LT1640 [Linear]

Negative Voltage Hot Swap Controller; 负电压热插拔控制器
LT1640
型号: LT1640
厂家: Linear    Linear
描述:

Negative Voltage Hot Swap Controller
负电压热插拔控制器

控制器
文件: 总12页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1640L/LT1640H  
Negative Voltage  
Hot Swap Controller  
U
DESCRIPTION  
FEATURES  
Allows Safe Board Insertion and Removal  
The LT®1640L/LT1640H is an 8-pin, negative voltage Hot  
SwapTM controller that allows a board to be safely inserted  
and removed from a live backplane. Inrush current is  
limited to a programmable value by controlling the gate  
voltage of an external N-channel pass transistor. The pass  
transistor is turned off if the input voltage is less than the  
programmable undervoltage threshold or greater than the  
overvoltage threshold. A programmable electronic circuit  
breaker protects the system against shorts. The PWRGD  
(LTC1640L)orPWRGD(LTC1640H)signalcanbeusedto  
directly enable a power module. The LT1640L is designed  
for modules with a low enable input and the LT1640H for  
modules with a high enable input.  
from a Live 48V Backplane  
Operates from –10V to 80V  
Programmable Inrush Current  
Programmable Electronic Circuit Breaker  
Programmable Overvoltage Protection  
Programmable Undervoltage Lockout  
Power Good Control Output  
U
APPLICATIONS  
Central Office Switching  
48V Distributed Power Systems  
Negative Power Supply Control  
The LT1640L/LT1640H is available in 8-pin PDIP and SO  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Input Inrush Current  
GND  
8
R4  
562k  
1%  
V
DD  
CONTACT  
BOUNCE  
3
2
UV = 37V  
OV = 71V  
UV  
OV  
R5  
9.09k  
1%  
1
LT1640L  
PWRGD  
R6  
10k  
1%  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
4
R2  
C1  
33nF  
24V  
R3  
10k  
5%  
10Ω  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
5%  
48V  
Q1  
2
IRF530  
ON/OFF  
1
9
8
+
+
+
5V  
V
V
V
IN  
IN  
OUT  
SENSE  
C3  
0.1µF  
100V  
+
C4  
+
C5  
7
6
5
100µF  
TRIM  
100µF  
16V  
100V  
SENSE  
4
V
OUT  
1640 F07b  
1640 TA01  
LUCENT  
JW050A1-E  
1
LT1640L/LT1640H  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1), All Voltages Referred to VEE  
Supply Voltage (VDD – VEE) .................... 0.3V to 100V  
DRAIN, PWRGD, PWRGD Pins ............... 0.3V to 100V  
SENSE, GATE Pins.................................... 0.3V to 20V  
UV, OV Pins .............................................. 0.3V to 60V  
Maximum Junction Temperature ......................... 125°C  
Operating Temperature Range  
LT1640LC/LT1640HC ............................. 0°C to 70°C  
LT1640LI/LT1640HI .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
PWRGD  
OV  
1
2
3
4
8
7
6
5
V
DD  
LT1640LCN8  
LT1640LCS8  
LT1640LIN8  
LT1640LIS8  
LT1640HCN8  
LT1640HCS8  
LT1640HIN8  
LT1640HIS8  
DRAIN  
GATE  
DRAIN  
GATE  
UV  
UV  
V
SENSE  
V
SENSE  
EE  
EE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD PLASTIC SO  
S8 PART MARKING  
S8 PART MARKING  
TJMAX = 125°C, θJA = 120°C/W (N8)  
TJMAX = 125°C, θJA = 150°C/W (S8)  
TJMAX = 125°C, θJA = 120°C/W (N8)  
JMAX = 125°C, θJA = 150°C/W (S8)  
1640L  
1640LI  
T
1640H  
1640HI  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS (Note 2), VDD = 48V, VEE = 0V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC  
V
Supply Voltage  
10  
80  
5
V
mA  
mV  
µA  
DD  
CB  
I
Supply Current  
UV = 3V, OV = V , SENSE = V  
EE  
1.3  
50  
DD  
EE  
V
Circuit Breaker Trip Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
SENSE Pin Current  
V
CB  
= (V  
– V )  
EE  
40  
30  
24  
60  
60  
70  
SENSE  
I
I
I
Gate Drive On, V  
= V  
EE  
45  
50  
PU  
GATE  
Any Fault Condition  
= 50mV  
mA  
µA  
PD  
V
SENSE  
20  
SENSE  
V  
GATE  
External Gate Drive  
(V  
GATE  
(V  
GATE  
– V ), 15V V 80V  
10  
6
13.5  
8
18  
15  
V
V
EE  
DD  
– V ), 10V V < 15V  
EE  
DD  
V
V
V
UV Pin High Threshold Voltage  
UV Pin Low Threshold Voltage  
UV Pin Hysteresis  
UV Low to High Transition  
UV High to Low Transition  
1.213  
1.198  
1.243  
1.223  
20  
1.272  
1.247  
V
V
UVH  
UVL  
UVHY  
INUV  
mV  
µA  
V
I
UV Pin Input Current  
V
UV  
= V  
0.02  
1.223  
1.203  
20  
0.5  
1.247  
1.232  
EE  
V
V
V
OV Pin High Threshold Voltage  
OV Pin Low Threshold Voltage  
OV Pin Hysteresis  
OV Low to High Transition  
OV High to Low Transition  
1.198  
1.165  
OVH  
OVL  
V
mV  
µA  
OVHY  
INOV  
I
OV Pin Input Current  
V
OV  
= V  
–0.03  
0.5  
EE  
2
LT1640L/LT1640H  
ELECTRICAL CHARACTERISTICS VDD = 48V, VEE = 0V, TA = 25°C unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Power Good Threshold  
V
– V , High to Low Transition  
1.1  
1.4  
2.0  
V
V
V
PG  
DRAIN  
EE  
Power Good Threshold Hysteresis  
Output Low Voltage  
0.4  
PGHY  
OL  
PWRGD (LT1640L), I  
(V  
= 1mA,  
0.48  
0.8  
OUT  
– V ) < V  
DRAIN  
EE PG  
R
Power Good Output Impedance  
PWRGD (LT1460H), (V  
– V ) < V  
PG  
2
2
6.5  
kΩ  
OUT  
DRAIN  
EE  
AC  
t
t
t
t
t
t
OV High to GATE Low  
UV Low to GATE Low  
OV Low to GATE High  
UV High to GATE High  
SENSE High to Gate Low  
Figures 1, 2  
Figures 1, 3  
Figures 1, 2  
Figures 1, 3  
Figures 1, 4  
1.7  
1.5  
5.5  
6.5  
3
µs  
µs  
µs  
µs  
µs  
PHLOV  
PHLUV  
PLHOV  
PLHUV  
PHLSENSE  
PHLPG  
4
DRAIN Low to PWRGD Low  
DRAIN Low to (PWRGD – DRAIN) High  
(LT1640L) Figures 1, 5  
(LT1640H) Figures 1, 5  
0.5  
0.5  
µs  
µs  
t
DRAIN High to PWRGD High  
DRAIN High to (PWRGD – DRAIN) Low  
(LT1640L) Figures 1, 5  
(LT1640H) Figures 1, 5  
0.5  
0.5  
µs  
µs  
PLHPG  
The  
denotes specifications which apply over the full operating  
Note 2: All currents into device pins are positive; all currents out of device  
temperature range.  
pins are negative. All voltages are referenced to V unless otherwise  
EE  
specified.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Gate Voltage vs Supply Voltage  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
15  
14  
13  
12  
11  
10  
9
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
8
7
6
20  
40  
SUPPLY VOLTAGE (V)  
80  
50 25  
0
25  
50  
75  
100  
0
100  
60  
0
80  
100  
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1640 G02  
1640 G01  
1640 G03  
3
LT1640L/LT1640H  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Circuit Breaker Trip Voltage  
Gate Pull-Up Current  
vs Temperature  
Gate Voltage vs Temperature  
vs Temperature  
48  
47  
46  
45  
44  
43  
42  
41  
40  
15.0  
14.5  
55  
54  
53  
14.0  
13.5  
52  
51  
50  
49  
13.0  
12.5  
12.0  
48  
50 25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
50  
0
25  
50  
75  
100  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G04  
1640 G06  
1640 G05  
Gate Pull-Down Current  
vs Temperature  
PWRGD Output Impedance  
vs Temperature (LT1640H)  
PWRGD Output Low Voltage  
vs Temperature (LT1640L)  
55  
52  
49  
0.5  
0.4  
0.3  
0.2  
0.1  
0
8
7
6
5
46  
43  
40  
4
3
2
50 25  
0
25  
50  
75  
100  
50 25  
25  
50  
75  
100  
50 25  
0
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1640 G07  
1640 G08  
1640 G09  
U
U
U
PIN FUNCTIONS  
PWRGD/PWRGD(Pin1):PowerGoodOutputPin.Thispin  
will toggle when VDRAIN is within VPG of VEE. This pin can  
be connected directly to the enable pin of a power module.  
pin which pulls the module’s enable pin low, forcing it off.  
When VDRAIN drops below VPG, the PWRGD sink current  
is turned off and a 5k resistor is connected between  
PWRGD and DRAIN, allowing the module’s pull-up cur-  
rent to pull the enable pin high and turn on the module.  
When the DRAIN pin of the LT1640L is above VEE by more  
thanVPG,thePWRGDpinwillbehighimpedance,allowing  
the pull-up current of the module’s enable pin to pull the  
pin high and turn the module off. When VDRAIN drops  
below VPG, the PWRGD pin sinks current to VEE, pulling  
the enable pin low and turning on the module.  
OV (Pin 2): Analog Overvoltage Input. When OV is pulled  
above the 1.223V low to high threshold, an overvoltage  
conditionisdetectedandtheGATEpinwillbeimmediately  
pulled low. The GATE pin will remain low until OV drops  
below the 1.203V high to low threshold.  
When the DRAIN pin of the LT1640H is above VEE by more  
than VPG, the PWRGD pin will sink current to the DRAIN  
4
LT1640L/LT1640H  
U
U
U
PIN FUNCTIONS  
UV (Pin 3): Analog Undervoltage Input. When UV is If the circuit breaker trip current is set to twice the normal  
pulled below the 1.223V high to low threshold, an under- operating current, only 25mV is dropped across the  
voltage condition is detected and the GATE pin will be sense resistor during normal operation. To disable the  
immediately pulled low. The GATE pin will remain low circuit breaker, VEE and SENSE can be shorted together.  
until UV rises above the 1.243 low to high threshold.  
GATE (Pin 6): Gate Drive Output for the External  
The UV pin is also used to reset the electronic circuit N-Channel. The GATE pin will go high when the following  
breaker. If the UV pin is cycled low and high following the start-upconditionsaremet:theUVpinishigh, theOVpin  
trip of the circuit breaker, the circuit breaker is reset and is low and (VSENSE – VEE) < 50mV. The GATE pin is pulled  
a normal power-up sequence will occur.  
high by a 45µA current source and pulled low with a  
50mA current source.  
VEE (Pin 4): Negative Supply Voltage Input. Connect to  
the lower potential of the power supply.  
DRAIN (Pin 7): Analog Drain Sense Input. Connect this  
pin to the drain of the external N-channel and the Vpin  
of the power module. When the DRAIN pin is below VPG,  
the PWRGD or PWRGD pin will toggle.  
SENSE (Pin 5): Circuit Breaker Sense Pin. With a sense  
resistor placed in the supply path between VEE and  
SENSE, the circuit breaker will trip when the voltage  
across the resistor exceeds 50mV. Noise spikes of less VDD (Pin 8): Positive Supply Voltage Input. Connect this  
than 2µs are filtered out and will not trip the circuit pin to the higher potential of the power supply inputs and  
breaker.  
the V+ pin of the power module. The input supply voltage  
ranges from 10V to 80V.  
W
BLOCK DIAGRA  
V
DD  
+
UV  
V
CC  
V
AND  
CC  
REFERENCE  
GENERATOR  
REF  
OUTPUT  
DRIVE  
PWRGD/PWRGD  
REF  
+
LOGIC  
AND  
GATE DRIVE  
50mV  
OV  
+
+
+
+
V
PG  
V
EE  
1640 BD  
V
EE  
SENSE  
GATE  
DRAIN  
5
LT1640L/LT1640H  
TEST CIRCUIT  
R
5k  
+
V
PWRGD/PWRGD  
OV  
V
DD  
5V  
+
48V  
DRAIN  
V
OV  
V
V
DRAIN  
LT1640L/LT1460H  
UV  
GATE  
C
V
UV  
0.033µF  
V
SENSE  
EE  
SENSE  
1640 F01  
Figure 1. Test Circuit  
W U  
W
TIMING DIAGRAMS  
2V  
1.223V  
OV  
50mV  
1.203V  
SENSE  
0V  
t
PHLSENSE  
1V  
t
t
PLHOV  
PHLOV  
GATE  
GATE  
1V  
1V  
1640 F02  
1640 F04  
Figure 2. OV to GATE Timing  
Figure 4. SENSE to GATE Timing  
1.8V  
2V  
0V  
1.4V  
1.223V  
1.243V  
DRAIN  
PWRGD  
DRAIN  
UV  
V
EE  
t
t
PLHPG  
PHLPG  
1V  
t
t
PHLUV  
PLHUV  
1V  
1V  
GATE  
V
EE  
1V  
1640 F03  
1.8V  
0V  
1.4V  
Figure 3. UV to GATE Timing  
t
t
PLHPG  
1V  
PHLPG  
PWRGD  
1V  
1640 F05  
V
– V  
= 0V  
DRAIN  
PWRGD  
Figure 5. DRAIN to PWRGD/PWRGD Timing  
6
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Hot Circuit Insertion  
IINRUSH = (45µA • CL)/C2  
Whencircuitboardsareinsertedintoalive48Vbackplane,  
the bypass capacitors at the input of the board’s power  
module or switching power supply can draw huge tran-  
sient currents as they charge up. The transient currents  
can cause permanent damage to the board’s components  
and cause glitches on the system power supply.  
where CL is the total load capacitance.  
Capacitor C1 and resistor R3 prevent Q1 from momen-  
tarily turning on when the power pins first make contact.  
Without C1 and R3, capacitor C2 would pull the gate of Q1  
uptoavoltageroughlyequaltoVEE C2/CG(Q1)beforethe  
LT1640 could power up and actively pull the gate low. By  
placing capacitor C1 parallel with the gate capacitance of  
Q1 and isolating them from C2 using resistor R3 the  
problem is solved. The value of C1 should be 10 times the  
value of C and R3 • C1 300µs.  
The LT1640 is designed to turn on a board’s supply  
voltage in a controlled manner, allowing the board to be  
safely inserted or removed from a live backplane. The chip  
also provides undervoltage, overvoltage and overcurrent  
protection while keeping the power module off until its  
input voltage is stable and within tolerance.  
Power Supply Ramping  
The input to the power module on a board is controlled by  
placing an external N-channel pass transistor (Q1) in the  
power path (Figure 6a, all waveforms are with respect to  
the VEE pin of the LT1640). R1 provides current fault  
detection and R2 prevents high frequency oscillations.  
Resistors R4, R5 and R6 provide undervoltage and over-  
voltage sensing. By ramping the gate of Q1 up at a slow  
rate, the surge current charging load capacitors C3 and C4  
can be limited to a safe value when the board makes  
connection.  
Resistor R3 and capacitor C2 act as a feedback network to  
accurately control the inrush current. The inrush current  
can be calculated with the following equation:  
1640 F07b  
Figure 6b. Inrush Control Waveforms  
GND  
VICOR  
8
R4  
562k  
1%  
VI-J3D-CY  
C3  
0.1µF  
100V  
C4  
100µF  
100V  
+
V
+
+
DD  
5V  
V
V
IN  
OUT  
3
2
UV = 37V  
OV = 71V  
UV  
OV  
+
C5  
R5  
9.09k  
1%  
1
LT1640H  
PWRGD  
GATE IN  
100µF  
16V  
V
V
R6  
10k  
1%  
IN  
OUT  
V
EE  
SENSE  
5
GATE  
DRAIN  
7
4
6
R2  
C1  
0.033µF  
24V  
R3  
10k  
5%  
10Ω  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
5%  
1640 F06a  
48V  
Q1  
IRF530  
Figure 6a. Inrush Control Circuitry  
7
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
The waveforms are shown in Figure 6b. When the power  
pins make contact, they bounce several times. While the  
contactsarebouncing,theLT1640sensesanundervoltage  
condition and the GATE is immediately pulled low when  
the power pins are disconnected.  
GATE pin will remain low until the circuit breaker is reset  
by pulling UV low, then high or cycling power to the part.  
If more than 3µs deglitching time is needed to reject  
current noise, an external resistor and capacitor can be  
added to the sense circuit as shown in Figure 8. R7 and C3  
act as a lowpass filter that will slow down the SENSE pin  
voltage from rising too fast. Since the SENSE pin will  
source current, typically 20µA, there will be a voltage drop  
on R7. This voltage will be counted into the circuit breaker  
trip voltage just as the voltage across the sense resistor.  
A small resistor is recommended for R7. A 100for R7  
willcausea2mVerror.Thefollowingequationcanbeused  
to estimate the delay time at the SENSE pin:  
Once the power pins stop bouncing, the GATE pin starts to  
ramp up. When Q1 turns on, the GATE voltage is held  
constant by the feedback network of R3 and C2. When the  
DRAIN voltage has finished ramping, the GATE pin then  
ramps to its final value.  
Electronic Circuit Breaker  
The LT1640 features an electronic circuit breaker function  
that protects against short circuits or excessive supply  
currents. By placing a sense resistor between the VEE and  
SENSEpin, thecircuitbreakerwillbetrippedwheneverthe  
voltage across the sense resistor is greater than 50mV for  
more than 3µs as shown in Figure 7.  
V(t)V(tO)  
t = –R C •In 1–  
V – V(tO)  
i
Where V(t) is the circuit breaker trip voltage, typically  
50mV. V(tO) is the voltage drop across the sense resistor  
before the short or over current condition occurs. Vi is the  
voltage across the sense resistor when the short current  
or over current is applied on it.  
Example: A system has a 1A current load and a 0.02Ω  
sense resistor is used. An extended delay circuit needs to  
be designed for a 50µs delay time after the load jumps to  
5A. In this case:  
V(t) = 50mV  
V(tO) = 20mV  
Vi = 5A • 0.02= 100mV  
If we choose R = 100, we will get C = 1µF.  
GND  
8
R4  
562k  
1%  
V
DD  
3
2
Figure 7. Short-Circuit Protection Waveforms  
UV  
OV  
UV = 37V  
OV = 71V  
R5  
9.09k  
1%  
1
PWRGD/  
PWRGD  
LT1640L/LT1640H  
+
C
L
Note that the circuit breaker threshold should be set  
sufficiently high to account for the sum of the load current  
andtheinrushcurrent.Iftheloadcurrentcanbecontrolled  
bythePWRGD/PWRGDpin(asinFigure6a),thethreshold  
can be set lower, since it will never need to accommodate  
inrush current and load current simultaneously.  
100µF  
R6  
10k  
1%  
100V  
V
SENSE  
5
GATE  
6
DRAIN  
7
EE  
C3  
R1  
4
R2  
10Ω  
5%  
C1  
R3  
10k  
5%  
C2  
0.033µF  
24V  
3.3nF  
0.02Ω  
R7  
100V  
5%  
48V  
1640 F08  
Q1  
IRF530  
Whenthecircuitbreakertrips,theGATEpinisimmediately  
pulled to VEE and the external N-channel turns off. The  
Figure 8. Extending the Short-Circuit Protection Delay  
8
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
Under some conditions, a short circuit at the output can  
cause the input supply to dip below the UV threshold,  
resetting the circuit breaker immediately.  
the GATE pin is pulled high and Q3 is turned on, pulling  
node 2 to VEE. Resistor R8 turns off Q2. When a short  
occurs, the GATE pin is pulled low and Q3 turns off. Node  
2 starts to charge C4 and Q2 turns on, pulling the UV pin  
low and resetting the circuit breaker. As soon as C4 is fully  
charged, R8 turns off Q2, UV goes high and the GATE  
starts to ramp up. Q3 turns back on and quickly pulls node  
2 back to VEE. Diode D1 clamps node 3 one diode drop  
below VEE. The duty cycle is set to 10% to prevent Q1 from  
overheating.  
The LT1640 then cycles on and off repeatedly until the  
short is removed. This can be minimized by adding a  
deglitching delay to the UV pin with a capacitor from UV to  
VEE. This capacitor forms an RC time constant with the  
resistorsatUV,allowingtheinputsupplytorecoverbefore  
the UV pin resets the circuit breaker.  
A circuit that automatically resets the circuit breaker after  
a current fault is shown in Figure 9.  
Undervoltage and Overvoltage Detection  
Transistors Q2 and Q3 along with R7, R8, C4 and D1 form  
a programmable one-shot circuit. Before a short occurs,  
The UV (Pin 3) and OV (Pin 2) pins can be used to detect  
undervoltage and overvoltage conditions at the power  
GND  
8
R7  
1M  
5%  
R4  
562k  
1%  
V
DD  
2
3
2
UV  
OV  
C4  
R5  
9.09k  
1%  
1
1µF  
LT1640L  
PWRGD  
C3  
100µF  
100V  
+
100V  
R6  
10k  
1%  
V
SENSE  
5
GATE  
DRAIN  
7
EE  
Q2  
3
4
6
2N2222  
Q3  
ZVN3310  
R2  
C1  
R3  
10k  
5%  
10Ω  
C2  
3.3nF  
100V  
0.033µF  
24V  
R8  
510k  
5%  
R1  
5%  
D1  
1N4148  
0.02Ω  
5%  
48V  
1640 F09a  
Q1  
IRF530  
1640 F09b  
Figure 9. Automatic Restart After Current Fault  
9
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
supply input. The UV and OV pins are internally connected  
to analog comparators with 20mV of hysteresis. When the  
UV pin falls below its threshold or the OV pin rises above  
its threshold, the GATE pin is immediately pulled low. The  
GATE pin will be held low until UV is high and OV is low.  
With R4 = 506k, R5 = 8.87k and VOVH = 1.223V, the  
overvoltage threshold will be 71V.  
GND  
8
R4  
V
DD  
3
2
R4 + R5+ R6  
R5 + R6  
V
V
= 1.223  
= 1.223  
UV  
OV  
UV  
OV  
(
(
)
)
The undervoltage and overvoltage trip voltages can be  
programmed using a three resistor divider as shown in  
Figure 10a. With R4 = 562k, R5 = 9.09k and R6 = 10K, the  
undervoltage threshold is set to 37V and the overvoltage  
threshold is set to 71V. The resistor divider will also gain  
up the 20mV hysteresis at the UV pin and OV pin to 0.6V  
and 1.2V at the input respectively.  
LT1640L  
LT1640H  
R5  
R6  
R4 + R5+ R6  
R6  
V
EE  
4
48V  
1640 F10a  
Figure 10a. Undervoltage and Overvoltage Sensing  
More hysteresis can be added to the UV threshold by  
connecting resistor R3 between the UV pin and the GATE  
pin as shown in Figure 10b.  
GND  
8
R4  
506k  
1%  
V
DD  
2
3
OV  
UV = 37.6V  
Thenewthresholdvoltagewhentheinputmovesfromlow  
to high is:  
R1  
562k  
1%  
LT1640L/LT1640H  
UV = 43V  
OV = 71V  
UV  
R5  
R2  
R3  
V
SENSE  
GATE  
6
EE  
8.87k 16.9k 1.62M  
R2 R3 +R1R3 +R1R2  
V
UV,LH = V  
1%  
1%  
1%  
UVH  
4
5
R2 R3  
R6  
C1  
10Ω  
0.033µF  
R1  
0.02Ω  
5%  
5%  
24V  
where VUVH is typically 1.243V.  
48V  
The new threshold voltage when the input moves from  
high to low is:  
1640 F10b  
Q1  
IRF530  
Figure 10b. Programmable Hysteresis  
for Undervoltage Detection  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
UV,HL = V  
VGATE  
UVL  
R2 R3  
PWRGD/PWRGD Output  
where VUVL is typically 1.223V.  
The new hysteresis value will be:  
The PWRGD/PWRGD output can be used to directly en-  
able a power module when the input voltage to the module  
is within tolerance. The LT1640L has a PWRGD output for  
modules with an active low enable input, and the LT1640H  
has a PWRGD output for modules with an active high  
enable input.  
R2 R3 +R1R3 +R1R2  
R1  
R3  
V
= V  
+ VGATE  
HYS  
UVHY  
R2 R3  
With R1 = 562k, R2 = 16.9k and R3 = 1.62M, VGATE  
=
135mV and VUVHY = 20mV, the undervoltage threshold  
will be 43V (from low to high) and 37.6V (from high to  
low). The hysteresis is 5.4V. A separate resistor divider  
should be used to set the overvoltage threshold given by:  
When the DRAIN voltage of the LT1640H is high with  
respect to VEE (Figure 11), the internal transistor Q3 is  
turned off and R7 and Q2 clamp the PWRGD pin one diode  
drop (0.7V) above the DRAIN pin. Transistor Q2 sinks  
the module’s pull-up current and the module turns off.  
R4 + R5  
VOV = VOVH  
WhentheDRAINvoltagedropsbelowVPG, Q3willturnon,  
shorting the bottom of R7 to VEE and turning Q2 off. The  
R5  
10  
LT1640L/LT1640H  
U
W U U  
APPLICATIONS INFORMATION  
ACTIVE LOW  
ENABLE MODULE  
ACTIVE LOW  
ENABLE MODULE  
+
+
+
+
GND  
V
V
OUT  
GND  
V
IN  
V
OUT  
IN  
8
8
V
LT1640H  
UV  
V
DD  
LT1640L  
UV  
DD  
PWRGD  
Q2  
1
7
PWRGD  
Q2  
1
7
R4  
R4  
R7  
5k  
+
ON/OFF  
+
ON/OFF  
3
2
3
2
+
C3  
C3  
+
+
V
+
PG  
R5  
R6  
R5  
R6  
Q3  
EE  
V
V
EE  
PG  
OV  
OV  
DRAIN  
V
DRAIN  
V
IN  
V
OUT  
V
V
OUT  
IN  
V
4
SENSE  
5
GATE  
6
V
SENSE  
5
GATE  
6
EE  
EE  
4
R3  
R3  
C2  
C1  
C2  
C1  
R2  
R2  
R1  
R1  
1640 F11  
1640 F12  
48V  
48V  
Q1  
Q1  
Figure 11. Active High Enable Module  
Figure 12. Active Low Enable Module  
pull-up current in the module then flows through R7,  
pulling the PWRGD pin high and enabling the module.  
Gate Pin Voltage Regulation  
When the supply voltage to the chip is more than 15.5V,  
theGATEpinvoltageisregulatedat13.5VaboveVEE. Ifthe  
supply voltage is less than 15.5V, the GATE voltage will be  
about 2V below the supply voltage. At the minimum 10V  
supplyvoltage,thegatevoltageisguaranteedtobegreater  
than 6V. The gate voltage will be no greater than 18V for  
supply voltages up to 80V.  
When the DRAIN voltage of the LT1640L is high with  
respect to VEE, the internal pull-down transistor Q2 is off  
and the PWRGD pin is in a high impedance state (Figure  
12). The PWRGD pin will be pulled high by the module’s  
internal pull-up current source, turning the module off.  
When the DRAIN voltage drops below VPG, Q2 will turn on  
and the PWRGD pin will pull low, enabling the module.  
The PWRGD signal can also be used to turn on an LED or  
optoisolator to indicate that the power is good as shown in  
Figure 13.  
GND  
R7  
51k  
PWRGD  
5%  
8
R4  
562k  
1%  
+
C3  
V
DD  
100µF  
3
2
100V  
UV  
OV  
4N25  
R5  
9.09k  
1%  
1
LT1640L  
PWRGD  
R6  
10k  
1%  
V
SENSE  
5
GATE  
DRAIN  
7
EE  
4
6
R2  
C1  
0.033µF  
24V  
R3  
10k  
5%  
10Ω  
C2  
3.3nF  
100V  
R1  
0.02Ω  
5%  
5%  
48V  
1640 F13  
Q1  
IRF530  
Figure 13. Using PWRGD to Drive an Optoisolator  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1640L/LT1640H  
U
TYPICAL APPLICATION  
Using an EMI Filter Module  
using the Lucent FLTR100V10 filter module is shown in  
Figure 14. When using a filter, a capacitor (C6) is required  
acrosstheenablepinandVINpinofthemoduletoprevent  
noise from momentarily disabling the module.  
Many applications place an EMI filter module in the power  
path to prevent switching noise of the module from being  
injected back onto the power supply. A typical application  
LUCENT  
JW050A1-E  
GND  
1
2
9
8
7
8
1
+
+
+
R4  
562k  
1%  
5V  
V
V
IN  
OUT  
SENSE  
PWRGD  
V
DD  
+
C7  
7
6
3
2
+
+
V
V
ON/OFF  
TRIM  
UV  
DRAIN  
100µF  
16V  
IN  
OUT  
C2  
3.3nF  
100V  
R5  
9.09k  
1%  
C3  
0.1µF  
100V  
C4  
0.1µF  
100V  
C5  
100µF  
100V  
C6  
0.1µF  
100V  
+
6
5
LT1640L  
LUCENT  
FLTR100V10  
SENSE  
R3  
10k  
5%  
OV  
V
GATE  
4
V
V
V
V
R6  
10k  
1%  
IN  
OUT  
CASE  
OUT  
IN  
SENSE  
5
EE  
CASE  
R2  
10Ω  
5%  
C1  
0.033µF  
24V  
4
3
R1  
1640 F14  
0.02Ω  
5%  
48V  
Q1  
IRF530  
Figure 14. Typical Application Using a Filter Module  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.400*  
(10.160)  
MAX  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
1
0.053 – 0.069  
(1.346 – 1.752)  
2
3
4
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.065  
(1.651)  
TYP  
0°– 8° TYP  
0.009 – 0.015  
0.125  
(3.175)  
MIN  
(0.229 – 0.381)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
0.020  
0.014 – 0.019  
(0.355 – 0.483)  
+0.035  
(1.270)  
TYP  
SO8 0996  
(0.508)  
MIN  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
N8 1197  
(
)
–0.381  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
RELATED PARTS  
PART NUMBER  
LTC®1421  
LTC1422  
DESCRIPTION  
COMMENTS  
Dual Channel, Hot Swap Controller  
Operates from 3V to 12V  
High Side Drive, Hot Swap Controller in SO-8  
PCI Hot Swap Controller  
System Reset Output with Programmable Delay  
3.3V, 5V, 12V, 12V Supplies for PCI Bus  
LTC1643  
1640lhf LT/TP 1198 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1998  

相关型号:

LT1640AH

Negative 48V Hot Swap Controller
Linear

LT1640AHCN8

Negative Voltage Hot Swap Controller
Linear

LT1640AHCN8#PBF

暂无描述
Linear

LT1640AHCS8

Negative Voltage Hot Swap Controller
Linear

LT1640AHCS8#TR

LT1640A - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640AHCS8#TRPBF

LT1640A - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1640AHIN8

Negative Voltage Hot Swap Controller
Linear

LT1640AHIN8#PBF

暂无描述
Linear

LT1640AHIS8

Negative Voltage Hot Swap Controller
Linear

LT1640AHIS8#TR

LT1640A - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1640AHIS8#TRPBF

LT1640A - Negative Voltage Hot Swap Controller; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1640AH_15

Negative Voltage Hot Swap Controller
Linear