LT1167AIS8#TR [Linear]

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LT1167AIS8#TR
型号: LT1167AIS8#TR
厂家: Linear    Linear
描述:

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总22页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1167  
Single Resistor Gain  
Programmable, Precision  
Instrumentation Amplifier  
DESCRIPTION  
The LT®1167 is a low power, precision instrumentation  
amplifier that requires only one external resistor to set  
gains of 1 to 10,000. The low voltage noise of 7.5nV/√Hz  
(at 1kHz) is not compromised by low power dissipation  
(0.9mA typical for 2.3V to 15V supplies).  
The part’s high accuracy (10ppm maximum nonlinearity,  
0.08% max gain error (G = 10)) is not degraded even for  
loadresistorsaslowas2k.TheLT1167islasertrimmedfor  
very low input offset voltage (40μV max), drift (0.3μV/°C),  
high CMRR (90dB, G = 1) and PSRR (105dB, G = 1).  
Low input bias currents of 350pA max are achieved with  
the use of superbeta processing. The output can handle  
capacitive loads up to 1000pF in any gain configuration  
while the inputs are ESD protected up to 13kV (human  
body). The LT1167 with two external 5k resistors passes  
the IEC 1000-4-2 level 4 specification.  
FEATURES  
n
Single Gain Set Resistor: G = 1 to 10,000  
n
Gain Error: G = 10, 0.08% Max  
n
Input Offset Voltage Drift: 0.3μV/°C Max  
n
Meets IEC 1000-4-2 Level 4 ESD Tests with  
Two External 5k Resistors  
n
Gain Nonlinearity: G = 10, 10ppm Max  
n
Input Offset Voltage: G = 10, 60μV Max  
n
Input Bias Current: 350pA Max  
n
PSRR at G = 1: 105dB Min  
n
CMRR at G = 1: 90dB Min  
n
Supply Current: 1.3mA Max  
n
Wide Supply Range: 2.3V to 18V  
n
1kHz Voltage Noise: 7.5nV/√Hz  
n
0.1Hz to 10Hz Noise: 0.28μV  
P-P  
n
Available in 8-Pin PDIP and SO Packages  
APPLICATIONS  
The LT1167, offered in 8-pin PDIP and SO packages, re-  
quires significantly less PC board area than discrete multi  
op amp and resistor designs.  
n
Bridge Amplifiers  
Strain Gauge Amplifiers  
Thermocouple Amplifiers  
TheLT1167-1offersthesameperformanceastheLT1167,  
but its input current characteristic at high common mode  
voltagebettersupportsapplicationswithhighinputimped-  
ance (see the Applications Information section).  
Differential to Single-Ended Converters  
Medical Instrumentation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Single Supply Barometer  
V
S
Gain Nonlinearity  
R5  
LUCAS NOVA SENOR  
NPC-1220-015-A-3L  
V
S
392k  
3
2
8
+
1
3
+
2
1
1
7
1/2  
LT1490  
4
1
2
5k  
5k  
LT1634CCZ-1.25  
R1  
4
6
825Ω  
LT1167  
G = 60  
R6  
1k  
R2  
12Ω  
5k  
2
6
5k  
5
8
3
TO  
4-DIGIT  
DVM  
+
R
SET  
4
OFFSET R4  
ADJUST 50k  
5
6
5
+
1167 TA02  
R3  
50k  
OUTPUT VOLTAGE (2V/DIV)  
7
1/2  
LT1490  
G = 1000  
R
= 1k  
L
V
= 10V  
R7  
50k  
OUT  
R8  
100k  
VOLTS INCHES Hg  
0.2% ACCURACY AT 25°C  
1.2% ACCURACY AT 0°C TO 60°C  
= 8V TO 30V  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
V
S
1167 TA01  
1167fc  
1
LT1167  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage ...................................................... ±20V  
Differential Input Voltage (Within the  
R
1
2
3
4
R
G
8
7
6
5
G
+
–IN  
+IN  
+V  
S
Supply Voltage) ......................................................±±0V  
Input Voltage (Equal to Supply Voltage)................. ±20V  
Input Current (Note 3)..........................................±20mA  
Output Short-Circuit Duration ......................... Indefinite  
Operating Temperature Range ................. –±0°C to 85°C  
Specified Temperature Range  
OUTPUT  
REF  
–V  
S
N8 PACKAGE  
S8 PACKAGE  
8-LEAD PDIP 8-LEAD PLASTIC SO  
T
= 150°C, θ = 130°C/W (N8)  
JA  
= 150°C, θ = 190°C/W (S8)  
JA  
JMAX  
T
JMAX  
LT1167AC/LT1167C/  
LT1167AC-1/LT1167C-1 (Note ±) ............ 0°C to 70°C  
LT1167AI/LT1167I/  
LT1167AI-1/LT1167I-1 ........................ –±0°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1167ACN8#PBF  
LT1167ACS8#PBF  
LT1167AIN8#PBF  
LT1167AIS8#PBF  
LT1167CN8#PBF  
LT1167CS8#PBF  
LT1167IN8#PBF  
LT1167IS8#PBF  
LT1167CS8-1#PBF  
LT1167IS8-1#PBF  
LT1167ACS8-1#PBF  
LT1167AIS8-1#PBF  
LEAD BASED FINISH  
LT1167ACN8  
TAPE AND REEL  
PART MARKING  
LT1167AC  
1167A  
PACKAGE DESCRIPTION  
8-Lead PDIP  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1167ACN8#TRPBF  
LT1167ACS8#TRPBF  
LT1167AIN8#TRPBF  
LT1167AIS8#TRPBF  
LT1167CN8#TRPBF  
LT1167CS8#TRPBF  
LT1167IN8#TRPBF  
LT1167IS8#TRPBF  
LT1167CS8-1#TRPBF  
LT1167IS8-1#TRPBF  
LT1167ACS8-1#TRPBF  
LT1167AIS8-1#TRPBF  
TAPE AND REEL  
8-Lead Plastic SO  
8-Lead PDIP  
0°C to 70°C  
LT1167AI  
1167AI  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead PDIP  
LT1167C  
1167  
8-Lead Plastic SO  
8-Lead PDIP  
0°C to 70°C  
LT1167I  
1167I  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
PACKAGE DESCRIPTION  
8-Lead PDIP  
11671  
11671  
–40°C to 85°C  
0°C to 70°C  
11671  
11671  
–40°C to 85°C  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING  
LT1167AC  
1167A  
LT1167ACN8#TR  
LT1167ACS8#TR  
LT1167AIN8#TR  
LT1167ACS8  
8-Lead Plastic SO  
8-Lead PDIP  
0°C to 70°C  
LT1167AIN8  
LT1167AI  
1167AI  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LT1167AIS8  
LT1167AIS8#TR  
8-Lead Plastic SO  
8-Lead PDIP  
LT1167CN8  
LT1167CN8#TR  
LT1167C  
1167  
LT1167CS8  
LT1167CS8#TR  
8-Lead Plastic SO  
8-Lead PDIP  
0°C to 70°C  
LT1167IN8  
LT1167IN8#TR  
LT1167I  
1167I  
–40°C to 85°C  
–40°C to 85°C  
LT1167IS8  
LT1167IS8#TR  
8-Lead Plastic SO  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1167fc  
2
LT1167  
ELECTRICAL CHARACTERISTICS VS = 15V, VCM = 0V, TA = 25°C, RL = 2k, unless otherwise noted.  
LT1167AC/LTC1167AI  
LT1167C/LTC1167I  
LT1167AC-1/LTC1167AI-1  
LT1167C-1/LTC1167I-1  
SYMBOL PARAMETER  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
G
Gain Range  
Gain Error  
G = 1 + (49.4k/R )  
1
10k  
1
10k  
G
G = 1  
0.008  
0.010  
0.025  
0.049  
0.02  
0.08  
0.08  
0.10  
0.015  
0.020  
0.030  
0.040  
0.03  
0.10  
0.10  
0.10  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
Gain Nonlinearity (Note 5)  
V = 10V, G = 1  
1
2
15  
6
10  
40  
1.5  
3
20  
10  
15  
60  
ppm  
ppm  
ppm  
O
V = 10V, G = 10 and 100  
O
V = 10V, G = 1000  
O
V = 10V, G = 1, R = 600  
5
6
12  
15  
6
7
15  
20  
ppm  
ppm  
O
L
V = 10V, G = 10 and 100,  
O
R = 600  
L
V = 10V, G = 1000, R = 600  
20  
65  
25  
80  
ppm  
O
L
V
V
V
Total Input Referred Offset Voltage  
Input Offset Voltage  
V
= V + V /G  
OST OSI OSO  
OST  
G = 1000, V = 5V to 15V  
15  
40  
90  
50  
40  
20  
50  
60  
μV  
μV  
pA  
pA  
OSI  
S
Output Offset Voltage  
G = 1, V = 5V to 15V  
200  
320  
350  
300  
450  
500  
OSO  
S
I
I
Input Offset Current  
100  
80  
OS  
Input Bias Current  
B
e
n
Input Noise Voltage (Note 8)  
0.1Hz to 10Hz, G = 1  
0.1Hz to 10Hz, G = 10  
0.1Hz to 10Hz, G = 100  
and 1000  
2.00  
0.50  
0.28  
2.00  
0.50  
0.28  
μV  
P-P  
μV  
P-P  
μV  
P-P  
2
2
Total RTI Noise = √e + (e /G) (Note 8)  
ni  
no  
e
Input Noise Voltage Density  
(Note 8)  
f = 1kHz  
7.5  
67  
12  
90  
7.5  
67  
12  
90  
nV/√Hz  
nV/√Hz  
ni  
O
e
Output Noise Voltage Density  
(Note 8)  
f = 1kHz (Note 3)  
O
no  
i
Input Noise Current  
f = 0.1Hz to 10Hz  
10  
124  
1000  
1.6  
10  
124  
1000  
1.6  
pA  
P-P  
n
O
Input Noise Current Densty  
Input Resistance  
f = 10Hz  
O
fA/√Hz  
GΩ  
pF  
R
V
IN  
=
10V  
200  
200  
IN  
C
C
V
Differential Input Capacitance  
f = 100kHz  
O
IN(DIFF)  
IN(CM)  
CM  
Common Mode Input Capacitance f = 100kHz  
1.6  
1.6  
pF  
O
Input Voltage Range  
G = 1, Other Input Grounded  
V = 2.3V to 5V  
–V +1.9  
+V 1.2 –V +1.9  
+V 1.2  
S
V
V
S
S
S
S
S
S
V = 5V to 18V  
–V +1.9  
+V 1.4 –V +1.9  
+V 1.4  
S
S
S
CMRR  
Common Mode Rejection Ratio  
1k Source Imbalance,  
CM  
G = 1  
V
= 0V to 10V  
90  
95  
85  
95  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
106  
120  
126  
115  
125  
140  
100  
110  
120  
115  
125  
140  
PSRR  
Power Supply Rejection Ratio  
V = 2.3V to 18V  
S
G = 1  
105  
125  
131  
135  
120  
135  
140  
150  
100  
120  
126  
130  
120  
135  
140  
150  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
I
S
Supply Current  
V = 2.3V to 18V  
S
0.9  
1.3  
0.9  
1.3  
mA  
V
OUT  
Output Voltage Swing  
R = 10k  
L
V = 2.3V to 5V  
–V +1.1  
S
+V 1.2 –V +1.1  
+V 1.2  
V
V
S
S
S
S
S
V = 5V to 18V  
–V +1.2  
+V 1.3 –V +1.2  
+V 1.3  
S
S
S
S
1167fc  
3
LT1167  
ELECTRICAL CHARACTERISTICS VS = 15V, VCM = 0V, TA = 25°C, RL = 2k, unless otherwise noted.  
LT1167AC/LTC1167AI  
LT1167C/LTC1167I  
LT1167AC-1/LTC1167AI-1  
LT1167C-1/LTC1167I-1  
SYMBOL PARAMETER  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
I
Output Current  
Bandwidth  
20  
27  
20  
27  
mA  
OUT  
BW  
G = 1  
1000  
800  
120  
12  
1000  
800  
120  
12  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
SR  
Slew Rate  
G = 1, V  
=
10V  
0.75  
1.2  
0.75  
1.2  
V/μs  
OUT  
Settling Time to 0.01%  
10V Step  
G = 1 to 100  
G = 1000  
14  
130  
14  
130  
μs  
μs  
R
Reference Input Resistance  
Reference Input Current  
Reference Voltage Range  
Reference Gain to Output  
20  
50  
20  
50  
kΩ  
μA  
V
REFIN  
I
V
REF  
= 0V  
REFIN  
V
A
–V +1.6  
S
+V 1.6 –V +1.6  
+V 1.6  
S
REF  
S
S
1
0.0001  
1
0.0001  
VREF  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = 15V, VCM = 0V, 0°C ≤ TA ≤ 70°C, RL = 2k, unless otherwise noted.  
LT1167AC/LT1167AC-1  
LT1167C/LT1167C-1  
SYMBOL PARAMETER  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
Gain Error  
G = 1  
0.01  
0.08  
0.09  
0.14  
0.03  
0.30  
0.30  
0.33  
0.012  
0.100  
0.120  
0.140  
0.04  
0.33  
0.33  
0.35  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
l
l
l
Gain Nonlinearity  
V
OUT  
V
OUT  
V
OUT  
=
=
=
10V, G = 1  
10V, G = 10 and 100  
10V, G = 1000  
1.5  
3
20  
10  
15  
60  
3
4
25  
15  
20  
80  
ppm  
ppm  
ppm  
l
G/T  
Gain vs Temperature  
G < 1000 (Note 2)  
V = V + V /G  
OST  
20  
50  
20  
50  
ppm/°C  
V
Total Input Referred  
Offset Voltage  
OST  
OSI  
OSO  
l
l
V
V
V
V
V
V
Input Offset Voltage  
V = 5V to 15V  
18  
3.0  
60  
60  
23  
3.0  
70  
80  
μV  
μV  
OSI  
S
Input Offset Voltage Hysteresis (Notes 3, 6)  
Output Offset Voltage V = 5V to 15V  
Output Offset Voltage Hysteresis (Notes 3, 6)  
OSIH  
OSO  
OSOH  
380  
500  
μV  
S
30  
30  
μV  
l
l
l
l
l
l
/T  
OSI  
Input Offset Drift (Note 8)  
Output Offset Drift  
(Note 3)  
(Note 3)  
0.05  
0.7  
100  
0.3  
75  
0.3  
3
0.06  
0.8  
120  
0.4  
105  
0.4  
0.4  
4
μV/°C  
μV/°C  
pA  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
400  
550  
OS  
/T  
pA/°C  
pA  
OS  
B
450  
600  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
0.4  
pA/°C  
V
G = 1, Other Input Grounded  
CM  
l
l
V = 2.3V to 5V  
–V +2.1  
S
+V –1.3 –V +2.1  
+V –1.3  
V
V
S
S
S
S
S
S
V = 5V to 18V  
–V +2.1  
+V –1.4 –V +2.1  
+V –1.4  
S
S
S
CMRR  
Common Mode Rejection Ratio 1k Source Imbalance,  
V
= 0V to 10V  
CM  
G = 1  
l
l
l
l
88  
92  
83  
97  
113  
114  
92  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
115  
117  
110  
120  
135  
110  
120  
135  
1167fc  
4
LT1167  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, 0°C ≤ TA ≤ 70°C, RL = 2k, unless otherwise noted.  
LT1167AC/LT1167AC-1  
LT1167C/LT1167C-1  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V = 2.3V to 18V  
S
l
l
l
l
G = 1  
103  
123  
127  
129  
115  
130  
135  
145  
98  
115  
130  
135  
145  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
118  
124  
126  
l
I
Supply Current  
V = 2.3V to 18V  
1.0  
1.5  
1.0  
1.5  
+V –1.3  
mA  
S
S
V
Output Voltage Swing  
R = 10k  
L
OUT  
l
l
V = 2.3V to 5V  
–V +1.4  
S
+V –1.3 –V +1.4  
V
V
S
S
S
S
S
S
V = 5V to 18V  
–V +1.6  
+V –1.5 –V +1.6  
+V –1.5  
S
S
S
l
l
l
I
Output Current  
Slew Rate  
16  
21  
16  
21  
mA  
V/μs  
V
OUT  
SR  
G = 1, V  
=
10V  
0.65  
1.1  
0.65  
1.1  
OUT  
V
REF Voltage Range  
(Note 3)  
–V +1.6  
S
+V –1.6 –V +1.6  
+V –1.6  
S
REF  
S
S
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = 15V, VCM = 0V, 40°C ≤ TA ≤ 85°C, RL = 2k, unless otherwise noted.  
LT1167AI/LT1167AI-1  
LT1167I/LT1167I-1  
SYMBOL PARAMETER  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
Gain Error  
G = 1  
0.014  
0.130  
0.140  
0.160  
0.04  
0.40  
0.40  
0.40  
0.015  
0.140  
0.150  
0.180  
0.05  
0.42  
0.42  
0.45  
%
%
%
%
G = 10 (Note 2)  
G = 100 (Note 2)  
G = 1000 (Note 2)  
l
l
l
G
Gain Nonlinearity (Notes 2, 4)  
Gain vs Temperature  
V = 10V, G = 1  
2
5
15  
20  
70  
3
6
20  
30  
ppm  
ppm  
ppm  
N
O
V = 10V, G = 10 and 100  
O
V = 10V, G = 1000  
26  
30  
100  
O
l
G/T  
G < 1000 (Note 2)  
20  
50  
20  
50  
ppm/°C  
V
Total Input Referred  
Offset Voltage  
V
= V + V /G  
OST OSI OSO  
OST  
l
l
V
V
V
V
V
V
Input Offset Voltage  
20  
3.0  
180  
30  
75  
25  
3.0  
200  
30  
100  
600  
μV  
μV  
OSI  
Input Offset Voltage Hysteresis (Notes 3, 6)  
Output Offset Voltage  
OSIH  
OSO  
OSOH  
500  
μV  
Output Offset Voltage Hysteresis (Notes 3, 6)  
μV  
l
l
l
l
l
l
/T  
OSI  
Input Offset Drift (Note 8)  
Output Offset Drift  
(Note 3)  
(Note 3)  
0.05  
0.8  
110  
0.3  
180  
0.5  
0.3  
5
0.06  
1
0.4  
6
μV/°C  
μV/°C  
pA  
/T  
OSO  
I
I
I
Input Offset Current  
Input Offset Current Drift  
Input Bias Current  
550  
120  
0.3  
220  
0.6  
700  
OS  
/T  
pA/°C  
pA  
OS  
B
600  
800  
I /T  
B
Input Bias Current Drift  
Input Voltage Range  
pA/°C  
l
l
V
V = 2.3V to 5V  
–V +2.1  
S
+V –1.3 –V +2.1  
+V –1.3  
V
V
CM  
S
S
S
S
S
S
V = 5V to 18V  
–V +2.1  
+V –1.4 –V +2.1  
+V –1.4  
S
S
S
CMRR  
Common Mode Rejection Ratio 1k Source Imbalance,  
V
= 0V to 10V  
CM  
G = 1  
l
l
l
l
86  
98  
114  
116  
90  
81  
95  
112  
112  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
105  
118  
133  
105  
118  
133  
1167fc  
5
LT1167  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, 0°C ≤ TA ≤ 70°C, RL = 2k, unless otherwise noted.  
LT1167AI/LT1167AI-1  
LT1167I/LT1167I-1  
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
CONDITIONS (NOTE 7)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V = 2.3V to 18V  
S
l
l
l
l
G = 1  
100  
120  
125  
128  
112  
125  
132  
140  
95  
112  
125  
132  
140  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
115  
120  
125  
l
I
Supply Current  
1.1  
1.6  
+V –1.3 –V +1.4  
1.1  
1.6  
+V –1.3  
mA  
S
l
l
V
Output Voltage Swing  
V = 2.3V to 5V  
S
–V +1.4  
S
V
V
OUT  
S
S
S
S
S
V = 5V to 18V  
–V +1.6  
+V –1.5 –V +1.6  
+V –1.5  
S
S
S
l
l
l
I
Output Current  
Slew Rate  
15  
20  
15  
20  
mA  
V/μs  
V
OUT  
SR  
G = 1, V  
=
10V  
0.55  
0.95  
0.55  
0.95  
OUT  
V
REF Voltage Range  
(Note 3)  
–V +1.6  
S
+V –1.6 –V +1.6  
+V –1.6  
S
REF  
S
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Does not include the effect of the external gain resistor RG.  
Note 3: This parameter is not 100% tested.  
Note 4: The LT1167AC/LT1167C/LT1167AC-1/LT1167C-1 are designed,  
characterized and expected to meet the industrial temperature limits, but  
are not tested at –40°C and 85°C. I-grade parts are guaranteed.  
Note 6: Hysteresis in offset voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Offset voltage hysteresis is always measured at 25°C, but  
the IC is cycled to 85°C I-grade (or 70°C C-grade) or –40°C I-grade  
(0°C C-grade) before successive measurement. 60% of the parts will  
pass the typical limit on the data sheet.  
Note 7: Typical parameters are defined as the 60% of the yield parameter  
distribution.  
Note 8: Referred to input.  
Note 5: This parameter is measured in a high speed automatic tester that  
does not measure the thermal effects with longer time constants. The  
magnitude of these thermal effects are dependent on the package used,  
heat sinking and air flow conditions.  
1167fc  
6
LT1167  
TYPICAL PERFORMANCE CHARACTERISTICS  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
Gain Nonlinearity, G = 100  
1167 G01  
1167 G03  
1167 G02  
G = 1  
OUTPUT VOLTAGE (2V/DIV)  
G = 100 OUTPUT VOLTAGE (2V/DIV)  
G = 10 OUTPUT VOLTAGE (2V/DIV)  
R
V
= 2k  
R
V
= 2k  
=
R
V
= 2k  
=
L
OUT  
L
OUT  
L
OUT  
=
10V  
10V  
10V  
Gain Nonlinearity, G = 1000  
Gain Nonlinearity vs Temperature  
Gain Error vs Temperature  
80  
0.20  
0.15  
V
V
=
OUT  
= 2k  
15V  
S
= 10V TO 10V  
70  
60  
R
L
0.10  
50  
40  
30  
20  
10  
0.05  
G = 1  
0
0.05  
0.10  
0.15  
0.20  
V
V
=
OUT  
= 2k  
15V  
10V  
S
G = 10*  
G = 1000  
=
R
L
G = 100*  
G = 1000*  
1167 G04  
*DOES NOT INCLUDE  
G = 1000 OUTPUT VOLTAGE (2V/DIV)  
G = 1, 10  
TEMPERATURE EFFECTS  
OF R  
R = 2k  
L
G = 100  
25  
G
V
= 10V  
OUT  
0
25  
0
50  
75 100 150  
50  
50  
25  
0
25  
100  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1167 G05  
1167 G06  
Distribution of Input  
Offset Voltage, TA = 40°C  
Distribution of Input  
Offset Voltage, TA = 25°C  
Distribution of Input  
Offset Voltage, TA = 85°C  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
V
=
15V  
V
=
15V  
137 N8 (2 LOTS)  
V
=
15V  
137 N8 (2 LOTS)  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
S
S
S
G = 1000  
G = 1000  
165 S8 (3 LOTS)  
G = 1000  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
302 TOTAL PARTS  
20  
15  
10  
5
0
0
0
0
0
80 60 40 20  
20  
40  
60  
80 60 40 20  
20  
40  
60  
60 40 20  
0
20  
40  
60  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
1167 G40  
1167 G42  
1167 G41  
1167fc  
7
LT1167  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distribution of Output  
Offset Voltage, TA = 40°C  
Distribution of Output  
Offset Voltage, TA = 25°C  
Distribution of Output  
Offset Voltage, TA = 85°C  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
=
15V  
V = 15V  
S
G = 1  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
V
= 15V  
137 N8 (2 LOTS)  
165 S8 (3 LOTS)  
302 TOTAL PARTS  
S
S
G = 1  
G = 1  
0
0
0
200 150 100 50  
0
50 100 150 200  
400 300 200 –100  
0
100 200 300 400  
400 300 200 –100  
0
100 200 300 400  
OUTPUT OFFSET VOLTAGE (μV)  
OUTPUT OFFSET VOLTAGE (μV)  
OUTPUT OFFSET VOLTAGE (μV)  
1167 G44  
1167 G45  
1167 G43  
Distribution of Input Offset  
Voltage Drift  
Distribution of Output Offset  
Voltage Drift  
Warm-Up Drift  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
14  
12  
V
T
=
15V  
137 N8 (2 LOTS)  
V
T
=
15V  
137 N8 (2 LOTS)  
S
V
T
=
15V  
S
S
= 40°C TO 85°C  
165 S8 (3 LOTS)  
= 40°C TO 85°C  
165 S8 (3 LOTS)  
A
= 25°C  
A
A
G = 1000  
302 TOTAL PARTS  
G = 1  
302 TOTAL PARTS  
G = 1  
S8  
N8  
10  
8
6
4
2
0
0
0
0.4  
0.2 0.1  
0
0.1 0.2 0.3  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
0.3  
1
2
5
0
3
4
INPUT OFFSET VOLTAGE DRIFT (μV/°C)  
OUTPUT OFFSET VOLTAGE DRIFT (μV/°C)  
TIME AFTER POWER ON (MINUTES)  
1167 G46  
1167 G47  
1167 G09  
Input Bias and Offset Current  
vs Temperature  
Input Bias Current  
Input Offset Current  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
500  
400  
V
=
15V  
270 S8  
V
=
15V  
270 S8  
S
A
S
A
V
V
=
CM  
15V  
= 0V  
S
T
= 25°C  
122 N8  
T
= 25°C  
122 N8  
392 TOTAL PARTS  
392 TOTAL PARTS  
300  
200  
I
OS  
100  
0
I
B
100  
200  
300  
400  
500  
100  
60  
20  
20  
60  
100  
100  
60  
20  
20  
60  
100  
–75 –50  
50  
TEMPERATURE (°C)  
100 125  
1167 G12  
–25  
0
25  
75  
INPUT BIAS CURRENT (pA)  
INPUT OFFSET CURRENT (pA)  
1167 G10  
1167 G11  
1167fc  
8
LT1167  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
vs Common Mode Input Voltage  
Common Mode Rejection Ratio  
vs Frequency  
Negative Power Supply Rejection  
Ratio vs Frequency  
500  
400  
160  
140  
120  
100  
160  
140  
120  
100  
+
V
T
=
15V  
V
T
= 15V  
S
A
G = 1000  
G = 100  
G = 10  
= 25°C  
= 25°C  
G = 100  
G = 10  
G = 1  
A
1k SOURCE  
IMBALANCE  
300  
200  
G = 1000  
G = 1  
100  
70°C  
85°C  
0
80  
60  
80  
60  
–100  
200  
300  
400  
500  
0°C  
25°C  
40  
20  
0
40  
20  
0
40°C  
1
10  
1k  
0.1  
1
10  
1k  
10k 100k  
–15 –12 –9 –6 –3  
0
3
6
9
12 15  
0.1  
10k 100k  
100  
100  
COMMON MODE INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1167 G13  
1167 G14  
1167 G15  
Positive Power Supply Rejection  
Ratio vs Frequency  
Gain vs Frequency  
Supply Current vs Supply Voltage  
160  
140  
120  
100  
60  
50  
1.50  
1.25  
1.00  
0.75  
0.50  
G = 1000  
V
= 15V  
= 25°C  
T
A
G = 1000  
G = 10  
G = 1  
G = 100  
G = 10  
G = 1  
40  
G = 100  
85°C  
25°C  
30  
80  
60  
20  
40°C  
10  
40  
20  
0
0
V
= 15V  
= 25°C  
–10  
20  
S
A
T
1
10  
1k  
0.1  
10k 100k  
100  
0.01  
0.1  
1
10  
100  
1000  
0
10  
15  
20  
5
FREQUENCY (kHz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
1167 G17  
1167 G16  
1167 G18  
Voltage Noise Density  
vs Frequency  
0.1Hz to 10Hz Noise Voltage,  
G = 1  
0.1Hz to 10Hz Noise Voltage,  
Referred to Input, G = 1000  
1000  
100  
V
T
=
15V  
V
T
= 15V  
= 25°C  
V
T
=
15V  
S
S
S
A
= 25°C  
= 25°C  
A
A
1/f  
= 10Hz  
CORNER  
GAIN = 1  
1/f  
1/f  
= 9Hz  
= 7Hz  
CORNER  
GAIN = 10  
CORNER  
GAIN = 100, 1000  
10  
0
BW LIMIT  
GAIN = 1000  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (SEC)  
TIME (SEC)  
1167 G19  
1167 G20  
1167 G21  
1167fc  
9
LT1167  
TYPICAL PERFORMANCE CHARACTERISTICS  
Current Noise Density  
vs Frequency  
0.1Hz to 10Hz Current Noise  
Short-Circuit Current vs Time  
1000  
100  
10  
50  
40  
V
S
= 15V  
V
T
=
15V  
V
T
=
15V  
S
A
S
A
= 25°C  
= 25°C  
T
= 40°C  
A
30  
T
= 25°C  
= 85°C  
A
A
20  
T
T
10  
0
10  
20  
30  
40  
50  
R
S
= 85°C  
A
T
= 40°C  
T
= 25°C  
3
A
A
1
10  
100  
1000  
0
1
2
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)  
TIME (SEC)  
1167 G22  
1167 G24  
1167 G23  
Overshoot vs Capacitive Load  
Large-Signal Transient Response  
Small-Signal Transient Response  
100  
90  
V
V
=
15V  
50mV  
S
=
OUT  
= ∞  
R
L
80  
70  
60  
50  
A
= 1  
V
40  
30  
20  
10  
0
A
= 10  
V
1167 G28  
1167 G29  
G = 1  
10μs/DIV  
G = 1  
10μs/DIV  
V
= 15V  
V
= 15V  
S
S
A
V
≥ 100  
R = 2k  
L
R = 2k  
L
C = 60pF  
L
C = 60pF  
L
10  
100  
1000  
10000  
CAPACITIVE LOAD (pF)  
1167 G25  
Output Impedance vs Frequency  
Large-Signal Transient Response  
Small-Signal Transient Response  
1000  
100  
V
=
15V  
S
A
T
= 25°C  
G = 1 TO 1000  
10  
1
1167 G31  
1167 G32  
G = 1  
10μs/DIV  
G = 10  
10μs/DIV  
V
= 15V  
V
= 15V  
S
S
R = 2k  
L
R = 2k  
L
0.1  
C = 60pF  
L
C = 60pF  
L
1
10  
100  
1000  
FREQUENCY (kHz)  
1167 G26  
1167fc  
10  
LT1167  
TYPICAL PERFORMANCE CHARACTERISTICS  
Undistorted Output Swing  
vs Frequency  
Large-Signal Transient Response  
Small-Signal Transient Response  
35  
30  
25  
20  
15  
10  
5
V
=
15V  
S
A
T
= 25°C  
G = 10, 100, 1000  
G = 1  
1167 G34  
1167 G35  
G = 100  
10μs/DIV  
G = 100  
10μs/DIV  
V
= 15V  
V
= 15V  
S
S
R = 2k  
L
R = 2k  
L
0
C = 60pF  
L
C = 60pF  
L
1
10  
100  
1000  
FREQUENCY (kHz)  
1167 G27  
Settling Time vs Gain  
Large-Signal Transient Response  
Small-Signal Transient Response  
1000  
100  
10  
V
=
15V  
= 25°C  
= 10V  
S
A
T
ΔV  
OUT  
1mV = 0.01%  
1167 G37  
1167 G38  
G = 1000  
50μs/DIV  
G = 1000  
50μs/DIV  
V
= 15V  
V
= 15V  
S
S
R = 2k  
L
R = 2k  
L
1
C = 60pF  
L
C = 60pF  
L
1
10  
100  
1000  
GAIN (dB)  
1167 G30  
Output Voltage Swing  
vs Load Current  
Settling Time vs Step Size  
Slew Rate vs Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
10  
8
+V  
S
V
V
=
15V  
10V  
V
= 15  
S
85°C  
V
S
= 15V  
TO 0.1%  
S
=
G = 1  
OUT  
G = 1  
25°C  
+V – 0.5  
S
T
= 25°C  
= 30pF  
= 1k  
40°C  
A
6
C
+V – 1.0  
S
L
L
TO 0.01%  
R
4
+V – 1.5  
S
SOURCE  
SINK  
V
OUT  
2
0V  
+V – 2.0  
S
+SLEW  
0
–V + 2.0  
S
0V  
–2  
–4  
–6  
–8  
–10  
V
OUT  
–V + 1.5  
S
SLEW  
TO 0.01%  
–V + 1.0  
S
–V + 0.5  
S
TO 0.1%  
–V  
S
50 –25  
0
25  
50  
75 100 125  
2
3
4
5
6
7
8
9
10 11 12  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
SETTLING TIME (μs)  
OUTPUT CURRENT (mA)  
1167 G39  
1167 G33  
1167 G36  
1167fc  
11  
LT1167  
BLOCK DIAGRAM  
+
VB  
V
R5  
10k  
R6  
10k  
+
OUTPUT  
6
A1  
R3  
C1  
400Ω  
–IN  
2
Q1  
R1  
24.7k  
+
V
A3  
1
8
R
R
G
V
V
VB  
G
+
V
R7  
10k  
R8  
10k  
+
REF  
A2  
5
R4  
400Ω  
C2  
+IN  
3
Q2  
R2  
24.7k  
+
V
7
4
V
V
1167 F01  
PREAMP STAGE  
DIFFERENCE AMPLIFIER STAGE  
Figure 1. Block Diagram  
THEORY OF OPERATION  
The LT1167 is a modified version of the three op amp  
instrumentation amplifier. Laser trimming and mono-  
lithic construction allow tight matching and tracking of  
circuit parameters over the specified temperature range.  
Refer to the block diagram (Figure 1) to understand the  
following circuit description. The collector currents in  
Q1 and Q2 are trimmed to minimize offset voltage drift,  
thus assuring a high level of performance. R1 and R2 are  
trimmed to an absolute value of 24.7k to assure that the  
gain can be set accurately (0.05% at G = 100) with only  
one external resistor RG. The value of RG determines the  
transconductance of the preamp stage. As RG is reduced  
for larger programmed gains, the transconductance of  
the input preamp stage increases to that of the input  
transistors Q1 and Q2. This increases the open-loop gain  
when the programmed gain is increased, reducing the  
input referred gain related errors and noise. The input  
voltage noise at gains greater than 50 is determined only  
by Q1 and Q2. At lower gains the noise of the difference  
amplifier and preamp gain setting resistors increase the  
noise. The gain bandwidth product is determined by C1,  
C2 and the preamp transconductance which increases  
with programmed gain. Therefore, the bandwidth does  
not drop proportionally to gain.  
The input transistors Q1 and Q2 offer excellent matching,  
which is inherent in NPN bipolar transistors, as well as  
picoampere input bias current due to superbeta process-  
ing. The collector currents in Q1 and Q2 are held constant  
due to the feedback through the Q1-A1-R1 loop and  
Q2-A2-R2 loop which in turn impresses the differential  
inputvoltageacrosstheexternalgainsetresistorR .Since  
G
the current that flows through R also flows through R  
1
G
and R2, theratios provide agained-up differential voltage,  
G = (R1 + R2)/R , to the unity-gain difference amplifier A3.  
G
The common mode voltage is removed by A3, resulting  
in a single-ended output voltage referenced to the voltage  
on the REF pin. The resulting gain equation is:  
+
V
– V = G(V – V  
)
OUT  
REF  
IN  
IN  
where:  
G = (49.4kΩ/R ) + 1  
G
solving for the gain set resistor gives:  
R = 49.4kΩ/(G – 1)  
G
1167fc  
12  
LT1167  
THEORY OF OPERATION  
Input and Output Offset Voltage  
Output Offset Trimming  
The offset voltage of the LT1167 has two components:  
the output offset and the input offset. The total offset  
voltage referred to the input (RTI) is found by dividing the  
output offset by the programmed gain (G) and adding it  
to the input offset. At high gains the input offset voltage  
dominates, whereas at low gains the output offset voltage  
dominates. The total offset voltage is:  
The LT1167 is laser trimmed for low offset voltage so that  
no external offset trimming is required for most applica-  
tions. In the event that the offset needs to be adjusted, the  
circuitinFigure2isanexampleofanoptionaloffsetadjust  
circuit. The op amp buffer provides a low impedance to  
the REF pin where resistance must be kept to minimum  
for best CMRR and lowest gain error.  
Total input offset voltage (RTI)  
= input offset + (output offset/G)  
2
–IN  
1
Total output offset voltage (RTO)  
= (input offset • G) + output offset  
6
R
LT1167  
REF  
OUTPUT  
+
G
V
8
3
5
+
Reference Terminal  
+IN  
2
10mV  
100Ω  
1
1/2  
LT1112  
The reference terminal is one end of one of the four 10k  
resistors around the difference amplifier. The output volt-  
age of the LT1167 (Pin 6) is referenced to the voltage on  
the reference terminal (Pin 5). Resistance in series with  
the REF pin must be minimized for best common mode  
rejection. For example, a 2Ω resistance from the REF pin  
to ground will not only increase the gain error by 0.02%  
but will lower the CMRR to 80dB.  
3
+
10mV  
ADJUSTMENT RANGE  
10k  
100Ω  
–10mV  
V
1167 F02  
Figure 2. Optional Trimming of Output Offset Voltage  
Single Supply Operation  
Input Bias Current Return Path  
For single supply operation, the REF pin can be at the  
same potential as the negative supply (Pin 4) provided the  
output of the instrumentation amplifier remains inside the  
specified operating range and that one of the inputs is at  
least 2.5V above ground. The barometer application on  
the front page of this data sheet is an example that satis-  
The low input bias current of the LT1167 (350pA) and  
the high input impedance (200GΩ) allow the use of high  
impedance sources without introducing additional offset  
voltage errors, even when the full common mode range is  
required. However, a path must be provided for the input  
bias currents of both inputs when a purely differential  
signal is being amplified. Without this path the inputs  
will float to either rail and exceed the input common  
mode range of the LT1167, resulting in a saturated input  
stage. Figure 3 shows three examples of an input bias  
current path. The first example is of a purely differential  
signal source with a 10kΩ input current path to ground.  
Since the impedance of the signal source is low, only one  
resistor is needed. Two matching resistors are needed for  
higher impedance signal sources as shown in the second  
example. Balancing the input impedance improves both  
common mode rejection and DC offset. The need for input  
resistors is eliminated if a center tap is present as shown  
fies these conditions. The resistance R from the bridge  
b
transducer to ground sets the operating current for the  
bridge and also has the effect of raising the input common  
mode voltage. The output of the LT1167 is always inside  
the specified range since the barometric pressure rarely  
goes low enough to cause the output to rail (30.00 inches  
ofHgcorrespondsto3.000V).Forapplicationsthatrequire  
the output to swing at or below the REF potential, the  
voltage on the REF pin can be level shifted. An op amp is  
used to buffer the voltage on the REF pin since a parasitic  
series resistance will degrade the CMRR. The application  
in the back of this data sheet, Four Digit Pressure Sensor,  
is an example.  
in the third example.  
1167fc  
13  
LT1167  
THEORY OF OPERATION  
+
+
MICROPHONE,  
HYDROPHONE,  
ETC  
R
G
R
R
G
LT1167  
THERMOCOUPLE  
LT1167  
LT1167  
G
+
200k  
200k  
10k  
CENTER-TAP PROVIDES  
BIAS CURRENT RETURN  
1167 F03  
Figure 3. Providing an Input Common Mode Current Path  
APPLICATIONS INFORMATION  
The LT1167 is a low power precision instrumentation  
amplifier that requires only one external resistor to accu-  
rately set the gain anywhere from 1 to 1000. The output  
can handle capacitive loads up to 1000pF in any gain  
configuration and the inputs are protected against ESD  
strikes up to 13kV (human body).  
resistorsareneeded,aclampdiodefromthepositivesupply  
to each input will maintain the IEC 1000-4-2 specification  
to level 4 for both air and contact discharge. A 2N4393  
drain/source to gate is a good low leakage diode for use  
with 1k resistors, see Figure 4. The input resistors should  
be carbon and not metal film or carbon film.  
V
V
CC  
CC  
Input Current at High Common Mode Voltage  
OPTIONAL FOR HIGHEST  
ESD PROTECTION  
J1  
2N4393  
J2  
2N4393  
When operating within the specified input common mode  
range, both the LT1167 and LT1167-1 operate as shown  
in the Input Bias Current vs Common Mode Input Voltage  
graph shown in the Typical Performance Characteristics.  
If however the inputs are within approximately 0.8V of  
the positive supply, the LT1167 input current will increase  
to approximately –1μA to –3μA. If the impedance of the  
circuit driving the LT1167 inputs is sufficiently high (e.g.,  
V
CC  
R
R
IN  
IN  
+
OUT  
R
LT1167  
G
REF  
1167 F04  
V
EE  
10MΩ when +V = 15V), this increased input current can  
S
Figure 4. Input Protection  
pull the input voltage sufficiently high to keep the elevated  
input current flowing. The LT1167-1 has been modified so  
that the input current is typically two orders of magnitude  
lower under similar conditions. The LT1167-1 is recom-  
mended for new designs where input impedance is high.  
RFI Reduction  
In many industrial and data acquisition applications,  
instrumentation amplifiers are used to accurately amplify  
small signals in the presence of large common mode volt-  
ages or high levels of noise. Typically, the sources of these  
verysmallsignals(ontheorderofmicrovoltsormillivolts)  
are sensors that can be a significant distance from the  
signalconditioningcircuit.Althoughthesesensorsmaybe  
connected to signal conditioning circuitry, using shielded  
or unshielded twisted-pair cabling, the cabling may act  
as antennae, conveying very high frequency interference  
Input Protection  
The LT1167 can safely handle up to 20mA of input cur-  
rent in an overload condition. Adding an external 5k input  
resistor in series with each input allows DC input fault  
voltages up to 100V and improves the ESD immunity  
to 8kV (contact) and 15kV (air discharge), which is the  
IEC 1000-4-2 level 4 specification. If lower value input  
directly into the input stage of the LT1167.  
1167fc  
14  
LT1167  
APPLICATIONS INFORMATION  
The amplitude and frequency of the interference can have  
an adverse effect on an instrumentation amplifier’s input  
stage by causing an unwanted DC shift in the amplifier’s  
input offset voltage. This well known effect is called RFI  
rectificationandisproducedwhenout-of-bandinterference  
is coupled (inductively, capacitively or via radiation) and  
rectified by the instrumentation amplifier’s input transis-  
tors. These transistors act as high frequency signal detec-  
tors, in the same way diodes were used as RF envelope  
detectors in early radio designs. Regardless of the type  
of interference or the method by which it is coupled into  
the circuit, an out-of-band error signal appears in series  
with the instrumentation amplifier’s inputs.  
imbalance. The differential mode and common mode time  
constants associated with the capacitors are:  
t
t
= (2)(R )(C )  
DM(LPF)  
CM(LPF)  
S
XD  
= (R  
)(C  
)
XCM1, 2  
S1, 2  
Setting the time constants requires a knowledge of the  
frequency, or frequencies of the interference. Once this  
frequencyisknown,thecommonmodetimeconstantscan  
be set followed by the differential mode time constant. To  
avoid any possibility of inadvertently affecting the signal  
to be processed, set the common mode time constant an  
order of magnitude (or more) larger than the differential  
modetimeconstant.Setthecommonmodetimeconstants  
such that they do not degrade the LT1167’s inherent AC  
CMR. Then the differential mode time constant can be set  
for the bandwidth required for the application. Setting the  
differential mode time constant close to the sensor’s BW  
also minimizes any noise pickup along the leads. To avoid  
anypossibilityofcommonmodetodifferentialmodesignal  
conversion, match the common mode time constants to  
1% or better. If the sensor is an RTD or a resistive strain  
To significantly reduce the effect of these out-of-band  
signals on the input offset voltage of instrumentation am-  
plifiers, simple lowpass filters can be used at the inputs.  
These filters should be located very close to the input pins  
of the circuit. An effective filter configuration is illustrated  
in Figure 5, where three capacitors have been added to the  
inputs of the LT1167. Capacitors C  
and C  
form  
S1, 2  
XCM1  
XCM2  
lowpass filters with the external series resistors R  
gauge,thentheseriesresistorsR  
canbeomitted,ifthe  
to any out-of-band signal appearing on each of the input  
S1,2  
sensor is in proximity to the instrumentation amplifier.  
traces.CapacitorC formsafiltertoreduceanyunwanted  
XD  
signalthatwouldappearacrosstheinputtraces. Anadded  
“Roll Your Own”—Discrete vs Monolithic LT1167  
Error Budget Analysis  
benefit to using C is that the circuit’s AC common mode  
XD  
rejection is not degraded due to common mode capacitive  
The LT1167 offers performance superior to that of “roll  
your own” three op amp discrete designs. A typical ap-  
plication that amplifies and buffers a bridge transducer’s  
differential output is shown in Figure 6. The amplifier, with  
itsgainsetto100, amplifiesadifferential, full-scaleoutput  
voltage of 20mV over the industrial temperature range. To  
make the comparison challenging, the low cost version of  
the LT1167 will be compared to a discrete instrumentation  
amp made with the A grade of one of the best precision  
quad op amps, the LT1114A. The LT1167C outperforms  
+
V
C
R
XCM1  
S1  
0.001μF  
1.6k  
+
+
IN  
IN  
C
XD  
R
LT1167  
V
G
OUT  
0.1μF  
R
S2  
1.6k  
C
XCM2  
0.001μF  
V
f
≈ 500Hz  
1167 F05  
3dB  
the discrete amplifier that has lower V , lower I and  
OS  
B
EXTERNAL RFI  
FILTER  
comparable V drift. The error budget comparison in  
OS  
Table 1 shows how various errors are calculated and how  
each error affects the total error budget. The table shows  
the greatest differences between the discrete solution and  
Figure 5. Adding a Simple RC Filter at the Inputs to an  
Instrumentation Amplifier Is Effective in Reducing Rectification  
of High Frequency Out-of-Band Signals  
1167fc  
15  
LT1167  
APPLICATIONS INFORMATION  
+
10k*  
10k*  
1/4  
LT1114A  
10V  
+
10k**  
10k**  
350Ω  
350Ω  
1/4  
LT1114A  
R
G
LT1167C  
REF  
202Ω**  
499Ω  
+
350Ω  
350Ω  
10k*  
10k*  
1/4  
LT1114A  
+
LT1167 MONOLITHIC  
PRECISION BRIDGE TRANSDUCER  
INSTRUMENTATION AMPLIFIER  
“ROLL YOUR OWN” INST AMP, G = 100  
* 0.02% RESISTOR MATCH, 3ppm/°C TRACKING  
** DISCRETE 1% RESISTOR, 100ppm/°C TC  
100ppm TRACKING  
G = 100, R  
= 10ppm TC  
G
SUPPLY CURRENT = 1.3mA MAX  
SUPPLY CURRENT = 1.35mA FOR 3 AMPLIFIERS  
1167 F06  
Figure 6. “Roll Your Own” vs LT1167  
Table 1. “Roll Your Own” vs LT1167 Error Budget  
ERROR SOURCE LT1167C CIRCUIT CALCULATION  
ERROR, ppm OF FULL SCALE  
LT1167C “ROLL YOUR OWN”  
“ROLL YOUR OWN”’ CIRCUIT  
CALCULATION  
Absolute Accuracy at T = 25°C  
A
Input Offset Voltage, μV  
Output Offset Voltage, μV  
Input Offset Current, nA  
CMR, dB  
60μV/20mV  
100μV/20mV  
3000  
150  
4
5000  
60  
(300μV/100)/20mV  
[(60μV)(2)/100]/20mV  
[(450pA)(350Ω)/2]/20mV  
[(0.02% Match)(5V)]/20mV  
[(450pA)(350/2)Ω]/20mV  
110dB[(3.16ppm)(5V)]/20mV  
4
790  
500  
Total Absolute Error  
3944  
5564  
Drift to 85°C  
Gain Drift, ppm/°C  
(50ppm + 10ppm)(60°C)  
[(0.4μV/°C)(60°C)]/20mV  
[(6μV/°C)(60°C)]/100/20mV  
(100ppm/°C Track)(60°C)  
[(1.6μV/°C)(60°C)]/20mV  
[(1.1μV/°C)(2)(60°C)]/100/20mV  
3600  
1200  
180  
6000  
4800  
66  
Input Offset Voltage Drift, μV/°C  
Output Offset Voltage Drift, μV/°C  
Total Drift Error  
4980  
10866  
Resolution  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1Hz to 10Hz Voltage Noise, μV  
15ppm  
10ppm  
15  
14  
10  
21  
0.28μV /20mV  
(0.3μV )(√2)/20mV  
P-P  
P-P  
P-P  
Total Resolution Error  
Grand Total Error  
29  
8953  
31  
16461  
G = 100, VS = 15V  
All errors are min/max and referred to input.  
total error. The LT1167 has additional advantages over  
the discrete design, including lower component cost and  
smaller size.  
the LT1167 are input offset voltage and CMRR. Note that  
for the discrete solution, the noise voltage specification is  
multiplied by √2 which is the RMS sum of the uncorelated  
noise of the two input amplifiers. Each of the amplifier er-  
rors is referenced to a full-scale bridge differential voltage  
of 20mV. The common mode range of the bridge is 5V. The  
LT1114 data sheet provides offset voltage, offset voltage  
drift and offset current specifications for the matched op  
amp pairs used in the error-budget table. Even with an  
excellent matched op amp like the LT1114, the discrete  
solution’stotalerrorissignificantlyhigherthantheLT1167’s  
Current Source  
Figure 7 shows a simple, accurate, low power program-  
mable current source. The differential voltage across  
Pins 2 and 3 is mirrored across R . The voltage across  
G
R is amplified and applied across R , defining the out-  
G
X
put current. The 50μA bias current flowing from Pin 5 is  
buffered by the LT1464 JFET operational amplifier. This  
1167fc  
16  
LT1167  
APPLICATIONS INFORMATION  
V
S
high CMRR ensures that the desired differential signal  
is amplified and unwanted common mode signals are  
attenuated. Since the DC portion of the signal is not  
important, R6 and C2 make up a 0.3Hz highpass filter.  
The AC signal at LT1112’s Pin 5 is amplified by a gain of  
101 set by (R7/R8) +1. The parallel combination of C3  
and R7 form a lowpass filter that decreases this gain at  
frequencies above 1kHz. The ability to operate at 3V  
on 0.9mA of supply current makes the LT1167 ideal for  
battery-powered applications. Total supply current for  
this application is 1.7mA. Proper safeguards, such as  
isolation, must be added to this circuit to protect the  
patient from possible harm.  
3
8
+
+IN  
7
R
X
6
R
LT1167  
4
G
REF  
5
V
+
X
1
2
–IN  
I
L
2
3
–V  
S
1
1/2  
LT1464  
V
[(+IN) – (–IN)]G  
X
I
L
=
=
R
R
X
X
LOAD  
49.4kΩ  
R
G
G =  
+ 1  
1167 F07  
Figure 7. Precision Voltage-to-Current Converter  
Low I Favors High Impedance Bridges,  
B
Lowers Dissipation  
has the effect of improving the resolution of the current  
source to 3pA, which is the maximum I of the LT1464A.  
B
The LT1167’s low supply current, low supply voltage  
operation and low input bias currents optimize it for  
battery-powered applications. Low overall power dis-  
sipation necessitates using higher impedance bridges.  
Thesinglesupplypressuremonitorapplication(Figure9)  
shows the LT1167 connected to the differential output of  
a 3.5k bridge. The bridge’s impedance is almost an order  
of magnitude higher than that of the bridge used in the  
error-budget table. The picoampere input bias currents  
keep the error caused by offset current to a negligible  
level. The LT1112 level shifts the LT1167’s reference pin  
and the ADC’s analog ground pins above ground. The  
LT1167’s and LT1112’s combined power dissipation  
is still less than the bridge’s. This circuit’s total supply  
current is just 2.8mA.  
Replacing R with a programmable resistor greatly  
G
increases the range of available output currents.  
Nerve Impulse Amplifier  
The LT1167’s low current noise makes it ideal for high  
source impedance EMG monitors. Demonstrating the  
LT1167’s ability to amplify low level signals, the circuit in  
Figure 8 takes advantage of the amplifier’s high gain and  
low noise operation. This circuit amplifies the low level  
nerve impulse signals received from a patient at Pins 2  
and 3. R and the parallel combination of R3 and R4 set  
G
a gain of ten. The potential on LT1112’s Pin 1 creates a  
ground for the common mode signal. C1 was chosen to  
maintain the stability of the patient ground. The LT1167’s  
3V  
PATIENT/CIRCUIT  
PROTECTION/ISOLATION  
3
8
0.3Hz  
HIGHPASS  
7
+IN  
+
3V  
C1  
0.01μF  
C2  
0.47μF  
R3  
R1  
12k  
30k  
6
5
6
8
R
LT1167  
G = 10  
G
+
6k  
R2  
1M  
7
1/2  
OUTPUT  
1V/mV  
R4  
30k  
R6  
1M  
LT1112  
1
2
5
4
4
R7  
10k  
+
2
3
–3V  
1/2  
LT1112  
1
–3V  
PATIENT  
GROUND  
R8  
100Ω  
A
= 101  
C3  
15nF  
V
POLE AT 1kHz  
–IN  
1167 F08  
Figure 8. Nerve Impulse Amplifier  
1167fc  
17  
LT1167  
APPLICATIONS INFORMATION  
BI TECHNOLOGIES  
67-8-3 R40KQ  
(0.02% RATIO MATCH)  
5V  
1
3
8
40k  
+
7
3.5k  
3.5k  
3.5k  
3.5k  
REF  
IN  
G = 200  
249Ω  
6
LT1167  
4
DIGITAL  
DATA  
OUTPUT  
ADC  
20k  
3
LTC®1286  
1
2
5
+
1
1/2  
AGND  
40k  
LT1112  
2
1167 F09  
Figure 9. Single Supply Bridge Amplifier  
AC Coupled Instrumentation Amplifier  
TYPICAL APPLICATION  
2
1
–IN  
6
R
LT1167  
REF  
OUTPUT  
G
R1  
500k  
8
3
C1  
0.3μF  
5
+IN  
+
+
2
1
1/2  
LT1112  
1
f
=
–3dB  
3
(2π)(R1)(C1)  
= 1.06Hz  
1167 TA04  
1167fc  
18  
LT1167  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 t .015*  
(6.477 t 0.381)  
1
2
3
.130 t .005  
.300 – .325  
.045 – .065  
(3.302 t 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 t .003  
(0.457 t 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1167fc  
19  
LT1167  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 p.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 p.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 p.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45o  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0o– 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1167fc  
20  
LT1167  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
01/11 Added LT1167-1 to Description, Absolute Maximum Ratings, Order Information, Electrical Characteristics and  
Applications Information Section  
1-6, 15  
C
08/11 Correction to TYP specification for SR from 12 to 1.2  
Columns shifted to left in CMRR specification  
4
4, 5  
1167fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT1167  
TYPICAL APPLICATION  
4-Digit Pressure Sensor  
9V  
R8  
LUCAS NOVA SENOR  
392k  
9V  
NPC-1220-015A-3L  
3
2
4
+
2
1
1
3
1
4
1/4  
LT1114  
1
2
7
5k  
5k  
LT1634CCZ-1.25  
R1  
11  
825Ω  
6
LT1167  
G = 60  
R9  
1k  
R2  
12Ω  
5k  
2
6
5k  
8
3
5
TO  
+
4-DIGIT  
DVM  
+
4
R
SET  
10  
9
+
8
1/4  
LT1114  
5
12  
13  
+
14  
1/4  
CALIBRATION  
ADJUST  
0.2% ACCURACY AT ROOM TEMP  
1.2% ACCURACY AT 0°C TO 60°C  
LT1114  
R7  
180k  
R6  
50k  
VOLTS INCHES Hg  
R5  
100k  
R4  
100k  
2.800  
3.000  
3.200  
28.00  
30.00  
32.00  
R3  
51k  
C1  
1μF  
1167 TA03  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Best DC Accuracy  
LTC1100  
LT1101  
LT1102  
LT1168  
LTC1418  
Precision Chopper-Stabilized Instrumentation Amplifier  
Precision, Micropower, Single Supply Instrumentation Amplifier  
High Speed, JFET Instrumentation Amplifier  
Fixed Gain of 10 or 100, I < 105μA  
S
Fixed Gain of 10 or 100, 30V/μs Slew Rate  
Low Power, Single Resistor Programmable Instrumentation Amplifier  
14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/O  
I
= 530μA Max  
SUPPLY  
Single Supply 5V or 5V Operation, 1.5LSB INL  
and 1LSB DNL Max  
LT1460  
LT1468  
Precision Series Reference  
Micropower; 2.5V, 5V, 10V Versions; High Precision  
16-Bit Accurate Op Amp, Low Noise Fast Settling  
16-Bit Accuracy at Low and High Frequencies, 90MHz GBW,  
22V/μs, 900ns Settling  
LTC1562  
LTC1605  
Active RC Filter  
Lowpass, Bandpass, Highpass Responses; Low Noise,  
Low Distortion, Four 2nd Order Filter Sections  
16-Bit, 100ksps, Sampling ADC  
Single 5V Supply, Bipolar Input Range: 10V,  
Power Dissipation: 55mW Typ  
1167fc  
LT 0811 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
© LINEAR TECHNOLOGY CORPORATION 1998  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1167AIS8#TRPBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1167AIS8-1#TRPBF

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167C

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CN8

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CN8#PBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1167CN8#TR

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LT1167CN8#TRPBF

IC INSTRUMENTATION AMPLIFIER, 80 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LT1167CS8

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8#PBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1167CS8#TRPBF

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8-1#PBF

Single Resistor Gain Programmable, Precision Instrumentation Amplifier
Linear

LT1167CS8-1#TRPBF

LT1167 - Single Resistor Gain Programmable, Precision Instrumentation Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear