LT1308ACF#TR [Linear]

IC 4.5 A SWITCHING REGULATOR, 750 kHz SWITCHING FREQ-MAX, PDSO14, 4.40 MM, PLASTIC, TSSOP-14, Switching Regulator or Controller;
LT1308ACF#TR
型号: LT1308ACF#TR
厂家: Linear    Linear
描述:

IC 4.5 A SWITCHING REGULATOR, 750 kHz SWITCHING FREQ-MAX, PDSO14, 4.40 MM, PLASTIC, TSSOP-14, Switching Regulator or Controller

转换器
文件: 总8页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LT1308  
Single Cell High Current  
Micropower 600kHz  
Boost DC/DC Converter  
January 1998  
U
DESCRIPTION  
FEATURES  
The LT®1308 is a micropower, fixed frequency boost  
DC/DC converter that operates from an input voltage as  
low as 1V. Capable of delivering 5V at load current of 1A  
from a single Li-Ion cell, the LT1308 also features power  
savingBurstModeoperationatlightloads. Highefficiency  
is maintained over a broad 1mA to 1A load range.  
5V at 1A from a Single Li-Ion Cell  
3.3V at 300mA from a Single NiCd Cell  
Low Quiescent Current: 100µA  
Operates with VIN as Low as 1V  
Fixed Frequency Operation: 600kHz  
Current Mode PWM Delivers Low Output Ripple  
Guaranteed Start-Up into Full Load  
The device contains a low-battery detector with a 200mV  
reference and shuts down to less than 5µA quiescent  
current. No-load quiescent current is 100µA and the  
internal NPN power switch handles a 2A current with a  
voltage drop of just 300mV.  
Low Shutdown Current: 3µA  
Low-Battery Comparator  
Automatic Burst ModeTM Operation at Light Load  
Low VCESAT  
SwitUch: 300mV at 2A  
High frequency 600kHz switching allows the use of small,  
surface mount components. The LT1308’s current mode  
architecture provides fast response to load and line varia-  
tions. The device is available in an 8-lead SO package.  
APPLICATIONS  
GSM Terminals  
Digital Cameras  
Answer-Back Pagers  
Cordless Telephones  
DECT Phones  
GPS Receivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a trademark of Linear Technology Corporation.  
Battery Backup Supplies  
U
TYPICAL APPLICATION  
Converter Efficiency  
4.2V TO 3V  
95  
L1  
V
= 3.6V  
IN  
4.7µH  
90  
85  
80  
75  
70  
65  
V
SHDN  
LBI  
IN  
V
= 4.2V  
IN  
SW  
R1  
301k  
LT1308  
D1  
Li-Ion  
CELL  
5V  
1A  
C1  
10µF  
LBO  
FB  
V
GND  
C
V
= 3V  
IN  
+
C2  
100µF  
R2  
100k  
R
C
47k  
C
C
22nF  
1308F01  
C1: CERAMIC  
C2: AVX TPS SERIES  
1
10  
100  
1000  
D1: INTERNATIONAL RECTIFIER 10BQ015  
L1: COILTRONICS CTX5-1  
LOAD CURRENT (mA)  
1308 F01a  
COILCRAFT DO3316-472  
Figure 1. Single Li-Ion Cell to 5V/1A DC/DC Converter  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LT1308  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/
PACKAGE ORDER I FOR ATIO  
VIN, SHDN, LBO Voltage ......................................... 10V  
SW Voltage ............................................................. 30V  
FB Voltage ....................................................... VIN + 1V  
VC Voltage ................................................................ 2V  
LBI Voltage ............................................ 0V VLBI 1V  
Current into FB Pin .............................................. ±1mA  
Junction Temperature...........................................125°C  
Operating Temperature Range  
Commercial (Note 1) ......................... 20°C to 70°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
V
1
2
3
4
8
7
6
5
LBO  
LBI  
C
LT1308CS8  
LT1308IS8  
FB  
SHDN  
GND  
V
IN  
SW  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
1308  
1308I  
TJMAX = 125°C, θJA = 80°C/W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
Commercial Grade 0°C to 70°C. VIN = 1.1V, VSHDN = VIN, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching  
80  
1
160  
3
µA  
µA  
Q
V
= 0V  
SHDN  
V
Feedback Voltage  
1.20  
1.22  
27  
1.24  
80  
V
FB  
I
FB Pin Bias Current (Note 2)  
Reference Line Regulation  
V
= V  
nA  
B
FB  
REF  
1.1V V 2V (25°C, 0°C)  
1.1V V 2V (70°C)  
2V V 6V  
0.6  
1.1  
1.5  
0.8  
%/V  
%/V  
%/V  
IN  
IN  
0.3  
IN  
Minimum Input Voltage  
Input Voltage Range  
0.92  
1
6
V
V
1
g
Error Amp Transconductance  
Error Amp Voltage Gain  
I = 5µA  
40  
µmhos  
m
A
25°C, 0°C  
70°C  
100  
80  
V/V  
V/V  
V
f
Switching Frequency  
500  
80  
600  
88  
700  
95  
kHz  
%
OSC  
Maximum Duty Cycle  
Switch Current Limit (Note 3)  
DC = 40%  
DC = 80%  
2.0  
1.6  
2.5  
2
A
A
Switch V  
I
I
= 2A (25°C, 0°C)  
= 2A (70°C)  
300  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
Burst Mode Operation Switch Current Limit  
Shutdown Pin Current  
L = 3.3µH, V  
= 3.3V, V = 1.2V  
200  
mA  
OUT  
IN  
V
V
V
= 1.1V  
= 6V  
= 0V  
2.5  
13  
1.5  
4.0  
26  
2.5  
µA  
µA  
µA  
SHDN  
SHDN  
SHDN  
LBI Threshold Voltage  
LBO Output Low  
180  
200  
0.1  
0.01  
5
220  
0.25  
0.1  
mV  
V
I
= 10µA  
SINK  
LBO Leakage Current  
LBI Input Bias Current (Note 4)  
V
V
= 250mV, V  
= 5V  
LBO  
µA  
nA  
LBI  
LBI  
= 150mV  
30  
2
LT1308  
ELECTRICAL CHARACTERISTICS  
Commercial Grade 0°C to 70°C. VIN = 1.1V, VSHDN = VIN, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
Low-Battery Detector Gain  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1MLoad (25°C, 0°C)  
1MLoad (70°C)  
1000  
500  
3000  
V/V  
V/V  
Switch Leakage Current  
Reverse Battery Current  
V
= 5V  
0.01  
750  
10  
µA  
SW  
(Note 5)  
mA  
Commercial Grade TA = 20°C, VIN = 1.1V, VSHDN = VIN, unless otherwise noted (Note 1).  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
V
V
= 1.3V, Not Switching  
80  
1
160  
3
µA  
µA  
Q
FB  
= 0V  
SHDN  
V
Feedback Voltage  
1.195  
1.22  
35  
1.245  
V
µmhos  
V/V  
FB  
g
Error Amp Transconductance  
Error Amp Voltage Gain  
Switching Frequency  
Maximum Duty Cycle  
I = 5µA  
m
A
100  
600  
88  
V
f
500  
180  
750  
350  
kHz  
OSC  
%
Switch V  
I
= 2A, V = 1.2V  
300  
mV  
CESAT  
SW  
IN  
Shutdown Pin Current  
V
V
= V  
= 0V  
2.5  
1.5  
4.0  
2.5  
µA  
µA  
SHDN  
SHDN  
IN  
LBI Threshold Voltage  
200  
220  
mV  
Industrial Grade 40°C to 85°C. VIN = 1.2V, VSHDN = VIN, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current  
Not Switching  
80  
1
160  
3
µA  
µA  
Q
V
SHDN  
= 0V  
V
Feedback Voltage  
1.195  
1.22  
27  
1.245  
80  
V
FB  
I
FB Pin Bias Current (Note 2)  
Reference Line Regulation  
V
= V  
nA  
B
FB  
REF  
1.1V V 2V (40°C)  
1.1V V 2V (85°C)  
2V V 6V  
0.6  
1.1  
1.5  
0.8  
%/V  
%/V  
%/V  
IN  
IN  
0.3  
IN  
Minimum Input Voltage (40°C)  
Input Voltage Range  
1.2  
6
V
V
1.2  
g
Error Amp Transconductance  
Error Amp Voltage Gain  
I = 5µA  
40  
µmhos  
m
A
40°C  
