LT1227_06 [Linear]

140MHz Video Current Feedback Amplifier; 140MHz的视频电流反馈放大器
LT1227_06
型号: LT1227_06
厂家: Linear    Linear
描述:

140MHz Video Current Feedback Amplifier
140MHz的视频电流反馈放大器

放大器
文件: 总12页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1227  
140MHz Video Current  
Feedback Amplifier  
U
FEATURES  
DESCRIPTIO  
The LT®1227 is a current feedback amplifier with wide  
bandwidth and excellent video characteristics. The low  
differential gain and phase, wide bandwidth, and 30mA  
output drive current make the LT1227 well suited to drive  
cables in video systems.  
140MHz Bandwidth: AV = 2, RL = 150Ω  
1100V/µs Slew Rate  
Low Cost  
30mA Output Drive Current  
0.01% Differential Gain  
0.01° Differential Phase  
Ashutdownfeatureswitchesthedeviceintoahighimped-  
ance, low current mode, allowing multiple devices to be  
connected in parallel and selected. Input to output isola-  
tioninshutdownis70dBat10MHzforinputamplitudesup  
to 10VP-P. The shutdown pin interfaces to open collector  
oropendrainlogicandtakesonly4µstoenableordisable.  
High Input Impedance: 14M, 3pF  
Wide Supply Range: ±2V to ±15V  
Shutdown Mode: IS < 250µA  
Low Supply Current: IS = 10mA  
Inputs Common Mode to Within 1.5V of Supplies  
Outputs Swing Within 0.8V of Supplies  
The LT1227 comes in the industry standard pinout and  
can upgrade the performance of many older products. For  
a dual or quad version, see the LT1229/1230 data sheet.  
U
APPLICATIO S  
Video Amplifiers  
The LT1227 is manufactured on Linear Technology’s  
proprietary complementary bipolar process.  
Cable Drivers  
RGB Amplifiers  
Test Equipment Amplifiers  
50Buffers for Driving Mixers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Video Cable Driver  
Differential Gain and Phase  
vs Supply Voltage  
0.20  
0.16  
0.12  
0.08  
0.04  
0
0.20  
0.16  
0.12  
0.08  
0.04  
0
V
NTSC COMPOSITE  
f = 3.58MHz  
+
IN  
75Ω  
LT1227  
75Ω  
CABLE  
R
F
1k  
V
OUT  
R
1k  
G
75Ω  
V
V
OUT  
= 1  
∆φ  
IN  
1227 TA01  
G  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
LT1227 • TA02  
1
LT1227  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
Supply Voltage ..................................................... ±18V  
Input Current ...................................................... ±15mA  
Output Short Circuit Duration (Note 2) ........ Continuous  
Operating Temperature Range  
LT1227C.................................................. 0°C to 70°C  
LT1227M (OBSOLETE) .................... 55°C to 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Junction Temperature  
TOP VIEW  
1
2
3
4
NULL  
–IN  
8
7
6
5
SHDN  
+
LT1227CN8  
V
+IN  
OUT  
V
NULL  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 150°C, θJA = 100°C/W (N)  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
TJMAX = 175°C, θJA = 100°C/W (J)  
Plastic Package ................................................ 150°C  
Ceramic Package (OBSOLETE) ........................ 175°C  
Lead Temperature (Soldering, 10 sec.)................ 300°C  
LT1227MJ8  
OBSOLETE PACKAGE  
Consider the N8 Package for Alternate Source.  
TOP VIEW  
ORDER PART  
NUMBER  
1
2
3
4
8
7
6
5
NULL  
