.865  
2.268  
2.267  
1.089  
0.179  
3.281  
3.149  
1.862  
1.847  
4.021  
4.016  
4.689  
4.709  
4.724  
4.769  
A
A
A
A
A
A
A
A
A
A
A
A
2.491  
2.505  
3.376  
3.372  
3.301  
3.346  
2.506  
2.533  
3.198  
3.214  
4.726  
4.691  
4.106  
4.106  
0.919  
1.162  
1.157  
1.088  
DCOB  
1.811  
1.812  
1.117  
1.038  
1.644  
1.643  
IN3  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
E8  
01A  
01B  
01B  
02A  
02A  
02B  
02B  
03A  
03A  
03B  
03B  
04A  
04A  
04B  
04B  
05A  
05A  
05B  
06A  
E2  
DCOB  
IN3  
C8  
D8  
B8  
A8  
D7  
C7  
D10  
D9  
E10  
E9  
G1  
G2  
H2  
H1  
K2  
K1  
M2  
M1  
N2  
N1  
P6  
P5  
L5  
H7  
H8  
J9  
FRA  
IN4  
+
+
K10 06A  
L9 06B  
L10 06B  
FRA  
IN4  
FRB  
IN5  
+
+
J10  
A7  
L6  
FRB  
IN5  
M7  
L7  
07A  
07A  
07B  
07B  
08A  
08A  
PAR/SER 3.838  
IN6  
+
SCK  
0.240  
0.453  
0.274  
1.069  
3.914  
0.123  
0.079  
3.915  
IN6  
P8  
N8  
L8  
E6  
SDOA  
SDOB  
SDI  
IN7  
+
D6  
M6  
B3  
F3  
IN7  
IN8  
+
M8  
V
V
V
V
IN8  
CM12  
CM34  
CM56  
CM78  
C9  
C10  
F7  
M10 08B  
CLK  
CLK  
+
M9  
B1  
B2  
C1  
C2  
08B  
J3  
A
A
A
A
CSA  
N3  
IN1  
IN1  
IN2  
IN2  
+
+
F8  
M5  
G8  
G7  
CSB  
+
J8  
DCOA  
DCOA  
J7  
90067814fa  
For more information www.linear.com/LTM9008-14  
32  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical applicaTions  
Silkscreen Top  
Top Side  
Inner Layer 2  
Inner Layer 3  
90067814fa  
For more information www.linear.com/LTM9008-14  
33  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical applicaTions  
Inner Layer 4  
Inner Layer 5  
Bottom Side  
Silkscreen Bottom  
90067814fa  
For more information www.linear.com/LTM9008-14  
34  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical applicaTion  
G N D  
P 1 0  
G N D  
P 9  
G N D  
N 1 0  
G N D  
N 9  
G N D  
H 1 0  
G N D  
H 9  
G N D  
B 1 0  
G N D  
B 9  
G N D  
A 1 0  
G N D  
A 9  
P 7  
G N D  
D 6  
G N D P 4  
G N D P 3  
G N D P 2  
G N D P 1  
G N D N 7  
G N D N 6  
G N D N 5  
G N D N 4  
G N D M 4  
G N D M 3  
G N D L 2  
G N D L 1  
G N D K 6  
G N D K 5  
G N D J 6  
G N D J 5  
G N D J 4  
G N D J 2  
G N D J 1  
G N D H 6  
G N D H 5  
G N D H 4  
G N D H 3  
G N D G 6  
G N D G 5  
G N D G 4  
G N D G 3  
G N D F 6  
G N D F 5  
G N D F 4  
G N D F 2  
G N D F 1  
G N D E 5  
G N D D 5  
G N D D 2  
G N D D 1  
G N D C 6  
G N D C 4  
G N D C 3  
G N D B 7  
G N D B 5  
G N D B 4  
G N D A 6  
G N D A 5  
G N D A 4  
G N D A 3  
G N D A 2  
G N D A 1  
E 6  
M 5  
L 5  
L 6  
M 6  
B 6  
C 5  
A 7  
90067814fa  
For more information www.linear.com/LTM9008-14  
35  
LTM9008-14/  
LTM9007-14/LTM9006-14  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
3 . 6 0 0  
2 . 8 0 0  
2 . 0 0 0  
1 . 2 0 0  
0 . 4 0 0  
0 . 4 0 0  
1 . 2 0 0  
2 . 0 0 0  
2 . 8 0 0  
3 . 6 0 0  
0 . 0 0 0  
a a a  
Z
90067814fa  
For more information www.linear.com/LTM9008-14  
36  
LTM9008-14/  
LTM9007-14/LTM9006-14  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
03/15 Removed mention of OGND  
26  
90067814fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTM9008-14/  
LTM9007-14/LTM9006-14  
Typical applicaTion  
Single-Ended to Differential Conversion Using LTC6409 and 50MHz  
Lowpass Filter (Only One Channel Shown). Filter for Use at 61.44Msps  
3.3V  
0.1µF  
0.8pF  
1.8V  
1.8V  
150Ω  
474Ω  
C5  
B6  
180nH  
68pF  
180nH  
150pF  
37.4Ω  
+
V
66.9Ω  
+
IN  
OUT  
75Ω  
+
+
+
A
A
B2  
B1  
E8  
E7  
O1A  
O1A  
IN1  
IN1  
LTC6409  
33pF  
75Ω  
100pF  
IN  
0.1µF  
68pF  
150pF  
180nH  
+
OUT  
180nH  
37.4Ω  
V
OCM  
+
+
B3  
C2  
C1  
F2  
F1  
F3  
G2  
G1  
G7  
G8  
H8  
H7  
DCO  
DCO  
FR  
150Ω  
474Ω  
V
A
A
A
A
V
A
A
SHDN  
CM12  
+
IN2  
LTM9008-14  
0.8pF  
49.9Ω 66.9Ω  
IN2  
FR  
+
IN3  
GND  
50Ω  
IN3  
CM34  
+
IN4  
IN4  
N1  
N2  
+
A
A
IN8  
IN8  
P5 P6  
90067814 TA03  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2170-14/LTC2171-14/ 14-Bit, 25Msps/40Msps/65Msps  
LTC2172-14 1.8V Quad ADCs, Ultralow Power  
178mW/234mW/360mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC2173-14/LTC2174-14/ 14-Bit, 80Msps/105Msps/125Msps  
LTC2175-14 1.8V Quad ADCs, Ultralow Power  
412mW/481mW/567mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTM9009-14/LTM9010-14/ 14-Bit, 80Msps/105Msps/125Msps 1.8V 801mW/950mW/1145mW, 73.1dB SNR, 85dB SFDR, Serial LVDS Outputs,  
LTM9011-14  
Amplifiers/Filters  
LTC6412  
Octal ADCs, Ultralow Power  
11.25mm × 9mm BGA-140  
800MHz, 31dB Range, Analog-Controlled Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz, 10dB Noise  
Variable Gain Amplifier Figure, 4mm × 4mm QFN-24  
LTC6420-20  
LTC6421-20  
1.8GHz Dual Low Noise, Low Distortion Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply Current per Amplifier,  
Differential ADC Drivers for 300MHz IF 3mm × 4mm QFN-20  
1.3GHz Dual Low Noise, Low Distortion Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 40mA Supply Current per Amplifier,  
Differential ADC Drivers  
3mm × 4mm QFN-20  
LTC6605-7/ LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz  
Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
Pin-Programmable Gain, 6mm × 3mm DFN-22  
LTC6605-14  
Filters with ADC Drivers  
Signal Chain Receivers  
LTM9002  
14-Bit Dual Channel IF/Baseband  
Receiver Subsystem  
Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
90067814fa  
LT 0315 REV A • PRINTED IN USA  
38 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM9008-14  

相关型号:

LTM9009-14

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9009-14_15

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9010-14

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9010-14_15

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9011-14

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9011-14_15

14-Bit, 125Msps/105Msps/ 80Msps Low Power Octal ADCs
Linear

LTM9012

Quad 14-Bit, 125Msps ADC with Integrated Drivers
Linear

LTM9012CY-AB#PBF

LTM9012 - Quad 14-Bit, 125Msps ADC with Integrated Drivers; Package: BGA; Pins: 221; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM9012IY-AB#PBF

LTM9012 - Quad 14-Bit, 125Msps ADC with Integrated Drivers; Package: BGA; Pins: 221; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM9013

300MHz Digital Predistortion Receiver
Linear

LTM9013CY-AA#PBF

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM9013IY-AA#PBF

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: -40&deg;C to 85&deg;C
Linear