LTM9012IY-AB#PBF [Linear]

LTM9012 - Quad 14-Bit, 125Msps ADC with Integrated Drivers; Package: BGA; Pins: 221; Temperature Range: -40°C to 85°C;
LTM9012IY-AB#PBF
型号: LTM9012IY-AB#PBF
厂家: Linear    Linear
描述:

LTM9012 - Quad 14-Bit, 125Msps ADC with Integrated Drivers; Package: BGA; Pins: 221; Temperature Range: -40°C to 85°C

转换器
文件: 总28页 (文件大小:2022K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM9012  
Quad 14-Bit, 125Msps ADC  
with Integrated Drivers  
FeaTures  
DescripTion  
n
4-Channel Simultaneous Sampling ADC with  
The LTM®9012 is a 4-channel, simultaneous sampling  
14-bit µModule® analog-to-digital converter (ADC) with  
integrated, fixed gain, differential ADC drivers. The low  
noise amplifiers are suitable for single-ended drive and  
pulse train signals such as imaging applications. Each  
channel includes a lowpass filter between the driver out-  
put and ADC input.  
Integrated, Fixed Gain, Differential Drivers  
n
68.3dB SNR  
n
78dB SFDR  
n
Low Power: 1.27W Total, ꢃ18mW per Channel  
n
1.8V ADC Core and ꢃ.ꢃV Analog ꢁnput ꢀupplꢂ  
n
ꢀerial LVDꢀ Outputs: 1 or 2 Sits per Channel  
n
ꢀhutdown and Iap Modes  
DC specs include 1.2LꢀS ꢁIL (tꢂp), 0.ꢃLꢀS DIL (tꢂp)  
and no missing codes over temperature. The transition  
n
11.25mm × 15mm SGA Package  
noise is a low 1.2LꢀS  
.
RMꢀ  
applicaTions  
The digital outputs are serial LVDꢀ and each channel out-  
puts two bits at a time (2-lane mode). At lower sampling  
rates there is a one bit option (1-lane mode). The LVDꢀ  
drivers have optional internal termination and adjustable  
output levels to ensure clean signal integritꢂ.  
n
ꢁndustrial ꢁmaging  
n
Medical ꢁmaging  
Multichannel Data Acquisition  
n
n
Iondestructive Testing  
+
L, LT, LTC, LTM, Linear Technologꢂ, the Linear logo and µModule are registered trademarks of  
Linear Technologꢂ Corporation. All other trademarks are the propertꢂ of their respective owners.  
The EIC and EIC inputs maꢂ be driven differentiallꢂ  
or single-ended with a sine wave, PECL, LVDꢀ, TTL or  
CMOꢀ inputs. An internal clock dutꢂ cꢂcle stabilizer al-  
lows high performance at full speed for a wide range of  
clock dutꢂ cꢂcles.  
Typical applicaTion  
Single-Ended Sensor Digitization  
LTM9012, 125Msps, 70MHz FFT  
3.3V  
1.8V  
1.8V  
0
V
V
OV  
DD  
CC  
DD  
LTM9012  
–10  
–20  
14  
14  
14  
14  
PIPELINE  
ADC  
DATA  
SERIALIZER  
ENCODER  
AND  
LVDS  
DRIVERS  
–30  
CHANNEL 1  
CHANNEL 2  
–40  
–50  
PIPELINE  
ADC  
IMAGE  
SENSOR  
–60  
FPGA  
–70  
CHANNEL 3  
CHANNEL 4  
PIPELINE  
ADC  
–80  
–90  
–100  
–110  
–120  
PIPELINE  
ADC  
+
FR  
FR  
INTERNAL  
REFERENCE & SUPPLY  
BYPASS CAPACITORS  
35 40  
0
5
10 15 20 25 30  
45 50 55 60  
+
V
REF  
PLL  
+
DCO  
DCO  
FREQUENCY (MHz)  
9012 TA01b  
SCK SDI SDO CS PAR/SER ENC  
ENC  
9012 TA01a  
ENCODE CLOCK  
9012fa  
1
For more information www.linear.com/LTM9012  
LTM9012  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
ꢀupplꢂ Voltages  
1
2
3
4
5
6
7
8
9
10 11 12 13  
V , OV ................................................ –0.ꢃV to 2V  
DD  
DD  
+
+
+
+
CH4 CH4  
CH3 CH3  
CH2 CH2  
CH1 CH1  
A
B
C
D
E
V ........................................................ –0.ꢃV to 5.5V  
CC  
+
Analog ꢁnput Voltage (CHn , CHn , SHDNn )  
(Iote ꢃ).......................................................–0.ꢃV to V  
Analog ꢁnput Voltage (PAR/SER, ꢀEIꢀE)  
V
V
CC3  
CC2  
CC  
SHDN2  
SHDN3  
(Iote 4)........................................ –0.ꢃV to (V + 0.2V)  
DD  
F
+
Digital ꢁnput Voltage (EIC , EIC , CS, ꢀDꢁ, ꢀCK)  
(Iote 5)..................................................... –0.ꢃV to ꢃ.9V  
ꢀDO (Iote 5)............................................. –0.ꢃV to ꢃ.9V  
SHDN4  
SHDN1  
G
H
J
V
CC4  
V
CC1  
Digital Output Voltage................ –0.ꢃV to (OV + 0.ꢃV)  
Operating Temperature Range  
LTM9012C ............................................... 0°C to 70°C  
LTM9012ꢁ.............................................–40°C to 85°C  
ꢀtorage Temperature Range .................. –65°C to 150°C  
DD  
K
L
SENSE  
SDI  
M
N
P
Q
R
S
V
DD  
V
DD  
+
ENC  
ENC  
SDO  
PAR/SER  
REF  
CS  
+
+
OUT1A  
OUT4B  
OUT4B  
OUT1A  
+
+
FR  
FR  
DCO DCO  
+
OUT1B  
OUT4A  
OUT3A  
OUT4A  
+
OUT2B  
SCK  
OV  
DD  
OUT3B  
OUT2A  
+
+
OUT1B  
+
OUT2A  
OUT3B  
+
OUT3A  
OUT2B  
ALL ELSE = GND  
BGA PACKAGE  
221-LEAD (15mm × 11.25mm)  
T
= 125°C, θ = 16.5°C/W, θ = 15°C/W,  
JMAX  
θ
JA  
JCtop  
= 10.4°C/W  
= 6.ꢃ°C/W, θ  
JCbottom  
JSOARD  
θ VALUEꢀ DETERMꢁIED PER JEꢀD 51-9  
WEꢁGHT = 1.07g  
http://www.linear.com/product/LTM9012#orderinfo  
orDer inForMaTion  
LEAD FREE FINISH  
LTM9012CY-AS#PSF  
LTM9012ꢁY-AS#PSF  
TRAY  
PART MARKING*  
LTM9012YAS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM9012CY-AS#PSF  
LTM9012ꢁY-AS#PSF  
221-Lead (15mm × 11.25mm) Plastic SGA  
221-Lead (15mm × 11.25mm) Plastic SGA  
LTM9012YAS  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified bꢂ a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. ꢀome packages are available in 500 unit reels through  
designated sales channels with #TRMPSF suffix.  