85°C  
100  
80  
V/V  
V/V  
V
f
Switching Frequency  
V
IN  
V
IN  
= 1.3V (40°C)  
= 1.3V (85°C)  
500  
500  
600  
600  
750  
750  
kHz  
kHz  
OSC  
Maximum Duty Cycle  
40°C  
85°C  
80  
75  
88  
95  
%
%
Switch Current Limit (Note 3)  
DC = 40%  
DC = 80%  
2.0  
1.6  
2.5  
2
A
A
Switch V  
I
I
= 2A (40°C)  
= 2A (85°C)  
300  
330  
350  
400  
mV  
mV  
CESAT  
SW  
SW  
Burst Mode Operation Switch Current Limit  
L = 3.3µH, V  
= 3.3V  
200  
mA  
OUT  
3
LT1308  
ELECTRICAL CHARACTERISTICS  
Industrial Grade 40°C to 85°C. VIN = 1.2V, VSHDN = VIN, TA = 25°C, unless otherwise noted.  
SYMBOL PARAMETER  
Shutdown Pin Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
= 1.2V  
= 6V  
= 0V  
2.5  
13  
1.5  
4.0  
26  
2.5  
µA  
µA  
µA  
SHDN  
SHDN  
SHDN  
LBI Threshold Voltage  
LBO Output Low  
180  
200  
0.1  
220  
0.25  
0.1  
mV  
V
I
= 10µA  
SINK  
LBO Leakage Current  
V
V
= 250mV, V  
= 5V  
LBO  
0.01  
5
µA  
nA  
LBI  
LBI  
LBI Input Bias Current (Note 4)  
Low-Battery Detector Gain  
= 150mV  
30  
1MLoad (–40°C)  
1MLoad (85°C)  
1000  
300  
3000  
V/V  
V/V  
Switch Leakage Current  
V
= 5V  
0.01  
10  
µA  
SW  
The  
denotes specifications which apply over the full operating  
Note 3: Switch current limit guaranteed by design and/or correlation to  
static tests. Duty cycle affects current limit due to ramp generator (see  
Block Diagram).  
Note 4: Bias current flows out of LBI pin.  
Note 5: The LT1308 will withstand continuous application of 1.6V applied  
temperature range.  
Note 1: C grade device specifications are guaranteed over the 0°C to 70°C  
temperature range. In addition, C grade device specifications are assured  
over the –40°C to 85°C temperature range by design or correlation, but  
are not production tested.  
to GND pin while V and SW are grounded.  
IN  
Note 2: Bias current flows into FB pin.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Saturation Voltage vs  
Current  
Transient Response  
Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500  
400  
300  
200  
100  
0
V
V
= 1.2V  
IN  
OUT  
= 3.3V  
VOUT  
200mV/DIV  
R1 = 169k  
AC COUPLED  
85°C  
25°C  
100mA  
ILOAD  
5mA  
–40°C  
500µs/DIV  
1308 G02  
VIN = 1.2V  
V
OUT = 5V  
C2 = 22µF  
RC, CC = 47k, 6.8nF  
L = 4.7µH  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
SWITCH CURRENT (A)  
1308 G01  
1308 G03  
U
U
U
PIN FUNCTIONS  
VC (Pin 1): Compensation Pin for Error Amplifier. Con-  
nect a series RC from this pin to ground. Typical values  
are 47kand 22nF. Minimize trace area at VC.  
SHDN (Pin 3): Shutdown. Ground this pin to turn off  
switcher. MustbetiedtoVIN (orhighervoltage)toenable  
switcher. Do not float the SHDN pin.  
FB (Pin 2): Feedback Pin. Reference voltage is 1.22V.  
Connect resistive divider tap here. Minimize trace area at  
FB. Set VOUT according to: VOUT = 1.22V(1 + R1/R2).  
GND (Pin 4): Ground. Connect directly to local ground  
plane. Ground plane should enclose all components  
associated with the LT1308.  
4
LT1308  
U
U
U
PIN FUNCTIONS  
SW (Pin 5): Switch Pin. Connect inductor/diode here.  
Minimize trace area at this pin to keep EMI down.  
700mV. Low-battery detector does not function with  
SHDN pin grounded. If not used, float LBI pin.  
VIN (Pin6):SupplyPin. Musthavelocalbypasscapacitor  
LBO (Pin 8): Low-Battery Detector Output. Open collec-  
tor, can sink 10µA. A 1Mpullup is recommended. LBO  
is high impedance when SHDN is grounded.  
right at the pin, connected directly to ground.  
LBI (Pin 7): Low-Battery Detector Input. 200mV refer-  
ence. Voltage on LBI must stay between ground and  
W
BLOCK DIAGRAM  
V
IN  
V
6
IN  
R5  
40k  
R6  
40k  
SHDN  
SHUTDOWN  
3
+
V
C
g
1
m
V
OUT  
LBI  
7
+
+
R1  
LBO  
8
ERROR  
AMPLIFIER  
(EXTERNAL)  
FB  
2
ENABLE  
200mV  
Q1  
Q2  
FB  
×10  
BIAS  
A4  
A1  
R2  
R3  
30k  
(EXTERNAL)  
SW  
5
COMPARATOR  
+
DRIVER  
R4  
140k  
FF  
RAMP  
GENERATOR  
Q3  
R
Q
+
Σ
S
A2  
+
+
A = 3  
0.03Ω  
600kHz  
OSCILLATOR  
4
1308 BD  
GND  
U
W U U  
APPLICATIONS INFORMATION  
GROUND PLANE  
LAYOUT HINTS  
1
8
7
6
5
The LT1308 switches current at high speed, mandating  
carefulattentiontolayoutforproperperformance.Youwill  
not get advertised performance with careless layouts.  
Figure 2 shows recommended component placement.  
Follow this closely in your PC layout. Note the direct path  
oftheswitchingloops. InputcapacitorCIN must beplaced  
close (<5mm) to the IC package. As little as 10mm of wire  
or PC trace from CIN to VIN will cause problems such as  
inability to regulate or oscillation. A 10µF ceramic bypass  
capacitor is the only input capacitance required provided  
the battery has a low inductance path to the circuit. The  
battery itself provides the bulk capacitance the device  
requiresforproperoperation.Ifthebatteryislocatedsome  
2
3
4
LT1308  
V
IN  
L
D
C
IN  
MULTIPLE  
VIAs  
C
OUT  
GND  
V
1308 F02  
OUT  
Figure 2. Recommended Component Placement. Traces  
Carrying High Current Are Direct. Trace Area at FB Pin and VC  
Pin is Kept Low. Lead Length to Battery Should Be Kept Short.  
Ground Plane Should Be Placed Under All Components  
5
LT1308  
U
W U U  
APPLICATIONS INFORMATION  
distancefromthecircuit, anadditionalinputcapacitormay  
berequired. A220µFaluminumelectrolyticunitworkswell  
in these cases. This capacitor need not have low ESR.  
tive input of the gain stage is tied internally to a 200mV  
reference. The positive input is the LBI pin. Arrangement  
as a low-battery detector is straightforward. Figure 4  
details hookup. R1 and R2 need only be low enough in  
value so that the bias current of the LBI pin doesn’t cause  
large errors. For R2, 100k is adequate. The 200mV refer-  
ence can also be accessed as shown in Figure 5.  
OPERATION FROM A LABORATORY POWER SUPPLY  
If a lab supply is used, the leads used to connect the circuit  
to the supply can have significant inductance at the  
LT1308’s switching frequency. As in the previous situa-  
tion, an electrolytic capacitor may be required at the circuit  
in order to reduce the AC impedance of the input suffi-  
ciently. An alternative solution is to attach the circuit  
directly to the power supply at the supply terminals,  
without the use of leads. The power supply’s output  
capacitance will then provide the bulk capacitance the  
LT1308 circuit requires.  
3.3V  
R1  
V
IN  
LT1308  
LBO  
1M  
LBI  
+
TO PROCESSOR  
R2  
100k  
200mV  
V
LB  
– 200mV  
2µA  
R1 =  
INTERNAL  
V
BAT  
REFERENCE  
GND  
1308 F04  
SHUTDOWN PIN  
The LT1308 has a shutdown pin (SHDN) that must be  
groundedtoshutthedevicedownortiedtoavoltageequal  
or greater than VIN to operate. The shutdown circuit is  
shown in Figure 3.  
Figure 4. Setting Low-Battery Detector Trip Point  
200k  
V
Note that allowing SHDN to float turns on both the start-  
up current (Q2) and the shutdown current (Q3) for VIN >  
2VBE.TheLT1308doesn’tknowwhattodointhissituation  
and behaves erratically. SHDN voltage above VIN is al-  
lowed. This merely reverse-biases Q3’s base emitter junc-  
tion, a benign condition.  
IN  
2N3906  
REF  
LBO  
LBI  
V
BAT  
LT1308  
V
200mV  
+
GND  
10k  
10µF  
1308 F05  
Figure 5. Accessing 200mV Reference  
V
IN  
Q3  
R2  
400k  
SHUTDOWN  
CURRENT  
GSM PHONES  
SHDN  
The LT1308 is suitable for converting a single Li-Ion cell  
to 5V for powering GSM RF power stages. Figure 6 details  
a Li-Ion to 5V converter circuit using frequency compen-  
sation optimized for a typical GSM pulsed load. Figure 7  
details transient response of Figure 6’s circuit with a  
100mA to 1A pulsed load. A slower time sweep is used to  
show several transmit pulses in Figure 8. At a VIN of 2.7V,  
additional output capacitance is recommended to help  
minimize VOUT droop. Figure 9 shows VOUT with an input  
voltage of 2.7V. Figure 10 expands the horizontal sweep  
speed to 500µs/division to show detail of one transmit  
pulse.  
400k  
START-UP  
CURRENT  
Q2  
Q1  
1308 F03  
Figure 3. Shutdown Circuit  
LOW-BATTERY DETECTOR  
The LT1308’s low-battery detector is a simple PNP input  
gain stage with an open collector NPN output. The nega-  
6
LT1308  
U
W U U  
APPLICATIONS INFORMATION  
DECT PHONES  
VIN = 2.7V  
VOUT  
200mV/DIV  
AC COUPLED  
The DECT standard specifies a transmit pulse 416µs in  
duration. The LT1308 is capable of delivering a 400mA  
pulse load from a 1.2V input with output capacitance of  
100µF. Figure 11 depicts VOUT transient response of  
Figure 6’s circuit, configured for a 3.3V output by chang-  
ing resistor R1 to 169k. Figure 12 shows detail of one  
transmit pulse at a higher sweep speed.  
1A  
100mA  
ILOAD  
1ms/DIV  
1308 F09  
Figure 9. GSM Load Transient Response.  
At Low VIN, Large Output Capacitor (2200µF)  
Serves to Hold up VOUT  
L1  
4.7µH  
V
SHDN  
LBI  
IN  
D1  
VOUT  
VIN = 2.7V  
SW  
NiCd  
OR  
Li-Ion  
CELL  
MBRS120  
200mV/DIV  
LT1308  
AC COUPLED  
R1  
5V/1A OR  
3.3V/300mA  
LBO  
FB  
V
C
GND  
C1  
IL, 1A/DIV  
10µF  
+
C2  
100µF  
CERAMIC  
100k  
47k  
33nF  
1A  
ILOAD  
100mA  
500µs/DIV  
1308 F10  
L1: TOKO 636CY4R7M  
COILTRONICS CTX5-1  
1308F06  
Figure 10. GSM Load Transient Response.  
Faster Sweep Speed (500µs/DIV) Details VOUT  
and Inductor Current of One Transmit Pulse  
FOR V  
FOR V  
= 5V: R1 = 309k  
OUT  
OUT  
= 3.3V: R1 = 169k  
Figure 6. DC/DC Converter for GSM/DECT Application  
VIN = 1.2V  
VOUT VIN = 3.6V  
200mV/DIV  
AC COUPLED  
VOUT  
200mV/DIV  
AC COUPLED  
400mA  
ILOAD  
IL, 1A/DIV  
50mA  
1A  
ILOAD  
100mA  
2ms/DIV  
1308 F11  
100µs/DIV  
1308 F07  
Figure 11. DECT Load Transient Response.  
With a Single NiCd Cell the LT1308 Provides 3.3V  
with 400mA Pulsed Load. Pulse Width = 416µs  
Figure 7. GSM Load Transient Response.  
100mA to 1A Transient Response for Figure 6’s Circuit.  
Pulse Width = 577µs  
VOUT  
200mV/DIV  
AC COUPLED  
V
IN = 1.2V  
V
IN = 3.6V  
VOUT  
200mV/DIV  
AC COUPLED  
IL, 1A/DIV  
1A  
ILOAD  
400mA  
ILOAD  
100mA  
50mA  
1ms/DIV  
1308 F08  
100µs/DIV  
1308 F09  
Figure 12. DECT Load Transient Response.  
Faster Sweep Speed (100µs/DIV) Details VOUT and  
Inductor Current of Single DECT Transmit Pulse  
Figure 8. GSM Load Transient Response. Slower  
Sweep Speed (1ms/DIV) Shows VOUT over Several  
Transmit Pulses  
7
LT1308  
TYPICAL APPLICATION  
U
Digital Camera Power Supply  
2-4 Cell to 3.3V/175mA, 5V/175mA, 18V/10mA, 10V/10mA  
L1A  
C6  
N = 1  
10µF  
10µH  
2
V
IN  
8
1
3
3
1.6V  
L1C  
N = 0.3  
TO 6V  
V
SW  
IN  
L1B  
N = 0.7  
D1  
D2  
R3  
+
SHDN  
C1  
100µF  
340k  
4
LT1308  
GND  
5V  
D3  
CCD BIAS  
18V  
V
C
FB  
175mA  
3.3V  
7
R4  
47k  
10mA  
175mA  
C8  
1nF  
R2  
2.08M  
+
+
L1D  
N = 3.5  
+
+
R1  
100k  
C4  
10µF  
C3  
100µF  
C2  
100µF  
C7  
22nF  
6
6
C5  
10µF  
C1, C2, C3 = AVX TPS  
C4, C5 = AVX TAJ  
C6 = CERAMIC  
D1, D2 = IR10BQ015  
D3, D4 = BAT-85  
L1E  
N = 2  
L1 = COILTRONICS CTX02-13973  
CCD BIAS  
–10V  
10mA  
5
1308 TA01  
D4  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0695  
1
3
4
2
RELATED PARTS  
PART NUMBER  
LTC®1163  
LTC1174  
LT1302  
DESCRIPTION  
COMMENTS  
Triple High Side Driver for 2-Cell Inputs  
Micropower Step-Down DC/DC Converter  
High Output Current Micropower DC/DC Converter  
2-Cell Micropower DC/DC Converter  
Single Cell Micropower 600kHz PWM DC/DC Converter  
1.8V Minimum Input, Drives N-Channel MOSFETs  
94% Efficiency, 130µA I , 9V to 5V at 300mA  
Q
5V/600mA from 2V, 2A Internal Switch, 200µA I  
Q
LT1304  
Low-Battery Detector Active in Shutdown, 5V at 200mA for 2 Cells  
3.3V at 75mA from 1 Cell, MSOP Package  
LT1307  
LT1316  
Micropower DC/DC Converter with Programmable Peak  
Current Limit  
Works with High Source Impedance, 1.5V Minimum Input, Low-Battery  
Detector Active in Shutdown, 33µA I , MSOP Package  
Q
LTC1440/1/2  
LTC1516  
LT1521  
Ultralow Power Single/Dual Comparators with Reference  
2-Cell to 5V Regulated Charge Pump  
2.8µA I , Adjustable Hysteresis  
Q
12µA I , No Inductors, 5V at 50mA from 3V Input  
Q
Micropower Low Dropout Linear Regulator  
500mV Dropout, 300mA Current, 12µA I  
Q
1308i LT/TP 0198 4K • PRINTED IN USA  
Linear Technology Corporation  
1630McCarthyBlvd.,Milpitas, CA95035-7417 (408)432-1900  
8
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

LT1308ACF#TRPBF

IC 4.5 A SWITCHING REGULATOR, 750 kHz SWITCHING FREQ-MAX, PDSO14, 4.40 MM, LEAD FREE, PLASTIC, TSSOP-14, Switching Regulator or Controller
Linear

LT1308ACF-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACF-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACF-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8#TR

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1308ACS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TR

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308ACS8-TRPBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear

LT1308AIS8#PBF

LT1308A and B - Single Cell High Current Micropower 600kHz Boost DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1308AIS8-PBF

High Current, Micropower Single Cell, 600kHz DC/DC Converters
Linear