–IN  
SHDN  
+
V
LT1227CS8  
+IN  
OUT  
V
NULL  
S8 PART MARKING  
1227  
S8 PACKAGE  
8-LEAD PLASTIC SO  
JMAX = 150°C, θJA = 150°C/W  
T
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0, ±5V VS ≤ ±15V, pulse tested, unless otherwise noted.  
SYMBOL  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
T = 25°C  
MIN  
TYP  
±3  
MAX  
±10  
±15  
UNITS  
V
mV  
mV  
µV/°C  
OS  
A
Input Offset Voltage Drift  
Noninverting Input Current  
10  
±0.3  
I
I
+
T = 25°C  
A
±3  
±10  
±60  
±100  
µA  
µA  
µA  
µA  
IN  
IN  
Inverting Input Current  
T = 25°C  
A
±10  
e
+i  
–i  
R
Input Noise Voltage Density  
f = 1kHz, R = 1k, R = 10, R = 0Ω  
f = 1kHz  
f = 1kHz  
3.2  
1.7  
32  
14  
11  
nV/Hz  
pA/Hz  
pA/Hz  
n
F
G
S
Noninverting Input Noise Current Density  
Inverting Input Noise Current Density  
Input Resistance  
n
n
V
V
= ±13V, V = ±15V  
1.5  
1.5  
MΩ  
MΩ  
IN  
IN  
IN  
S
= ±3V, V = ±5V  
S
C
Input Capacitance  
3
pF  
IN  
Input Voltage Range  
V = ±15V, T = 25°C  
±13  
±12  
±3  
±13.5  
V
V
V
V
S
A
V = ±5V, T = 25°C  
±3.5  
S
A
±2  
CMRR  
Common Mode Rejection Ratio  
V = ±15V, V = ±13V, T = 25°C  
55  
55  
55  
55  
62  
61  
dB  
dB  
dB  
dB  
S
CM  
A
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
S
CM  
A
V = ±5V, V = ±2V  
S
CM  
2
LT1227  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCM = 0, ±5V VS ≤ ±15V, pulse tested, unless otherwise noted.  
SYMBOL  
PARAMETER  
Inverting Input Current  
Common Mode Rejection  
CONDITIONS  
V = ±15V, V = ±13V, T = 25°C  
MIN  
TYP  
3.5  
MAX  
UNITS  
10  
10  
10  
10  
µA/V  
µA/V  
µA/V  
µA/V  
dB  
dB  
nA/V  
nA/V  
µA/V  
µA/V  
S
CM  
A
V = ±15V, V = ±12V  
S
CM  
V = ±5V, V = ±3V, T = 25°C  
4.5  
80  
S
CM  
A
V = ±5V, V = ±2V  
S
CM  
PSRR  
Power Supply Rejection Ratio  
V = ±2V to ±15V, T = 25°C  
60  
60  
S
A
V = ±3V to ±15V  
S
Noninverting Input Current  
Power Supply Rejection  
Inverting Input Current  
Power Supply Rejection  
V = ±2V to ±15V, T = 25°C  
2
50  
50  
5
5
S
A
V = ±3V to ±15V  
S
V = ±2V to ±15V, T = 25°C  
0.25  
S
A
V = ±3V to ±15V  
S
A
Large-Signal Voltage Gain  
V = ±15V, V  
= ±10V, R = 1k  
55  
55  
72  
72  
dB  
dB  
V
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
S
OUT  
L
R
OL  
Transresistance, V /I  
V = ±15V, V  
= ±10V, R = 1k  
100  
100  
270  
240  
kΩ  
kΩ  
OUT IN  
S
OUT  
L
V = ±5V, V  
= ±2V, R = 150Ω  
S
OUT  
L
V
Maximum Output Voltage Swing  
V = ±15V, R = 400, T = 25°C  
±12  
±10  
±3  
±13.5  
V
V
V
V
OUT  
S
L
A
V = ±5V, R = 150, T = 25°C  
±3.7  
S
L
A
±2.5  
I
I
Maximum Output Current  
Supply Current (Note 3)  
R = 0, T = 25°C  
30  
60  
10  
mA  
mA  
mA  
OUT  
S
L
A
V = ±15V, V  
= 0V, T = 25°C  
15.0  
17.5  
S
OUT  
A
Positive Supply Current, Shutdown  
V = ±15V, Pin 8 Voltage = 0V, T = 25°C  
120  
300  
500  
300  
10  
µA  
µA  
µA  
µA  
V/µs  
ns  
MHz  
ns  
S
A
I
Shutdown Pin Current (Note 4)  
Output Leakage Current, Shutdown  
Slew Rate (Notes 5 and 6)  
V = ±15V  
8
S
V = ±15V, Pin 8 Voltage = 0V, T = 25°C  
S
A
SR  
t , t  
T = 25°C  
500  
1100  
8.7  
140  
3.3  
3.4  
5
A
Rise and Fall Time, V  
= 1V  
V = ±5V, R = 1k, R = 1k, R = 150Ω  
S F G L  
r
f
OUT  
P-P  
BW  
t , t  
Small-Signal Bandwidth  
Small-Signal Rise and Fall Time  
Propagation Delay  
Small-Signal Overshoot  
Settling Time  
V = ±15V, R = 1k, R = 1k, R = 150Ω  
S
F
G
L
V = ±15V, R = 1k, R = 1k, R = 100Ω  
S F G L  
r
f
V = ±15V, R = 1k, R = 1k, R = 100Ω  
ns  
%
ns  
S
F
G
L
V = ±15V, R = 1k, R = 1k, R = 100Ω  
S
F
G
L
t
0.1%, V  
= 10V, R = 1k, R = 1k, R = 1k  
50  
S
OUT  
F
G
L
Differential Gain (Note 7)  
V = ±15V, R = 1k, R = 1k, R = 150Ω  
0.014  
0.010  
%
%
S
F
G
L
V = ±15V, R = 1k, R = 1k, R = 1k  
S
F
G
L
Differential Phase (Note 7)  
V = ±15V, R = 1k, R = 1k, R = 150Ω  
0.010  
0.013  
DEG  
DEG  
S
F
G
L
V = ±15V, R = 1k, R = 1k, R = 1k  
S
F
G
L
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Ramp Pin 8 voltage down from 15V while measuring I . When I  
drops to less than 0.5mA, measure Pin 8 current.  
S
S
Note 2: A heat sink may be required depending on the power supply  
voltage.  
Note 5: Slew rate is measured at ±5V on a ±10V output signal while  
operating on ±15V supplies with R = 2k, R = 220and R = 400.  
F G L  
Note 3: The supply current of the LT1227 has a negative temperature  
coefficient. For more information, see Typical Performance Characteristics  
curves.  
Note 6: AC parameters are 100% tested on the ceramic and plastic DIP  
package parts (J and N suffix) and are sample tested on every lot of the SO  
packaged parts (S suffix).  
Note 7: NTSC composite video with an output level of 2V.  
3
LT1227  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Voltage Gain and Phase vs  
Frequency, Gain = 6dB  
–3dB Bandwidth vs Supply  
–3dB Bandwidth vs Supply  
Voltage, Gain = 2, RL = 1k  
Voltage, Gain = 2, RL = 100Ω  
180  
180  
10  
9
0
PEAKING 0.5dB  
PEAKING 5dB  
PHASE  
PEAKING 0.5dB  
PEAKING 5dB  
45  
90  
135  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
8
R = 750Ω  
F
R = 500Ω  
F
7
R = 750Ω  
F
R = 2k  
F
6
5
180  
225  
GAIN  
R = 1k  
F
R = 1.5k  
F
R = 1k  
F
4
3
2
1
0
60  
60  
40  
40  
V
R
R
= ±15V  
= 100Ω  
= 910Ω  
S
L
F
R = 2k  
F
20  
20  
0
0
0
2
4
6
8
10 12 14 16 18  
14  
0
2
4
6
8
10 12  
16 18  
0.1  
1
10  
100  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FREQUENCY (MHz)  
LT1227 • TPC01  
LT1227 • TPC02  
LT1227 • TPC03  
–3dB Bandwidth vs Supply  
Voltage Gain and Phase vs  
Frequency, Gain = 20dB  
–3dB Bandwidth vs Supply  
Voltage, Gain = 10, RL = 100Ω  
Voltage, Gain = 10, RL = 1k  
180  
180  
24  
23  
22  
21  
0
PHASE  
PEAKING 0.5dB  
PEAKING 5dB  
PEAKING 0.5dB  
PEAKING 5dB  
45  
90  
135  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
R = 500Ω  
F
20  
19  
180  
225  
R = 500Ω  
F
GAIN  
R = 250Ω  
F
R = 750Ω  
F
R = 750Ω  
F
18  
17  
16  
15  
14  
R = 1k  
F
60  
60  
R = 1k  
F
40  
40  
V
R
R
= ±15V  
= 100Ω  
= 825Ω  
S
L
F
R = 2k  
F
20  
20  
R = 2k  
F
0
0
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
0.1  
1
10  
100  
FREQUENCY (MHz)  
LT1227 • TPC06  
LT1227 • TPC04  
LT1227 • TPC05  
Voltage Gain and Phase vs  
Frequency, Gain = 40dB  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 100Ω  
–3dB Bandwidth vs Supply  
Voltage, Gain = 100, RL = 1k  
18  
18  
44  
43  
42  
41  
0
PHASE  
45  
90  
135  
R = 500Ω  
F
16  
14  
12  
10  
8
16  
14  
12  
10  
8
R = 1k  
F
R = 500Ω  
F
R = 1k  
F
R = 2k  
F
40  
39  
180  
225  
GAIN  
R = 2k  
F
38  
37  
36  
35  
34  
6
6
4
4
V
R
R
= ±15V  
= 100Ω  
= 500Ω  
S
L
F
2
2
0
0
0
2
4
6
8
10 12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
0.1  
1
10  
100  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FREQUENCY (MHz)  
LT1227 • TPC07  
LT1227 • TPC09  
LT1227 • TPC08  
4
LT1227  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Capacitive Load  
vs Feedback Resistor  
Total Harmonic Distortion  
vs Frequency  
Maximum Undistorted Output  
vs Frequency  
0.1  
10000  
1000  
100  
25  
20  
R
= 1k  
V
= ±15V  
= 400Ω  
G
V
R
R
= ±15V  
= 1k  
= 1k  
L
S
L
F
S
L
F
PEAKING 5dB  
R
GAIN = 2  
R = R = 1k  
V
S
= ±5V  
A
A
= +10  
= –1  
V
V
15  
10  
5
V
S
= ±15V  
0.01  
V
= 7V  
= 1V  
O
RMS  
A
= +1  
V
A
= +2  
10  
V
V
O
RMS  
0.001  
0
1
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
10  
FREQUENCY (MHz)  
100  
0
1
2
3
FEEDBACK RESISTOR (k)  
LT1127 • TPC12  
LT1227 • TPC11  
LT1227 • TPC10  
Input Common Mode Limit  
vs Temperature  
Output Short-Circuit Current  
vs Junction Temperature  
Output Saturation Voltage  
vs Temperature  
+
+
V
70  
60  
V
R
= ∞  
L
–0.5  
–1.0  
–1.5  
–2.0  
±2V V ±18V  
S
+
–0.5  
–1.0  
V
= 2V TO 18V  
50  
40  
2.0  
1.5  
1.0  
0.5  
1.0  
0.5  
V
= –2V TO –18V  
V
30  
V
50  
100 125  
–50 –25  
0
25  
75  
–50  
0
25  
50  
75 100 125  
–50  
–25  
0
25  
50 75 100 125 150 175  
TEMPERATURE (°C)  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1227 • TPC14  
LT1227 • TPC15  
LT1227 • TPC13  
Power Supply Rejection  
vs Frequency  
Spot Noise Voltage and Current  
vs Frequency  
Output Impedance vs Frequency  
100  
10  
1
100  
10  
80  
60  
40  
V
R
= ±15V  
= 100Ω  
G
V
S
= ±15V  
S
L
F
R = R = 1k  
–i  
n
POSITIVE  
R = R = 2k  
F
G
1
0.1  
NEGATIVE  
R = R = 1k  
F
G
e
n
20  
0
0.01  
+i  
n
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
LT1227 • TPC16  
LT1227 • TPC17  
LT1227 • TPC18  
5
LT1227  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Settling Time to 1mV  
vs Output Step  
Settling Time to 10mV  
vs Output Step  
Supply Current vs Supply Voltage  
14  
13  
12  
11  
10  
9
10  
8
10  
8
V
= ±15V  
G
V
= ±15V  
G
S
F
S
F
R
= R = 1k  
R = R = 1k  
6
6
–55°C  
25°C  
4
4
NONINVERTING  
INVERTING  
2
2
NONINVERTING  
INVERTING  
0
0
8
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
125°C  
175°C  
7
6
5
4
0
2
4
6
8
10 12 14 16 18  
0
20  
40  
60  
80  
100  
0
4
8
12  
16  
20  
SUPPLY VOLTAGE (±V)  
SETTLING TIME (ns)  
SETTLING TIME (µs)  
LT1227 • TPC21  
LT1227 • TPC19  
LT1227 • TPC20  
Output Impedance in Shutdown  
vs Frequency  
Differential Phase vs Frequency  
Differential Gain vs Frequency  
100  
10  
1
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
V
A
= ±15V  
S
V
F
(V ) = 0.5V  
O DC  
= 1  
0.05  
0.10  
1.0V  
1.5V  
2.0V  
R = 1.5k  
(V ) = 0.5V  
O DC  
0.15  
0.20  
0.25  
0.30  
1.0V  
2.0V  
V
A
= ±15V  
= 2  
V
A
= ±15V  
= 2  
= 1k  
R = 1k  
= 1k  
S
V
L
F
G
S
V
L
F
G
R
= 1k  
R
R = 1k  
R
= 1k  
R
0.1  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1227 • TPC22  
LT1227 • TPC23  
LT1227 • TPC24  
2nd and 3rd Harmonic Distortion  
vs Frequency  
3rd Order Intercept vs Frequency  
Test Circuit for 3rd Order Intercept  
–20  
–30  
45  
40  
V
V
R
R
A
= ±15V  
S
O
L
F
V
= ±15V  
= 100Ω  
S
L
F
G
= 2V  
P-P  
R
+
= 100Ω  
= 820Ω  
= 10dB  
R = 680Ω  
R
50Ω  
= 75Ω  
P
O
LT1227  
V
35  
30  
–40  
–50  
–60  
–70  
2ND  
680Ω  
3RD  
25  
20  
15  
50Ω  
75Ω  
MEASURE INTERCEPT AT P  
O
1227 TC  
1
10  
FREQUENCY (MHz)  
100  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
LT1227 • TPC25  
LT1227 • TPC26  
6
LT1227  
W
W
SI PLIFIED SCHE ATIC  
+
V
7
14k  
1
NULL  
5
NULL  
CURRENT  
SOURCE  
BIAS  
8
S/D  
–IN  
3
2
6
V
+IN  
OUT  
V
4
1227 SS  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
The LT1227 is a very fast current feedback amplifier.  
Because it is a current feedback amplifier, the bandwidth  
is maintained over a wide range of voltage gains. The  
amplifierisdesignedtodrivelowimpedanceloadssuchas  
cables with excellent linearity at high frequencies.  
5dB of peaking. The curves stop where the response has  
more than 5dB of peaking.  
At a gain of two, on ±15V supplies with a 1k feedback  
resistor, the bandwidth into a light load is over 140MHz,  
but into a heavy load the bandwidth reduces to 120MHz.  
The loading has this effect because there is a mild reso-  
nance in the output stage that enhances the bandwidth at  
light loads but has its Q reduced by the heavy load. This  
enhancement is only useful at low gain settlings; at a gain  
of ten it does not boost the bandwidth. At unity gain, the  
enhancement is so effective the value of the feedback  
resistor has very little effect. At very high closed-loop  
gains, the bandwidth is limited by the gain bandwidth  
product of about 1GHz. The curves show that the band-  
widthataclosed-loopgainof100is12MHz,onlyonetenth  
what it is at a gain of two.  
Feedback Resistor Selection  
The small-signal bandwidth of the LT1227 is set by the  
external feedback resistors and the internal junction ca-  
pacitors. As a result, the bandwidth is a function of the  
supply voltage, the value of the feedback resistor, the  
closed-loop gain and load resistor. The characteristic  
curves of Bandwidth vs Supply Voltage show the effect of  
a heavy load (100) and a light load (1k). These curves  
use a solid line when the response has less than 0.5dB of  
peaking and a dashed line when the response has 0.5dB to  
7
LT1227  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Small-Signal Rise Time, AV = +2  
and inverting input bias current will change. The offset  
voltage changes about 500µV per volt of supply mis-  
match. The inverting bias current can change as much as  
5.0µA per volt of supply mismatch, though typically the  
change is less than 0.5µA per volt.  
Slew Rate  
VOUT  
The slew rate of a current feedback amplifier is not  
independent of the amplifier gain configuration the way  
slewrateisinatraditionalopamp.Thisisbecauseboththe  
inputstageandtheoutputstagehaveslewratelimitations.  
In the inverting mode, and for higher gains in the  
noninverting mode, the signal amplitude between the  
input pins is small and the overall slew rate is that of the  
output stage. For gains less than ten in the noninverting  
mode, the overall slew rate is limited by the input stage.  
AI01  
RF = 1k, RG= 1k, RL = 100Ω  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Take care to minimize the stray capacitance between the  
output and the inverting input. Capacitance on the invert-  
ing input to ground will cause peaking in the frequency  
response (and overshoot in the transient response), but it  
does not degrade the stability of the amplifier.  
The input stage slew rate of the LT1227 is approximately  
125V/µs and is set by internal currents and capacitances.  
The output slew rate is set by the value of the feedback  
resistors and the internal capacitances. At a gain of ten  
with a 1k feedback resistor and ±15V supplies, the output  
slew rate is typically 1100V/µs. Larger feedback resistors  
will reduce the slew rate as will lower supply voltages,  
similar to the way the bandwidth is reduced.  
Capacitive Loads  
The graph of Maximum Undistorted Output vs Frequency  
relates the slew rate limitations to sinusoidal inputs for  
various gain configurations.  
The LT1227 can drive capacitive loads directly when the  
proper value of feedback resistor is used. The graph of  
Maximum Capacitive Load vs Feedback Resistor should  
be used to select the appropriate value. The value shown  
isfor5dBpeakingwhendrivinga1kloadatagainof2.This  
is a worst case condition, the amplifier is more stable at  
higher gains and driving heavier loads. Alternatively, a  
small resistor (10to 20) can be put in series with the  
output to isolate the capacitive load from the amplifier  
output. This has the advantage that the amplifier band-  
width is only reduced when the capacitive load is present  
and the disadvantage that the gain is a function of the load  
resistance.  
Large-Signal Transient Response, AV = +10  
VOUT  
Power Supplies  
The LT1227 will operate from single or split supplies from  
±2V (4V total) to ±15V (30V total). It is not necessary to  
use equal value split supplies, however the offset voltage  
AI02  
RF = 910, RG= 100, RL = 400Ω  
8
LT1227  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Large-Signal Transient Response, AV = +2  
Shutdown  
The LT1227 has a high impedance, low supply current  
mode which is controlled by Pin 8. In the shutdown mode,  
the output looks like a 12pF capacitor and the supply  
current drops to approximately the Pin 8 current. The  
shutdown pin is referenced to the positive supply through  
an internal pullup circuit (see the simplified schematic).  
Pulling a current of greater than 50µA from Pin 8 will put  
the device into the shutdown mode. An easy way to force  
shutdown is to ground Pin 8, using open drain (collector)  
logic. Because the pin is referenced to the positive supply,  
the logic used should have a breakdown voltage of greater  
than the positive supply voltage. No other circuitry is  
necessary as an internal JFET limits the Pin 8 current to  
about 100µA. When Pin 8 is open, the LT1227 operates  
normally.  
VOUT  
AI03  
RF = 1k, RG= 1k, RL = 400Ω  
Large-Signal Transient Response, AV = –2  
Differential Input Signal Swing  
The differential input swing is limited to about ±6V by an  
ESD protection device connected between the inputs. In  
normal operation, the differential voltage between the  
input pins is small, so this clamp has no effect; however,  
in the shutdown mode, the differential swing can be the  
same as the input swing. The clamp voltage will then set  
the maximum allowable input voltage. To allow for some  
margin, it is recommended that the input signal be less  
than ±5V when the device is shutdown.  
VOUT  
AI04  
R
F = 1k, RG= 510, RL = 400Ω  
Offset Adjust  
Pins1and5areprovidedforoffsetnulling. Asmallcurrent  
to V+ or ground will compensate for DC offsets in the  
device. The pins are referenced to the positive supply (see  
the simplified schematic) and should be left open if un-  
used. The offset adjust pins act primarily on the inverting  
input bias current. A 10k pot connected to Pins 1 and 5  
with the wiper connected to V+ will null out the bias  
current, but will not affect the offset voltage much. Since  
the output offset is  
Settling Time  
The characteristic curves show that the LT1227 amplifier  
settlestowithin10mVoffinalvaluein40nsto55nsforany  
output step up to 10V. The curve of settling to 1mV of final  
value shows that there is a slower thermal contribution up  
to 20µs. The thermal settling component comes from the  
output and the input stage. The output contributes just  
under 1mV per volt of output change and the input  
contributes 300µV per volt of input change. Fortunately  
the input thermal tends to cancel the output thermal. For  
this reason the noninverting gain of two configuration  
settles faster than the inverting gain of one.  
VO AV • VOS + (IIN ) • RF  
athighergains(AV >5),theVOS termwilldominate.Tonull  
out the VOS term, use a 10k pot between Pins 1 and 5 with  
a 150k resistor from the wiper to ground for 15V split  
supplies, 47k for 5V split supplies.  
9
LT1227  
U
O
TYPICAL APPLICATI S  
MUX Amplifier  
MUX Amplifier  
15V  
The shutdown function can be effectively used to con-  
struct a MUX amplifier. A two-channel version is shown,  
but more inputs could be added with suitable logic. By  
configuring each amplifier as a unity-gain follower, there  
is no loading by the feedback network when the amplifier  
is off. The open drains of the 74C906 buffers are used to  
interface the 5V logic to the shutdown pin. Feedthrough  
from the unselected input to the output is –70dB at  
10MHz. The differential voltage between MUX inputs VIN1  
and VIN2 appears across the inputs of the shutdown  
device, this voltage should be less than ±5V to avoid  
turning on the clamp diodes discussed previously. If the  
inputs are sinusoidal having a zero DC level, this implies  
that the amplitude of each input should be less than  
5VP-P. The output impedance of the off amplifier remains  
high until the output level exceeds approximately 6VP-P at  
10MHz,thissetsthemaximumusableoutputlevel.Switch-  
ing time between inputs is about 4µs without an external  
pullup. Adding a 10k pullup resistor from each shutdown  
pin to V+ will reduce the switching time to 2µs but will  
increasethepositivesupplycurrentinshutdownby1.5mA.  
V
+
IN1  
LT1227  
S/D  
V
OUT  
–15V  
1.5k  
V
OUT  
= 1  
V
IN  
5V  
74C906  
15V  
V
+
IN2  
LT1227  
S/D  
–15V  
1.5k  
5V  
5V  
INPUT  
SELECT  
74C906  
74HC04  
1227 TA04  
MUX Output  
MUX Input Crosstalk vs Frequency  
–40  
–50  
VOUT  
–60  
–70  
–80  
–90  
INPUT  
SELECT  
TA03  
1
10  
100  
VIN1 = 1VP-P, VIN2 = 0V  
FREQUENCY (MHz)  
LT1227 TA05  
10  
LT1227  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.300 BSC  
(0.762 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
0.200  
(5.080)  
MAX  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER  
DIP/PLATE OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1227  
U
O
TYPICAL APPLICATI S  
Single Supply AC-Coupled  
Amplifier Noninverting  
Single Supply AC-Coupled  
Amplifier Inverting  
3.58MHz Oscillator  
15V  
5V  
5V  
1N4148  
100k  
4.7µF  
4.7µF  
2N3904  
510Ω  
A
V
=
10  
R
+ 51Ω  
100pF  
S
75pF  
10k  
10k  
22µF  
10k  
10k  
BW = 14Hz to 60MHz  
3.579545MHz  
1k  
V
IN  
+
+
68pF  
150k  
+
V
LT1227  
OUT  
V
LT1227  
OUT  
2.2µF  
15V  
51Ω  
220µF  
V
LT1227  
220µF  
OUT  
510Ω  
51Ω  
R
S
51Ω  
510Ω  
+
V
IN  
1227 TA09  
A
= 11  
V
BW = 14Hz to 60MHz  
1227 TA08  
–15V  
1227 TA10  
Buffer with DC Nulling Loop  
CMOS Logic to Shutdown Interface  
Optional Offset Nulling Circuit  
+
V
R
180Ω  
10k  
180Ω  
10k  
NULL  
+
15V  
7
+
V
10k  
7
3
3
2
0.1µF  
+
1
5
6
3
2
6
V
LT1227  
+
LT1227  
IN  
1
6
2
8
5
R
NULL  
R
NULL  
= 47k FOR V = ±5V  
V
OUT  
LT1227  
S
10k  
= 150k FOR V = ±15V  
4
S
4
1227 TA12  
–15V  
5V  
V
1.5k  
10k  
2N3904  
100k  
0.01µF  
1227 TA11  
+
LT1097  
100k  
0.01µF  
1227 TA07  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1395/LT1396/LT1397 Single/Dual/Quad 400MHz Current Feedback Amplifier  
Miniature Packages: SOT-23, MSOP-8, SSOP-16  
1227fb LT/CP 1001 1.5K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1994  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1228

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228C

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228CJ8

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228CJ8#PBF

IC 1 CHANNEL, VIDEO AMPLIFIER, CDIP8, 0.300 INCH, HERMETIC SEALED, LEAD FREE, CERAMIC, DIP-8, Audio/Video Amplifier
Linear

LT1228CN8

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228CN8#PBF

LT1228 - 100MHz Current Feedback Amplifier with DC Gain Control; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1228CN8#TR

IC 1 CHANNEL, VIDEO AMPLIFIER, PDIP8, 0.300 INCH, PLASTIC, DIP-8, Audio/Video Amplifier
Linear

LT1228CS8

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228CS8#TR

暂无描述
Linear

LT1228IN8

100MHz Current Feedback Amplifier with DC Gain Control
Linear

LT1228IN8#PBF

LT1228 - 100MHz Current Feedback Amplifier with DC Gain Control; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1228IS8

100MHz Current Feedback Amplifier with DC Gain Control
Linear