9012fa  
2
For more information www.linear.com/LTM9012  
LTM9012  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 6)  
PARAMETER  
CONDITIONS  
MIN  
14  
TYP  
MAX  
UNITS  
Sits  
l
l
l
l
Resolution (Io Missing Codes)  
ꢁntegral Linearitꢂ Error  
Differential Linearitꢂ Error  
Offset Error  
Differential Analog ꢁnput (Iote 7)  
Differential Analog ꢁnput  
(Iote 8)  
–5  
1.2  
0.ꢃ  
5
LꢀS  
LꢀS  
mV  
–0.9  
–ꢃ7  
0.9  
ꢃ7  
Gain Error  
ꢁnternal Reference  
External Reference  
–1.ꢃ  
–1.ꢃ  
%Fꢀ  
%Fꢀ  
l
–ꢃ.6  
ꢃ.0  
Offset Drift  
20  
µV/°C  
Full-ꢀcale Drift  
ꢁnternal Reference  
External Reference  
ꢃ5  
25  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Ioise  
External Reference  
0.2  
%Fꢀ  
mV  
External Reference  
1.2  
LꢀS  
RMꢀ  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Differential Analog ꢁnput Range (CH – CH ) LTM9012-AS  
at –1dSFꢀ  
0.2  
V
P-P  
ꢁI  
+
V
V
Analog ꢁnput Common Mode (CH + CH )/2 Differential Analog ꢁnput (Iote 9)  
External Voltage Reference Applied to ꢀEIꢀE External Reference Mode  
0 to 1.5  
1.250  
100  
V
V
ꢁI(CM)  
0.625  
1.ꢃ00  
ꢀEIꢀE  
R
Differential ꢁnput Resistance  
LTM9012-AS  
Ω
ꢁI  
l
l
t
t
ꢁnput Leakage Current  
0 < PAR/SER < V  
–ꢃ  
–6  
6
µA  
µA  
ns  
ꢁI(P/ꢀ)  
ꢁI(ꢀEIꢀE)  
AP  
DD  
ꢁnput Leakage Current  
0.625V < ꢀEIꢀE < 1.ꢃV  
ꢀample-and-Hold Acquisition Delaꢂ Time  
ꢀample-and-Hold Acquisition Delaꢂ Jitter  
Analog ꢁnput Common Mode Rejection Ratio  
ꢃdS Corner of ꢁnternal Lowpass Filter  
0
0.15  
90  
ps  
JꢁTTER  
RMꢀ  
CMRR  
dS  
SW-ꢃdS  
90  
MHz  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 6)  
SYMBOL  
ꢀIR  
PARAMETER  
CONDITIONS  
70MHz ꢁnput  
70MHz ꢁnput  
MIN  
66.5  
66.9  
TYP  
68.ꢃ  
78  
MAX  
UNITS  
dSFꢀ  
dSFꢀ  
l
l
ꢀignal-to-Ioise Ratio  
ꢀFDR  
ꢀpurious Free Dꢂnamic Range  
2nd or ꢃrd Harmonic  
l
l
ꢀpurious Free Dꢂnamic Range  
4th Harmonic or Higher  
70MHz ꢁnput  
76.9  
64.7  
86  
dSFꢀ  
ꢀ/I+D  
ꢀignal-to-Ioise Plus Distortion Ratio  
Crosstalk, Iear Channel  
70MHz ꢁnput  
66.7  
70  
dSFꢀ  
dSc  
10MHz (Iote 12)  
10MHz (Iote 12)  
Crosstalk, Far Channel  
90  
dSc  
9012fa  
3
For more information www.linear.com/LTM9012  
LTM9012  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
1.250  
25  
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
1.225  
1.275  
REF  
REF  
REF  
REF  
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400μA < ꢁ  
< 1mA  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential ꢁnput Voltage  
(Iote 9)  
0.2  
V
ꢁD  
Common Mode ꢁnput Voltage  
ꢁnternallꢂ ꢀet  
Externallꢂ ꢀet (Iote 9)  
1.2  
V
V
ꢁCM  
l
l
1.1  
0.2  
1.6  
ꢃ.6  
+
V
ꢁnput Voltage Range  
ꢁnput Resistance  
EIC , EIC to GID  
(ꢀee Figure ꢃ)  
V
kΩ  
pF  
ꢁI  
R
10  
ꢁI  
C
ꢁnput Capacitance  
ꢃ.5  
ꢁI  
Single-Ended Encode Mode (ENC Tied to GND)  
V
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
ꢁnput Voltage Range  
ꢁnput Resistance  
V
V
= 1.8V  
= 1.8V  
1.26  
0.54  
0 to ꢃ.6  
ꢃ0  
V
V
ꢁH  
ꢁL  
ꢁI  
DD  
DD  
+
EIC to GID  
(ꢀee Figure 4)  
V
R
kΩ  
pF  
ꢁI  
C
ꢁnput Capacitance  
ꢃ.5  
ꢁI  
Digital Inputs (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
ꢁnput Current  
V
V
V
= 1.8V  
1.ꢃ  
V
V
ꢁH  
ꢁL  
DD  
DD  
ꢁI  
l
l
= 1.8V  
0.6  
10  
= 0V to ꢃ.6V  
–10  
µA  
pF  
ꢁI  
C
ꢁnput Capacitance  
200  
ꢁI  
SDO Output (Serial Programming Mode. Open-Drain Output. Requires 2k Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GID  
Logic High Output Leakage Current  
Output Capacitance  
V
DD  
= 1.8V, DO = 0V  
Ω
µA  
pF  
OH  
l
ꢀDO = 0V to ꢃ.6V  
–10  
10  
OH  
C
OUT  
Digital Input (SHDN)  
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
SHDN Pull-Up Resistor  
V
V
V
= ꢃ.ꢃV  
= ꢃ.ꢃV  
0.97  
0.95  
150  
1.4  
V
V
ꢁH  
ꢁL  
CC  
0.6  
90  
CC  
R
= 0V to 0.5V  
SHDN  
210  
kΩ  
SHDN  
Digital Data Outputs  
l
l
V
OD  
Differential Output Voltage  
100Ω Differential Load, ꢃ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
ꢃ50  
175  
454  
250  
mV  
mV  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, ꢃ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
1.ꢃ75  
1.ꢃ75  
V
V
Oꢀ  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
9012fa  
4
For more information www.linear.com/LTM9012  
LTM9012  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Iote 10)  
MIN  
1.7  
1.7  
2.7  
TYP  
1.8  
1.8  
ꢃ.ꢃ  
298  
MAX  
1.9  
UNITS  
l
l
l
l
V
DD  
ADC ꢀupplꢂ Voltage  
V
V
OV  
DD  
ADC Output ꢀupplꢂ Voltage  
Amplifier ꢀupplꢂ Voltage  
ADC ꢀupplꢂ Current  
(Iote 10)  
1.9  
V
CC  
(Iote 10)  
ꢃ.6  
V
ꢀine Wave ꢁnput  
ꢃ20  
mA  
VDD  
l
l
ADC Output ꢀupplꢂ Current  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢃ.5mA Mode  
27  
49  
ꢃ1  
54  
mA  
mA  
OVDD  
l
Amplifier ꢀupplꢂ Current  
208  
224  
mA  
VCC  
l
l
P
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢃ.5mA Mode  
1271  
1ꢃ11  
147ꢃ  
1517  
mW  
mW  
Dꢁꢀꢀ  
P
P
P
mW  
mW  
mW  
ꢀLEEP  
IAP  
85  
20  
Power Decrease with ꢀingle-Ended  
Encode Mode Enabled  
DꢁFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 6)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
t
ꢀampling Frequencꢂ  
(Iote 10, Iote 11)  
5
125  
MHz  
l
l
EIC Low Time (Iote 9)  
Dutꢂ Cꢂcle ꢀtabilizer Off  
Dutꢂ Cꢂcle ꢀtabilizer On  
ꢃ.8  
2
4
4
100  
100  
ns  
ns  
EICL  
l
l
t
t
EIC High Time (Iote 9)  
Dutꢂ Cꢂcle ꢀtabilizer Off  
Dutꢂ Cꢂcle ꢀtabilizer On  
ꢃ.8  
2
4
4
100  
100  
ns  
ns  
EICH  
AP  
ꢀample-and-Hold  
Acquisition Delaꢂ Time  
0
ns  
Digital Data Outputs (R  
= 100Ω Differential, C = 2pF to GND on Each Output)  
L
TERM  
t
ꢀerial Data Sit Period  
2-Lanes, 16-Sit ꢀerialization  
2-Lanes, 14-Sit ꢀerialization  
2-Lanes, 12-Sit ꢀerialization  
1-Lane, 16-Sit ꢀerialization  
1-Lane, 14-Sit ꢀerialization  
1-Lane, 12-Sit ꢀerialization  
1/(8•f )  
sec  
sec  
sec  
sec  
sec  
sec  
ꢀER  
1/(7f )  
1/(6f )  
1/(16f )  
1/(14f )  
1/(12f )  
l
l
l
t
t
t
t
t
FR to DCO Delaꢂ  
DATA to DCO Delaꢂ  
Propagation Delaꢂ  
Output Rise Time  
Output Fall Time  
(Iote 9)  
0.35•t  
0.35•t  
0.5•t  
0.5•t  
0.65•t  
0.65•t  
sec  
sec  
sec  
ns  
FRAME  
DATA  
PD  
ꢀER  
ꢀER  
ꢀER  
ꢀER  
(Iote 9)  
ꢀER  
ꢀER  
(Iote 9)  
0.7n + 2•t  
1.1n + 2•t  
1.5n + 2•t  
ꢀER  
ꢀER  
ꢀER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
R
ns  
F
DCO Cꢂcle-Cꢂcle Jitter  
Pipeline Latencꢂ  
t
= 1ns  
ps  
P-P  
ꢀER  
6
Cꢂcles  
SPI Port Timing (Note 9)  
l
l
t
ꢀCK Period  
Write Mode  
40  
ns  
ns  
ꢀCK  
Read Sack Mode, C  
= 20pF, R  
= 2k  
= 2k  
250  
ꢀDO  
ꢀDO  
PULLUP  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to ꢀCK ꢀetup Time  
ꢀCK to CS ꢀetup Time  
ꢀDꢁ ꢀetup Time  
5
5
5
5
ns  
ns  
H
ns  
Dꢀ  
DH  
DO  
ꢀDꢁ Hold Time  
ns  
ꢀCK Falling to ꢀDO Valid  
Read Sack Mode, C  
= 20pF, R  
125  
ns  
9012fa  
5
For more information www.linear.com/LTM9012  
LTM9012  
elecTrical characTerisTics  
Note 1: ꢀtresses beꢂond those listed under Absolute Maximum Ratings  
maꢂ cause permanent damage to the device. Exposure to anꢂ Absolute  
Maximum Rating condition for extended periods maꢂ affect device  
reliabilitꢂ and lifetime.  
Note 6: V = ꢃ.ꢃV, V = OV = 1.8V, f  
= 125MHz, 2-lane output  
ꢀAMPLE  
CC  
DD  
+
DD  
mode, differential EIC /EIC = 2V sine wave, input range = 200mV  
P-P  
P-P  
with differential drive, unless otherwise noted.  
Note 7: ꢁntegral nonlinearitꢂ is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 2: All voltage values are with respect to GID (unless otherwise  
noted).  
Note 3: ꢁnput pins are protected bꢂ steering diodes to either supplꢂ. ꢁf  
Note 8: Offset error is the offset voltage measured from –0.5 LꢀS when  
the output code flickers between 00 0000 0000 0000 and 11 1111 1111  
1111 in 2’s complement output mode.  
Note 9: Guaranteed bꢂ design, not subject to test.  
Note 10: Recommended operating conditions.  
the inputs should exceed either supplꢂ voltage, the input current should  
+
be limited to less than 10mA. ꢁn addition, the inputs CHn , CHn are  
protected bꢂ a pair of back-to-back diodes. ꢁf the differential input voltage  
exceeds 1.4V, the input current should be limited to less than 10mA.  
Note 4: When these pin voltages are taken below GID or above V , theꢂ  
DD  
Note 11: The maximum sampling frequencꢂ depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
will be clamped bꢂ internal diodes. This product can handle input currents  
greater than 100mA below GID or above V without latchup.  
DD  
data rate is 1000Mbps so t  
must be greater than or equal to 1ns.  
ꢀER  
Note 5: When these pin voltages are taken below GID theꢂ will be  
clamped bꢂ internal diodes. When these pin voltages are taken above V  
theꢂ will not be clamped bꢂ internal diodes. This product can handle input  
currents greater than 100mA below GID without latchup.  
Note 12: Iear-channel crosstalk refers to CH1 and CH2. Far channel  
crosstalk refers to CH1 to CH4.  
DD  
TiMing DiagraMs  
2-Lane Output Mode, 16-Bit Serialization*  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D5 D3 D1  
0
0
D13 D11 D9 D7 D5 D3 D1  
0
D13 D11 D9  
D12 D10 D8  
+
OUT#A  
OUT#B  
D4 D2 D0  
SAMPLE N-6  
D12 D10 D8 D6 D4 D2 D0  
SAMPLE N-5  
0
+
OUT#B  
SAMPLE N-4  
9012 TD01  
*SEE THE DIGITAL OUTPUTS SECTION  
9012fa  
6
For more information www.linear.com/LTM9012  
LTM9012  
TiMing DiagraMs  
2-Lane Output Mode, 14-Bit Serialization  
t
AP  
N+2  
ANALOG  
N
INPUT  
N+1  
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9 D7 D5 D3 D1 D13 D11 D9  
+
OUT#A  
OUT#B  
D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8 D6 D4 D2 D0 D12 D10 D8  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
SAMPLE N-3  
9012 TD02  
+
+
NOTE THAT IN THIS MODE FR /FR HAS TWO TIMES THE PERIOD OF ENC /ENC  
2-Lane Output Mode, 12-Bit Serialization  
t
AP  
ANALOG  
INPUT  
N
N+1  
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
t
SER  
FRAME  
DATA  
+
FR  
FR  
t
PD  
SER  
OUT#A  
D9 D7 D5 D3 D13 D11 D9 D7 D5 D3 D13 D11 D9  
+
OUT#A  
OUT#B  
D8 D6 D4 D2 D12 D10 D8 D6 D4 D2 D12 D10 D8  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
9012 TD03  
9012fa  
7
For more information www.linear.com/LTM9012  
LTM9012  
TiMing DiagraMs  
1-Lane Output Mode, 16-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D1 D0  
0
0
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
D13 D12 D11 D10  
+
OUT#A  
9012 TD04  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
1-Lane Output Mode, 14-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D3 D2 D1 D0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D13 D12 D11 D10  
+
OUT#A  
9012 TD05  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
+
OUT#B , OUT#B ARE DISABLED  
9012fa  
8
For more information www.linear.com/LTM9012  
LTM9012  
TiMing DiagraMs  
1-Lane Output Mode, 12-Bit Serialization  
t
AP  
N+1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
t
SER  
PD  
OUT#A  
D5 D4 D3 D2 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D13 D12 D11  
+
OUT#A  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
9012 TD06  
+
OUT#B , OUT#B ARE DISABLED  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
9012 TD07  
HIGH IMPEDANCE  
9012fa  
9
For more information www.linear.com/LTM9012  
LTM9012  
Typical perForMance characTerisTics  
IOVDD vs Sample Rate, 5MHz Sine  
Wave Input –1dBFS  
64K Point FFT, fIN = 5MHz,  
–1dBFS, SENSE = VDD  
64K Point FFT, fIN = 70MHz,  
–1dBFS, SENSE = VDD  
0
–10  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
1-LANE 1.75mA  
1-LANE 3.5mA  
2-LANE 1.75mA  
2-LANE 3.5mA  
–100  
–110  
–120  
–100  
–110  
–120  
35 40  
45 50 55 60  
50  
SAMPLE RATE (Msps)  
35 40  
0
5
10 15 20 25 30  
0
25  
75  
100  
125  
0
5
10 15 20 25 30  
45 50 55 60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
9012 G03  
9012 G01  
9012 G02  
64K Point 2-Tone FFT, fIN = 4.8MHz  
and fIN = 5.2MHz, –7dBFS per Tone,  
SENSE = VDD  
64K Point 2-Tone FFT, fIN = 70MHz  
and fIN = 75MHz, –7dBFS per Tone,  
SENSE = VDD  
Differential Non-Linearity (DNL)  
vs Output Code  
0
–10  
0
–10  
0.5  
0.4  
–20  
–20  
0.3  
–30  
–30  
0.2  
–40  
–40  
0.1  
–50  
–50  
–60  
–60  
0
–70  
–70  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
35 40  
35 40  
45 50 55 60  
0
5
10 15 20 25 30  
45 50 55 60  
0
5
10 15 20 25 30  
4096  
8192  
12288  
16384  
0
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CODE  
9012 G04  
9012 G05  
9012 G06  
Integral Non-Linearity (INL)  
vs Output Code  
Pulse Response  
Frequency Response  
2.0  
1.5  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
0
–5  
1.0  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
4096  
8192  
12288  
16384  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TIME (µs)  
1
1
10  
100  
1000  
OUTPUT CODE  
BASEBAND FREQUENCY (MHz)  
9012 G07  
9012 G08  
9012 G09  
9012fa  
10  
For more information www.linear.com/LTM9012  
LTM9012  
pin FuncTions  
V
(H10, H13): Channel 1 Amplifier ꢀupplꢂ. V is  
operating mode. Connecting SHDN2 to GID results in a  
CC1  
CC  
internallꢂ bꢂpassed to ground with 0.1µF in parallel with  
0.01µF ceramic capacitors, additional bꢂpass capacitance  
is optional. The recommended operating voltage is ꢃ.ꢃV.  
low power shutdown state on amplifier 2.  
SHDN3 (D3): Channel ꢃ Amplifier ꢀhutdown. Connect-  
ing SHDN3 to V or floating results in normal (active)  
CC  
V
CC2  
(C8, C12): Channel 2 Amplifier ꢀupplꢂ. V is in-  
operating mode. Connecting SHDN3 to GID results in a  
CC  
ternallꢂ bꢂpassed to ground with 0.1µF in parallel with  
0.01µF ceramic capacitors, additional bꢂpass capacitance  
is optional. The recommended operating voltage is ꢃ.ꢃV.  
low power shutdown state on amplifier ꢃ.  
SHDN4 (G1): Channel 4 Amplifier ꢀhutdown. Connect-  
ing SHDN4 to V or floating results in normal (active)  
CC  
V
(C2, C6): Channel ꢃ Amplifier ꢀupplꢂ. V is in-  
operating mode. Connecting SHDN4 to GID results in a  
CC3  
CC  
ternallꢂ bꢂpassed to ground with 0.1µF in parallel with  
0.01µF ceramic capacitors, additional bꢂpass capacitance  
is optional. The recommended operating voltage is ꢃ.ꢃV.  
low power shutdown state on amplifier 4.  
+
ENC (N1): Encode ꢁnput. Conversion starts on the rising  
edge.  
V
(H1, H4): Channel 4 Amplifier ꢀupplꢂ. V is in-  
CC  
CC4  
ENC (P1): Encode Complement ꢁnput. Conversion starts  
ternallꢂ bꢂpassed to ground with 0.1µF in parallel with  
0.01µF ceramic capacitors, additional bꢂpass capacitance  
is optional. The recommended operating voltage is ꢃ.ꢃV.  
on the falling edge.  
CS (P4): ꢁn serial programming mode, (PAR/SER = 0V),  
CS is the serial interface chip select input. When CS is  
low, ꢀCK is enabled for shifting data on ꢀDꢁ into the mode  
controlregisters.ntheparallelprogrammingmode(PAR/  
V
DD  
(N4, N5, N9, N10): ADC Analog ꢀupplꢂ. V is inter-  
DD  
nallꢂ bꢂpassed to ground with 0.1µF ceramic capacitors,  
additional bꢂpass capacitance is optional. The recom-  
mended operating voltage is 1.8V.  
SER = V ), CS selects 2-lane or 1-lane output mode. CS  
DD  
can be driven with 1.8V to ꢃ.ꢃV logic.  
OV (R7, R8, S8): ADC Digital Output ꢀupplꢂ. OV  
DD  
DD  
SCK (P5): ꢁn serial programming mode, (PAR/SER =  
is internallꢂ bꢂpassed to ground with 0.1µF ceramic ca-  
pacitors, additional bꢂpass capacitance is optional. The  
recommended operating voltage is 1.8V.  
0V), ꢀCK is the serial interface clock input. ꢁn the parallel  
programmingmode(PAR/SER=V ),CKselects.5mA  
DD  
or 1.75mA LVDꢀ output currents. ꢀCK can be driven with  
1.8V to ꢃ.ꢃV logic.  
GND: Ground. Use multiple vias close to pins.  
+
CH1 (A11): Channel 1 Ioninverting Analog ꢁnput.  
SDI (P3): ꢁn serial programming mode, (PAR/SER = 0V),  
ꢀDistheserialinterfacedatanput.DataonDisclocked  
into the mode control registers on the rising edge of ꢀCK.  
CH1 (A12): Channel 1 ꢁnverting Analog ꢁnput.  
+
CH2 (A8): Channel 2 Ioninverting Analog ꢁnput.  
ꢁn the parallel programming mode (PAR/SER = V ), ꢀDꢁ  
DD  
can be used to power down the part. ꢀDꢁ can be driven  
with 1.8V to ꢃ.ꢃV logic.  
CH2 (A9): Channel 2 ꢁnverting Analog ꢁnput.  
+
CH3 (A5): Channel ꢃ Ioninverting Analog ꢁnput.  
SDO (P9): ꢁn serial programming mode, (PAR/SER = 0V),  
ꢀDO is the optional serial interface data output. Data on  
ꢀDO is read back from the mode control registers and can  
be latched on the falling edge of ꢀCK. ꢀDO is an open-  
drain IMOꢀ output that requires an external 2k pull-up  
resistor to 1.8V – ꢃ.ꢃV. f read back from the mode control  
registers is not needed, the pull-up resistor is not neces-  
sarꢂ and ꢀDO can be left unconnected. ꢁn the parallel  
CH3 (A6): Channel ꢃ ꢁnverting Analog ꢁnput.  
+
CH4 (A2): Channel 4 Ioninverting Analog ꢁnput.  
CH4 (A3): Channel 4 ꢁnverting Analog ꢁnput.  
SHDN1 (G11): Channel 1 Amplifier ꢀhutdown. Connect-  
ing SHDN1 to V or floating results in normal (active)  
CC  
operating mode. Connecting SHDN1 to GID results in a  
programming mode (PAR/SER = V ), ꢀDO is an input  
low power shutdown state on amplifier 1.  
DD  
that enables internal 100Ω termination resistors. When  
used as an input, ꢀDO can be driven with 1.8V to ꢃ.ꢃV  
SHDN2 (D9): Channel 2 Amplifier ꢀhutdown. Connect-  
ing SHDN2 to V or floating results in normal (active)  
CC  
logic through a 1k series resistor.  
9012fa  
11  
For more information www.linear.com/LTM9012  
LTM9012  
pin FuncTions  
PAR/SER (P10): Programming Mode ꢀelection Pin. Con-  
necttogroundtoenabletheserialprogrammingmode.CS,  
ꢀCK, ꢀDꢁ and ꢀDO become a serial interface that controls  
LVDS Outputs  
All pins in this section are differential LVDꢀ outputs. The  
output current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDꢀ output pair.  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, ꢀCK, ꢀDꢁ and ꢀDO  
become parallel logic inputs that control a reduced set of  
the A/D operating modes. PAR/SER should be connected  
+
+
OUT1A /OUT1A , OUT1B /OUT1B (Q9/Q10, R11/R12):  
ꢀerial data outputs for Channel 1. ꢁn 1-lane output mode  
directlꢂ to ground or the V of the part and not be driven  
bꢂ a logic signal.  
DD  
+
onlꢂ OUT1A /OUT1A are used.  
+
+
OUT2A /OUT2A , OUT2B /OUT2B (R9/R10, S11/S12):  
V
(P11): Reference Voltage Output. V  
is internallꢂ  
REF  
REF  
ꢀerial data outputs for Channel 2. ꢁn 1-lane output mode  
bꢂpassed to ground with a 2.2μF ceramic capacitor, nomi-  
nallꢂ 1.25V.  
+
onlꢂ OUT2A /OUT2A are used.  
+
+
OUT3A /OUT3A , OUT3B /OUT3B (S2/S3, R4/R5): ꢀe-  
SENSE (N11): Reference Programming Pin. Connecting  
rial data outputs for Channel ꢃ. ꢁn 1-lane output mode  
ꢀEIꢀE to V selects the internal reference and a 0.1V  
DD  
+
onlꢂ OUTꢃA /OUTꢃA are used.  
input range. Connecting ꢀEIꢀE to ground selects the  
internal reference and a 0.05V input range. An external  
reference between 0.625V and 1.ꢃV applied to ꢀEIꢀE  
+
+
OUT4A /OUT4A , OUT4B /OUT4B (R2/R3, Q4/Q5): ꢀe-  
rial data outputs for Channel 4. ꢁn 1-lane output mode  
selects an input range of ±0.08 • V  
nallꢂ bꢂpassed to ground with a 0.1μF ceramic capacitor.  
. ꢀEIꢀE is inter-  
ꢀEIꢀE  
+
onlꢂ OUT4A /OUT4A are used.  
+
FR /FR (S4/S5): Frame ꢀtart Output.  
+
DCO /DCO (S9/S10): Data Clock Output.  
pin conFiguraTion Table  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
+
+
+
+
A
B
C
D
E
GID  
GID  
GID  
GID  
GID  
GID  
SHDN4  
CH4  
CH4  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
CHꢃ  
CHꢃ  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
OVDD  
GID  
CH2  
CH2  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
CH1  
CH1  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
SHDN3  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
ꢀDꢁ  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
SHDN2  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
SHDN1  
GID  
GID  
GID  
GID  
GID  
ꢀEIꢀE  
REF  
GID  
V
V
V
V
CC2  
CCꢃ  
CCꢃ  
CC2  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
OUT4A  
OUTꢃA  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
OVDD  
OVDD  
GID  
GID  
F
GID  
G
H
J
GID  
V
V
V
CC1  
GID  
V
CC1  
CC4  
CC4  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
GID  
K
L
GID  
GID  
M
N
P
Q
R
S
GID  
+
EIC  
EIC–  
GID  
GID  
GID  
V
DD  
V
V
DD  
V
DD  
GID  
DD  
CS  
ꢀCK  
OUT4S  
OUTꢃS  
ꢀDO  
OUT1A  
OUT2A  
PAR/SER  
GID  
+
+
+
GID  
OUT4S  
OUTꢃS  
OUT1A  
GID  
GID  
+
+
+
+
OUT4A  
OUTꢃA  
OUT2A  
OUT1S  
OUT2S  
OUT1S  
OUT2S  
+
+
+
FR  
FR  
DCO  
DCO  
9012fa  
12  
For more information www.linear.com/LTM9012  
LTM9012  
block DiagraM  
3.3V  
1.8V  
1.8V  
V
CC  
V
OV  
DD  
DD  
LTM9012  
+
OUT1A  
CH 1  
ANALOG  
INPUT  
OUT1A  
14-BIT  
ADC CORE  
+
OUT1B  
OUT1B  
DATA  
SERIALIZER  
SHDN1  
V
DD/2  
+
OUT2A  
CH 2  
ANALOG  
INPUT  
OUT2A  
14-BIT  
ADC CORE  
+
OUT2B  
OUT2B  
SHDN2  
+
OUT3A  
CH 3  
ANALOG  
INPUT  
OUT3A  
14-BIT  
ADC CORE  
+
OUT3B  
OUT3B  
SHDN3  
V
DD/2  
+
OUT4A  
CH 4  
ANALOG  
INPUT  
OUT4A  
14-BIT  
ADC CORE  
+
OUT4B  
OUT4B  
SHDN4  
+
ENC  
DCO  
FR  
PLL  
ENC  
V
REF  
1.25V  
REFERENCE  
SDO  
SDI  
REFH REFL  
MODE  
CONTROL  
REGISTERS  
SCK  
CS  
PAR/SER  
RANGE  
SELECT  
REF  
BUFFER  
DIFF. REF.  
AMP.  
SENSE  
GND  
9012 BD  
Figure 1. Block Diagram  
9012fa  
13  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
CONVERTER OPERATION  
The gain of the LTM9012 maꢂ also be decreased from  
the nominal value bꢂ adding resistance in series with  
the signal inputs. The internal op amps are fed bꢂ 49.9Ω  
series resistors and emploꢂ 511Ω feedback resistors. The  
voltage gain of the stage is set bꢂ the ratio of the feedback  
resistance to the total series resistance. Unitꢂ gain, for  
example, can be realized bꢂ adding a 464Ω resistor in  
series with each input.  
The LTM9012 is a low power, 4-channel, 14-bit, 125Msps  
A/D converter that is powered bꢂ a 1.8V ADC supplꢂ and  
ꢃ.ꢃV driver supplies. Each input includes a fixed gain,  
differential amplifier. The analog inputs can be driven dif-  
ferentiallorsingle-ended.Theencodeinputcanbedriven  
differentiallforoptimaljitterperformance,orsingle-ended  
forlowerpowerconsumption.Thedigitaloutputsareserial  
LVDꢀ to minimize the number of data lines. Each channel  
outputstwobitsatatime(2-lanemode).Atlowersampling  
rates there is a one bit per channel option (1-lane mode).  
Manꢂ additional features can be chosen bꢂ programming  
the mode control registers through a serial ꢀPꢁ port.  
Reference  
The LTM9012 has an internal 1.25V voltage reference. For  
a 2V input range using the internal reference with a unitꢂ  
gaininternalamplifierconfiguration,connectEIꢀEtoV .  
DD  
For a 1V input range using the internal reference, connect  
ꢀEIꢀE to ground. For a 2V input range with an external  
reference, applꢂ a 1.25V reference voltage to ꢀEIꢀE.  
Analog Inputs  
The analog inputs for each channel of the LTM9012 con-  
sist of a differential amplifier with fixed gain followed bꢂ  
a lowpass filter. The 10x gain version has 49.9Ω series  
resistance in each input.  
The input range can be adjusted bꢂ applꢂing a voltage to  
ꢀEIꢀE that is between 0.625V and 1.ꢃ0V. The input range  
will then be 1.6 • V  
.
ꢀEIꢀE  
The differential input can support single-ended operation  
bꢂ connecting the inverting input to a fixed DC voltage or  
ground. However, if ground is used, there will be a 6dS  
lossofdꢂnamicrange. Formaximumdꢂnamicrange, con-  
nect the inverting inputs of the LTM9012 to a DC voltage  
equal to the median of the voltage excursions of the non-  
inverting input. An op amp provides an excellent means  
of providing a low impedance voltage source capable of  
sourcing and sinking small amounts of current. Iote the  
value of this DC voltage should fall between the limits of  
allowable input common mode voltages. ꢀee Figure 2 for  
an example.  
The reference is shared bꢂ all four ADC channels, so it is  
not possible to independentlꢂ adjust the input range of  
individual channels.  
Encode Input  
The signal qualitꢂ of the encode inputs stronglꢂ affects  
the A/D noise performance. The encode inputs should be  
treatedasanalogsignals—donotroutethemnexttodigital  
traces on the circuit board. There are two modes of opera-  
tion for the encode inputs: the differential encode mode  
(Figure ꢃ), and the single-ended encode mode (Figure 4).  
Thedifferentialencodemodeisrecommendedforsinusoi-  
dal, PECL, or LVDꢀ encode inputs (Figure 5 and Figure 6).  
The encode inputs are internallꢂ biased to 1.2V through  
10k equivalent resistance. The encode inputs can be taken  
LTM9012  
(1 CHANNEL SHOWN)  
SIGNAL  
+
above V (up to ꢃ.6V), and the common mode range is  
DD  
from 1.1V to 1.6V. n the differential encode mode, EIC  
should staꢂ at least 200mV above ground to avoid falselꢂ  
triggering the single-ended encode mode. For good jitter  
¼LTC6254  
V
REF  
+
9012 F02  
+
performance EIC should have fast rise and fall times.  
0.1µF  
R
F
SET V  
EQUAL TO THE DC MEDIAN OF THE SIGNAL VOLTAGE  
REF  
Figure 2. Single-Ended Operation  
9012fa  
14  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Thesingle-endedencodemodeshouldbeusedwithCMOꢀ  
LTM9012  
V
DD  
encode inputs. To select this mode, EIC is connected  
DIFFERENTIAL  
COMPARATOR  
+
to ground and EIC is driven with a square wave encode  
V
DD  
+
input. EIC can be taken above V (up to ꢃ.6V) so 1.8V  
DD  
+
to.ꢃVCMOlogiclevelscanbeused.TheEIC threshold  
15k  
30k  
+
is 0.9V. For good jitter performance EIC should have fast  
+
ENC  
rise and fall times.  
ENC  
Clock PLL and Duty Cycle Stabilizer  
Theencodeclockismultipliedbaninternalphase-locked  
loop (PLL) to generate the serial digital output data. ꢁf the  
encode signal changes frequencꢂ or is turned off, the PLL  
requires 25μs to lock onto the input clock.  
9012 F03  
Figure 3. Equivalent Encode Input Circuit  
for Differential Encode Mode  
A clock dutꢂ cꢂcle stabilizer circuit allows the dutꢂ cꢂcle  
of the applied encode signal to varꢂ from ꢃ0% to 70%.  
ꢁn the serial programming mode it is possible to disable  
the dutꢂ cꢂcle stabilizer, but this is not recommended. ꢁn  
the parallel programming mode the dutꢂ cꢂcle stabilizer  
is alwaꢂs enabled.  
LTM9012  
+
1.8V TO 3.3V  
0V  
ENC  
30k  
ENC  
CMOS LOGIC  
BUFFER  
9012 F04  
Figure 4. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
DIGITAL OUTPUTS  
The digital outputs of the LTM9012 are serialized LVDꢀ  
signals. Each channel outputs two bits at a time (2-lane  
mode). At lower sampling rates there is a one bit per chan-  
nel option (1-lane mode). The data can be serialized with  
16-, 14-, or 12-bit serialization (see the Timing Diagrams  
fordetails).Iotethatwith12-bitserializationthetwoLꢀSs  
are not available—this mode is included for compatibilitꢂ  
with potential 12-bit versions of these parts.  
0.1µF  
+
T1  
ENC  
LTM9012  
50Ω  
50Ω  
100Ω  
0.1µF  
0.1µF  
ENC  
The output data should be latched on the rising and falling  
edges of the data clock out (DCO). A data frame output  
(FR) can be used to determine when the data from a new  
conversionresultbegins. ꢁnthe2-lane, 14-bitserialization  
mode, the frequencꢂ of the FR output is halved.  
9012 F05  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 5. Sinusoidal Encode Drive  
Themaximumserialdatarateforthedataoutputsis1Gbps,  
so the maximum sample rate of the ADC will depend on  
the serialization mode as well as the speed grade of the  
0.1µF  
+
ENC  
PECL OR  
LTM9012  
LVDS  
CLOCK  
0.1µF  
ENC  
9012 F06  
Figure 6. PECL or LVDS Encode Drive  
9012fa  
15  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
ADC (see Table 1). The minimum sample rate for all seri-  
alization modes is 5Msps.  
DATA FORMAT  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. Sꢂ default the  
output data format is offset binarꢂ. The 2’s complement  
format can be selected bꢂ seriallꢂ programming mode  
control register A1.  
Sꢂ default the outputs are standard LVDꢀ levels: ꢃ.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDꢀ output pair. The termination  
resistors should be located as close as possible to the  
LVDꢀ receiver.  
Table 2. Output Codes vs Input Voltage  
+
CHn TO CHn  
D13 TO D0  
(OFFSET BINARY)  
D13 TO D0  
(2s COMPLEMENT)  
(0.2V RANGE)  
The outputs are powered bꢂ OV which is isolated from  
DD  
>0.1000000V  
+0.0999878V  
+0.0999756V  
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
the A/D core power.  
Programmable LVDS Output Current  
+0.0000122V  
+0.0000000V  
–0.0000122V  
–0.0000244V  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
The default output driver current is ꢃ.5mA. This current  
can be adjusted bꢂ control register A2 in the serial pro-  
gramming mode. Available current levels are 1.75mA,  
2.1mA, 2.5mA, ꢃmA, ꢃ.5mA, 4mA and 4.5mA. ꢁn the  
parallel programming mode the ꢀCK pin can select either  
ꢃ.5mA or 1.75mA.  
–0.0999878V  
–0.1000000V  
<–0.1000000V  
00 0000 0000 0000  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
Digital Output Randomizer  
Optional LVDS Driver Internal Termination  
ꢁnterference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemabefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tinꢂ coupling factor can cause unwanted tones  
in the ADC output spectrum. Sꢂ randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
ꢁn most cases using just an external 100Ω termination  
resistor will give excellent LVDꢀ signal integritꢂ. ꢁn addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbseriallprogrammingmodecontrolregister  
A2. The internal termination helps absorb anꢂ reflections  
caused bꢂ imperfect termination at the receiver. When the  
internalterminationisenabled, theoutputdrivercurrentis  
doubled to maintain the same output voltage swing. ꢁn the  
parallel programming mode the ꢀDO pin enables internal  
termination. ꢁnternalterminationshouldonlbeusedwith  
1.75mA, 2.1mA or 2.5mA LVDꢀ output current modes.  
The digital output is randomized bꢂ applꢂing an exclusive-  
OR logic operation between the LꢀS and all other data  
output bits. To decode, the reverse operation is applied  
—an exclusive-OR operation is applied between the LꢀS  
andallotherbits.TheFRandDCOoutputsarenotaffected.  
Table 1. Maximum Sampling Frequency for All Serialization Modes. The Sampling Frequency for Potential Slower Speed Grades  
Cannot Exceed fSAMPLE(MAX)  
.
MAXIMUM SAMPLING  
SERIALIZATION MODE  
16-Sit ꢀerialization  
FREQUENCY, f (MHz)  
DCO FREQUENCY  
4 • f  
FR FREQUENCY  
SERIAL DATA RATE  
S
2-Lane  
2-Lane  
2-Lane  
1-Lane  
1-Lane  
1-Lane  
125  
125  
125  
62.5  
71.4  
8ꢃ.ꢃ  
f
8 • f  
7 • f  
6 • f  
14-Sit ꢀerialization  
12-Sit ꢀerialization  
16-Sit ꢀerialization  
14-Sit ꢀerialization  
12-Sit ꢀerialization  
3.5 • f  
0.5 • f  
3 • f  
8 • f  
7 • f  
6 • f  
f
f
f
f
16 • f  
14 • f  
12 • f  
9012fa  
16  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Theoutputrandomizerisenabledbseriallprogramming  
mode control register A1.  
ADCdriverhasanindependentSHDNpinbutitisexpected  
that all four will be tied together.  
Digital Output Test Pattern  
DEVICE PROGRAMMING MODES  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
(D1ꢃ-D0) of all channels to known values. The digital  
output test patterns are enabled bꢂ seriallꢂ programming  
mode control registers Aꢃ and A4. When enabled, the test  
patterns override all other formatting modes: 2’s comple-  
ment and randomizer.  
TheoperatingmodesoftheLTM9012canbeprogrammed  
bꢂ either a parallel interface or a simple serial interface.  
The serial interface has more flexibilitꢂ and can program  
all available modes. The parallel interface is more limited  
and can onlꢂ program some of the more commonlꢂ used  
modes.  
Parallel Programming Mode  
Output Disable  
To use the parallel programming mode, PAR/SER should  
The digital outputs maꢂ be disabled bꢂ seriallꢂ program-  
ming mode control register A2. The current drive for all  
digital outputs including DCO and FR are disabled to save  
powerorenablein-circuittesting.Whendisabledthecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance maꢂ remain low.  
be tied to V . The CS, ꢀCK, ꢀDꢁ and ꢀDO pins are binarꢂ  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven bꢂ 1.8V, 2.5V, or  
DD  
ꢃ.ꢃV CMOꢀ logic. When used as an input, ꢀDO should  
be driven through a 1k series resistor. Table ꢃ shows the  
modes set bꢂ CS, ꢀCK, ꢀDꢁ and ꢀDO.  
Sleep and Nap Modes  
Table 3. Parallel Programming Mode Control Bits  
(PAR/SER = VDD  
)
The A/D maꢂ be placed in sleep or nap modes to conserve  
power. n sleep mode the entire chip is powered down, re-  
sultinginmWpowerconsumption.leepmodeisenabled  
bꢂ mode control register A1 (serial programming mode),  
or bꢂ ꢀDꢁ (parallel programming mode). The amount of  
time required to recover from sleep mode depends on the  
size of the bꢂpass capacitors on V , REFH, and REFL.  
Fortheinternalcapacitorvaluesandnoadditionalexternal  
capacitance, the A/D will stabilize after 2ms.  
PIN  
DESCRIPTION  
CS  
2-Lane/1-Lane Selection Bit  
0 = 2-Lane, 16-Sit ꢀerialization Output Mode  
1 = 1-Lane, 14-Sit ꢀerialization Output Mode  
ꢀCK  
ꢀDꢁ  
LVDS Current Selection Bit  
0 = ꢃ.5mA LVDꢀ Current Mode  
1 = 1.75mA LVDꢀ Current Mode  
REF  
Power Down Control Bit  
0 = Iormal Operation  
1 = ꢀleep Mode  
ꢁn nap mode anꢂ combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL staꢂ active, allowing faster wakeup than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cꢂcles. ꢁf the application demands verꢂ accurate DC  
settling then an additional 50μs should be allowed so the  
on-chip references can settle from the slight temperature  
shift caused bꢂ the change in supplꢂ current as the A/D  
leaves nap mode. Iap mode is enabled bꢂ mode control  
register A1 in the serial programming mode.  
ꢀDO  
Internal Termination Selection Bit  
0 = ꢁnternal Termination Disabled  
1 = ꢁnternal Termination Enabled  
Serial Programming Mode  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, ꢀCK, ꢀDꢁ and ꢀDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verifꢂ its contents.  
ꢀerial data transfer starts when CS is taken low. The data  
on the ꢀDꢁ pin is latched at the first 16 rising edges of  
ꢀCK. Anꢂ ꢀCK rising edges after the first 16 are ignored.  
Driver Amplifier Shutdown (SHDN)  
The ADC drivers maꢂ be placed in shutdown mode to  
conserve power independentlꢂ from the ADC core. Each  
The data transfer ends when CS is taken high again.  
9012fa  
17  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
The ꢀDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. ꢁf register data is read back  
through ꢀDO, an external 2k pull-up resistor is required. ꢁf  
serialdataisonlwrittenandreadbackisnotneeded, then  
ꢀDO can be left floating and no pull-up resistor is needed.  
Table 4 shows a map of the mode control registers.  
ꢁf the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set bꢂ the address bits (A6:A0). ꢁf the  
R/W bit is high, data in the register set bꢂ the address bits  
(A6:A0) will be read back on the ꢀDO pin (see the Timing  
Diagrams sections). During a read back command the  
register is not updated and data on ꢀDꢁ is ignored.  
Software Reset  
ꢁf serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h) WRITE ONLY  
D7  
D6  
X
D5  
X
D4  
X
Dꢃ  
X
D2  
X
D1  
X
D0  
X
REꢀET  
Sit 7  
RESET  
0 = Iot Used  
ꢀoftware Reset Sit  
1 = ꢀoftware Reset. All mode control registers are reset to 00h. The ADC is momentarilꢂ placed in ꢀleep mode.  
This bit is automaticallꢂ set back to zero at the end of the ꢀPꢁ Write command. The Reset register is Write onlꢂ.  
Data read back from the reset register will be random.  
Sits 6-0  
Unused, Don’t Care Sits.  
REGISTER A1: FORMAT AND POWER-DOWN REGISTER (ADDRESS 01h with CS = GND)  
D7  
D6  
D5  
D4  
Dꢃ  
D2  
D1  
D0  
DCꢀOFF  
RAID  
TWOꢀCOMP  
ꢀLEEP  
IAP_4  
IAP_ꢃ  
IAP_2  
IAP_1  
Sit 7  
Sit 6  
Sit 5  
DCSOFF  
0 = Clock Dutꢂ Cꢂcle ꢀtabilizer On  
Clock Dutꢂ Cꢂcle ꢀtabilizer Sit  
1 = Clock Dutꢂ Cꢂcle ꢀtabilizer Off. This is not recommended.  
RAND Data Output Randomizer Mode Control Sit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
Two’s Complement Mode Control Sit  
0 = Offset Sinarꢂ Data Format  
1 = Two’s Complement Data Format  
SLEEP: NAP_X  
Sits 4-0  
ꢀleep/Iap Mode Control Sits  
00000 = Iormal Operation  
0XXX1 = Channel 1 in Iap Mode  
0XX1X = Channel 2 in Iap Mode  
0X1XX = Channel ꢃ in Iap Mode  
01XXX = Channel 4 in Iap Mode  
1XXXX = ꢀleep Mode. Channels 1, 2, ꢃ and 4 are Disabled  
Iote: Anꢂ combination of these channels can be placed in Iap mode.  
9012fa  
18  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
D5  
D4  
Dꢃ  
D2  
D1  
D0  
LVDꢀ2  
LVDꢀ1  
LVDꢀ0  
TERMOI  
OUTOFF  
OUTMODE2  
OUTMODE1  
OUTMODE0  
Sits 7-5  
ILVDS2:ILVDS0  
LVDꢀ Output Current Sits  
000 = ꢃ.5mA LVDꢀ Output Driver Current  
001 = 4.0mA LVDꢀ Output Driver Current  
010 = 4.5mA LVDꢀ Output Driver Current  
011 = Iot Used  
100 = ꢃ.0mA LVDꢀ Output Driver Current  
101 = 2.5mA LVDꢀ Output Driver Current  
110 = 2.1mA LVDꢀ Output Driver Current  
111 = 1.75mA LVDꢀ Output Driver Current  
Sit 4  
TERMON  
LVDꢀ ꢁnternal Termination Sit  
0 = ꢁnternal Termination Off  
1 = ꢁnternal Termination On. LVDꢀ Output Driver Current is 2× the Current ꢀet bꢂ ꢁLVDꢀ2:ꢁLVDꢀ0. ꢁnternal termination should onlꢂ  
be used with 1.75mA, 2.1mA or 2.5mA LVDꢀ output current modes.  
Sit ꢃ  
OUTOFF  
Output Disable Sit  
0 = Digital Outputs are Enabled.  
1 = Digital Outputs are Disabled.  
OUTMODE2:OUTMODE0  
Sits 2-0  
Digital Output Mode Control Sits  
000 = 2-Lanes, 16-Sit ꢀerialization  
001 = 2-Lanes, 14-Sit ꢀerialization  
010 = 2-Lanes, 12-Sit ꢀerialization  
011 = Iot Used  
100 = Iot Used  
101 = 1-Lane, 14-Sit ꢀerialization  
110 = 1-Lane, 12-Sit ꢀerialization  
111 = 1-Lane, 16-Sit ꢀerialization  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
OUTTEꢀT  
D6  
X
D5  
TP1ꢃ  
D4  
TP12  
Dꢃ  
TP11  
D2  
TP10  
D1  
TP9  
D0  
TP8  
Sit 7  
Sit 6  
OUTTEST  
Digital Output Test Pattern Control Sit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Unused, Don’t Care Sit.  
TP13:TP8  
Sit 5-0  
Test Pattern Data Sits (MꢀS)  
TP1ꢃ:TP8 ꢀet the Test Pattern for Data Sit 1ꢃ(MꢀS) Through Data Sit 8.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
Dꢃ  
D2  
D1  
D0  
TP7  
TP6  
TP5  
TP4  
TPꢃ  
TP2  
TP1  
TP0  
Sit 7-0  
TP7:TP0  
Test Pattern Data Sits (LꢀS)  
TP7:TP0 ꢀet the Test Pattern for Data Sit 7 Through Data Sit 0(LꢀS).  
For more information www.linear.com/LTM9012  
9012fa  
19  
LTM9012  
applicaTions inForMaTion  
HEAT TRANSFER  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset is  
complete, bit D7 is automaticallꢂ set back to zero.  
Most of the heat generated bꢂ the LTM9012 is transferred  
from the die through the bottom side of the package  
through numerous ground pins onto the printed circuit  
board. Forgoodelectricalandthermalperformance, these  
pins should be connected to the internal ground planes  
bꢂ an arraꢂ of vias.  
GROUNDING AND BYPASSING  
The LTM9012 requires a printed circuit board with a  
clean unbroken ground plane. A multilaꢂer board with an  
internal ground plane in the first laꢂer beneath the ADC is  
recommended. Laꢂoutfortheprintedcircuitboard should  
ensure that digital and analog signal lines are separated as  
much as possible. ꢁn particular, care should be taken not  
to run anꢂ digital track alongside an analog signal track  
or underneath the ADC.  
Table 5. Internal Trace Lengths  
PIN  
Q9  
NAME  
(mm)  
0.5ꢃ5  
0.ꢃ50  
2.185  
2.216  
0.174  
0.667  
2.976  
2.972  
ꢃ.0ꢃꢃ  
ꢃ.0ꢃ1  
0.752  
0.ꢃ70  
2.1ꢃ0  
2.125  
0.ꢃꢃ2  
0.527  
7.741  
7.72ꢃ  
4.6ꢃ2  
4.629  
ꢃ.987  
ꢃ.988  
7.892  
7.896  
ꢃ.ꢃ17  
ꢃ.ꢃ25  
0.241  
1.912  
1.927  
2.097  
2.082  
0.226  
1.55ꢃ  
0.957  
1.184  
OUT1A  
OUT1A  
OUT1S  
OUT1S  
OUT2A  
OUT2A  
OUT2S  
OUT2S  
OUTꢃA  
OUTꢃA  
OUTꢃS  
OUTꢃS  
OUT4A  
OUT4A  
OUT4S  
OUT4S  
+
+
+
+
+
+
+
+
Q10  
R11  
R12  
R9  
R10  
ꢀ11  
ꢀ12  
ꢀ2  
Sꢂpass capacitors are integrated inside the package; ad-  
ditional capacitance is optional.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
ꢀꢃ  
R4  
R5  
R2  
LAYOUT RECOMMENDATIONS  
Rꢃ  
Q4  
ThepinassignmentsoftheLTM9012allowaflow-through  
laꢂout that makes it possible to use multiple parts in a  
small area when a large number of ADC channels are  
required. The LTM9012 has similar laꢂout rules to other  
SGA packages. The laꢂout can be implemented with 6mil  
blind vias and 5mil traces. The pinout has been designed  
to minimize the space required to route the analog and  
digital traces. The analog and digital traces can essentiallꢂ  
be routed within the width of the package. This allows  
multiple packages to be located close together for high  
channel count applications. Trace lengths for the analog  
inputs and digital outputs should be matched as well as  
possible.Table5liststhetracelengthsfortheanaloginputs  
and digital outputs inside the package from the die pad to  
the package pad. These should be added to the PCS trace  
lengths for best matching.  
Q5  
A12  
A11  
A9  
CH1  
+
CH1  
CH2  
+
A8  
CH2  
A6  
CHꢃ  
+
A5  
CHꢃ  
Aꢃ  
CH4  
+
A2  
CH4  
P1  
EIC  
+
I1  
EIC  
P4  
CS  
ꢀ9  
DCO  
+
ꢀ10  
ꢀ4  
DCO  
FR  
+
ꢀ5  
FR  
Figures 7 through Figure 11 show an example of a good  
PCS laꢂout.  
P10  
P5  
PAR/SER  
ꢀCK  
P9  
ꢀDO  
Pꢃ  
ꢀDꢁ  
9012fa  
20  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Figure 7. Layer 1 Component Side  
9012fa  
21  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Figure 8. Layer 2  
9012fa  
22  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Figure 9. Layer 3  
9012fa  
23  
For more information www.linear.com/LTM9012  
LTM9012  
applicaTions inForMaTion  
Figure 10. Back Side  
9012fa  
24  
For more information www.linear.com/LTM9012  
LTM9012  
Typical applicaTion  
D D  
V
D D  
V
D D  
V
D D  
V
D D  
D D  
D D  
O V  
O V  
O V  
S E N S E  
R E F  
V
S D I  
S D O  
S C K  
C S  
S E R A P R /  
C C 4  
V
C C 4  
V
C C 3  
V
C C 3  
V
C C 2  
V
C C 2  
V
C C 1  
V
C C 1  
V
9012fa  
25  
For more information www.linear.com/LTM9012  
LTM9012  
package DescripTion  
Please refer to http://www.linear.com/product/LTM9012#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
4 . 8 0  
4 . 0 0  
3 . 2 0  
2 . 4 0  
1 . 6 0  
0 . 8 0  
0 . 0 0  
0 . 8 0  
1 . 6 0  
2 . 4 0  
3 . 2 0  
4 . 0 0  
4 . 8 0  
3 . 7 5  
4 . 2 5  
9012fa  
26  
For more information www.linear.com/LTM9012  
LTM9012  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/17 Corrected pin names  
2, 12, 20,  
25, 28  
9012fa  
ꢁnformation furnished bꢂ Linear Technologꢂ Corporation is believed to be accurate and reliable.  
However, no responsibilitꢂ is assumed for its use. Linear Technologꢂ Corporation makes no representa-  
27  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM9012  
Typical applicaTion  
Single-Ended Drive with Unity Gain Example  
3.3V  
1.8V  
LTM9012  
464Ω  
1%  
+
+
CH1  
CH1  
OUT1A  
OUT1A  
0V TO 3V PULSE SIGNAL  
464Ω  
1%  
SHDN1  
SHDN2  
SHDN3  
SHDN4  
PAR/SER  
SDO  
3V  
FR–  
+IN  
–IN  
+
1.5V REFERENCE  
+
FR  
¼LTC6254  
0.1µF  
DCO  
+
DCO  
V
REF  
1k  
1%  
9012 TA02  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2170-14/LTC2171-14/  
LTC2172-14  
14-Sit, 25Msps/40Msps/65Msps  
1.8V Quad ADCs, Ultralow Power  
178mW/2ꢃ4mW/ꢃ60mW, 7ꢃ.4dS ꢀIR, 85dS ꢀFDR, ꢀerial LVDꢀ Outputs,  
7mm × 8mm QFI-52  
LTC217ꢃ-14/LTC2174-14/  
LTC2175-14  
14-Sit, 80Msps/105Msps/125Msps  
1.8V Quad ADCs, Ultralow Power  
ꢃ76mW/450mW/558mW, 7ꢃ.4 dS ꢀIR, 88dS ꢀFDR, ꢀerial LVDꢀ Outputs,  
7mm × 8mm QFI-52  
LTC226ꢃ-14/LTC2264-14/  
LTC2265-14  
14-Sit, 25Msps/40Msps/65Msps  
1.8V Dual ADCs, Ultralow Power  
99mW/126mW/191mW, 7ꢃ.4dS ꢀIR, 85dS ꢀFDR, ꢀerial LVDꢀ Outputs,  
6mm × 6mm QFI-40  
LTC2266-14/LTC2267-14/  
LTC2268-14  
14-Sit, 80Msps/105Msps/125Msps  
1.8V Dual ADCs, Ultralow Power  
216mW/250mW/29ꢃmW, 7ꢃ.4dS ꢀIR, 85dS ꢀFDR, ꢀerial LVDꢀ Outputs,  
6mm × 6mm QFI-40  
LTM9009-14/LTM9010-14/  
LTM9011-14  
14-Sit, 80Msps/105Msps/125Msps  
1.8V Octal ADCs, Ultralow Power  
752mW/900mW/1116mW, 7ꢃ.1dS ꢀIR, 88dS ꢀFDR, ꢀerial LVDꢀ Outputs,  
11.25mm × 9mm SGA-140  
9012fa  
LT 0117 REV A • PRINTED IN USA  
LinearTechnology Corporation  
16ꢃ0 McCarthꢂ Slvd., Milpitas, CA 950ꢃ5-7417  
28  
(408)4ꢃ2-1900 FAX: (408) 4ꢃ4-0507 www.linear.com/LTM9012  
LINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LTM9013

300MHz Digital Predistortion Receiver
Linear

LTM9013CY-AA#PBF

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM9013IY-AA#PBF

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM9100CY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM9100HY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTM9100IY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTMA

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LTMF

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LTMG3-01-L2C-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2M-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2R-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2Y-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC